

<u>Jian Tang (</u>唐健)

Email: tangjian5@mail.sysu.edu.cn Sun Yat-Sen University, Guangzhou

<u>Many thanks to my collaborators:</u> <u>Yibing Zhang(U. Sussex), Tse-Chun Wang</u>(SYSU), <u>Yu-Feng Li</u>(IHEP, China), <u>Gui-Jun Ding</u>(USTC), <u>Emilio Ciuffoli, Jarah Evslin, Qiang Fu</u>(IMP, China)

Based on the following work: arXiv:1705.09500 (Phys. Rev. D97(2018)035018.) arXiv: 1708.04909 (Phys. Lett. B774 (2017) 217.) arXiv:1801.01266 (Phys. Rev. D97(2018)113003.) arXiv: 1811.05623 (JHEP 1904 (2019) 004.)

- Warm up of accelerator neutrino oscillation.
- Global efforts: discovery of CPV? Beyond CPV?
- Progress of Chinese efforts.
- Summary.

Remarks:

- Neutrinos in the Standard Model (SM) are strictly massless.
- The discovery of neutrino oscillation--> non-zero neutrino masses
- The addition of new degrees of freedom needed!

Principle of accelerator neutrino oscillations

- Source types and spectra
- Matter density profiles
- Cross sections
- Detector properties: efficiencies, resolutions, backgrounds ...
- Systematical uncertainties

Jian Tang

Search for CPV at a long-baseline neutrino experiment

• Seek to measure asymmetry of two oscillation modes:

$$\mathsf{P}(v_{\mu} \rightarrow v_{e}) - \mathsf{P}(v_{\mu} \rightarrow v_{e})$$

- Event rates convolution of:
 - Flux, cross sections, detector mass, efficiency, E-scale:
 - =>measurements at %-level required.
 - Theoretical description:

=>initial state momentum, nuclear excitations, final-state effects

- Lack of knowledge of cross sections leads to:
 - Systematic uncertainties
 - Biases

Status of neutrino mixings

Can we achieve the level similar to CKM?

Jian Tang

Latest results in a global fit

- Not precise enough!
- We currently have no way to directly measure any of sides containing tau-neutrinos.

Latest results and expected sensitivities soon

Classification of global neutrino oscillation experiments

Classification of global neutrino oscillation experiments

Т2НК uperbeam **T2HKK** Neutrino beams: DUNE **ESSvSB** eactor JUNO HK atmospheri **ICAL@INO PINGU** μDAR MOMENT E /GeV 10 MINOS Oscillation maxima ш DUN 5 Oscillation minima 4 NOVA L/E 50% of events 3 75% of events 2 2K/T2HK 0.5 Ś 0.4 2H 0.3 0.2 L 600 200 400 800 1000 1200 1400 L/km

$$\begin{array}{ccc} \pi^+ \to & \mu^+ + \nu_\mu \\ \pi^- \to & \mu^- + \bar{\nu}_\mu \end{array}$$

 $\mu^- \to e^- + \bar{\nu}_e + \nu_\mu$ $\mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu$

Ref: NuFact2016

Jian Tang

What are precision measurements and new physics?

Neutrino physics topics:

- Are there any sterile neutrinos in Nature?
- 2 The precise value of angles such as θ_{13} and CP phase $\delta \cdots$
- **③** The mass hierarchy: $\Delta m_{31}^2 > 0$ or $\Delta m_{31}^2 < 0$?
- Can one determine the matter density in a high precision by neutrino oscillation in matter?
- The existence of Non-Standard Interactions?

Chung-Kee JUNG @ NNN2016

Table of Contents

- Warm up of neutrino oscillation business
- Global efforts: discovery of CPV? Beyond CPV?
- **Progress of Chinese efforts.**
- Summary.

The T2K experiment

T2K

• Suffering from uncertainties in cross sections.

	1-Ring μ		1-Ring e			
Error source	FHC	RHC	FHC	RHC	FHC 1 d.e.	FHC/RHC
SK Detector	2.40	2.01	2.83	3.79	13.16	1.47
SK FSI+SI+PN	2.20	1.98	3.02	2.31	11.44	1.58
Flux + Xsec constrained	2.88	2.68	3.02	2.86	3.82	2.31
E _b	2.43	1.73	7.26	3.66	3.01	3.74
$\sigma(u_e)/\sigma(ar u_e)$	0.00	0.00	2.63	1.46	2.62	3.03
$ m NC1\gamma$	0.00	0.00	1.07	2.58	0.33	1.49
NC Other	0.25	0.25	0.14	0.33	0.99	0.18
Osc	0.03	0.03	3.86	3.60	3.77	0.79
All Systematics	4.91	4.28	8.81	7.03	18.32	5.87
All with osc	4.91	4.28	9.60	7.87	18.65	5.93

K. McFarland, Neutrino Interaction Uncertainties @ NNN2018

T2HK lead by Japan

10

8

 $\begin{array}{c} \delta_{CP} = 90^{\circ} \\ \delta_{CP} = 0^{\circ} \end{array}$

The NOvA experiment

The NOvA Experiment

- Long-baseline neutrino oscillation experiment.
 - NuMI neutrino beam at Fermilab
 - Near Detector to measure the beam before oscillations
 - Far Detector measures the oscillated spectrum.
- **Primary goal**: measurement of 3-flavor oscillations via:
 - $v_{\mu} \rightarrow v_{\mu} \text{ and } v_{\mu} \rightarrow v_{e}$
 - $\overline{v}_{\mu} \rightarrow \overline{v}_{\mu} \text{ and } \overline{v}_{\mu} \rightarrow \overline{v}_{e}$
- Other goals include:
 - Searches for sterile neutrinos
 - Neutrino cross sections
 - Supernova neutrinos
 - Cosmic ray physics

21

NOvA in US

NOvA: Off-axis long-baseline neutrino oscillation experiment

NOvA in US

• Suffering from uncertainties in cross sections.

DUNE lead by US

DEEP UNDERGROUND NEUTRINO EXPERIMENT

7 years (staged)

10 years (staged)

15 years (staged)

100

50

150

δ_{cp} (degrees)

NuFit 2016 90% C.L. "True" Value

CP Violation Sensitivity DUNE CDR: **CP** Violation 10 **DUNE Sensitivity** 7 years (staged) Normal Ordering 10 years (staged) $\sin^2 2\theta_{13} = 0.085 \pm 0.003$ •••••• $\sin^2 \theta_{23} = 0.441 \pm 0.042$ 0...: NuFit 2016 (90% C.L. range) 0.1 0.095 6 $\sigma = \sqrt{\Delta \chi^2}$ 5σ 0.09 0.085 30 0.08 0.075 0.07 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 -150 -100 δ_{CP}/π Width of band indicates Simultaneous measurement of variation in possible central neutrino mixing angles and δ_{CP} values of θ_{23}

 $\pi^+ \to \mu^+ + \nu_\mu$ $\pi^- \rightarrow \mu^- + \bar{\nu}_\mu$

Jian Tang

Comparison/complementarity of T2HK and DUNE

180

covers 75% of events

- The next generation of accelerator-based oscillation experiments will require ~% uncertainties (on far detector event rate and shape predictions)
- Neutrino-nucleus interaction modeling is difficult at the GeV scale
- Existing models are unlikely to provide sufficient precision for future experiments

Precision measurements?

• Killers hidden in these uncertainties: either in fluxes or in cross sections!

- Why not choose the best neutrino sources produced by muon decays?
- Measure the cross section of neutrino interactions more precisely!

Search for new physics beyond CPV?

- 3-neutrinos and CPT violation Murayama, Yanagida 01; Barenboim, Borissov, Lykken 02; Gonzalez-Garcia, Maltoni, TS 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-decay Babu, Pakvasa 02
- CPT viol. quantum decoherence Barenboim, Mavromatos 04
- Lorentz violation Kostelecky et al., 04, 06; Gouvea, Grossman 06
- mass varying ν Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05
- shortcuts of sterile vs in extra dim
 Paes, Pakvasa, Weiler 05; Doring, Pas, Sicking, Weiler, 18
- decaying sterile neutrino Palomares-Riuz, Pascoli, TS 05; Gninenko 09, 10; Bertuzzo, Jana, Machado, Zukanovich, 18; Ballett, Pascoli, Ross-Lonergan, 18
- energy dependent quantum decoherence Farzan, TS, Smirnov 07; Bakhti, Farzan, TS, 15
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- sterile ν with energy dep. mass or mixing TS 07
- sterile ν with nonstandard interactions Akhmedov, TS 10;
 Conrad, Karagiorgi, Shaevitz, 12; Liao, Marfatia, Whisnant 18

Table of Contents

- Warm up of neutrino oscillation.
- Global efforts: discovery of CPV? Beyond CPV?
- **Progress of Chinese efforts.**
- Summary.

Dreaming machine with well-known fluxes by muon decay beams

• Muon-decay neutrino beams with well-defined fluxes:

$$\mu^- \to e^- + \bar{\nu}_e + \nu_\mu$$
$$\mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu$$

• Dreaming machine to reach the sub-percent level sensitivity of neutrino mixing parameters.

Jumn

(Muon-decay MEdium baseline NeuTrino beam facility)

 MOMENT: the proposal is still in an early stage ; the details have not been completely fixed. **Pion target**

 Peak energy: 200 MeV Neutrino energy range: 100MeV—800MeV

> •The lower beam energy at ~ 300 MeV: free from pi0 background

Baseline: L=150 km

In the MOMENT: the neutrino flux peak at low energies require a very massive detector to compensate the low interaction cross section

Pion collection section

Pion decay section (~25m)

µ+/u- selection section(~2m)

Bending section(~20

High-power proton linac (15MW, 1.5GeV)

ADS type (~300m)

Chinese proton drivers to muon beams

• CAS-IHEP: pulsed proton beam, 1.6 GeV, 25 Hz @ 100 kW.

Schematic for CSNS multiple platforms

8

Chinese proton drivers towards muon beams

• CAS-IMP: continuos proton beam, 500 MeV @ 2.5 MW.

Chinese proton drivers towards muon beams

• CIAE: Continuous proton beam 0.1 GeV \rightarrow 0.8 GeV \rightarrow 2 GeV.

New physics beyond SM: new particles, new couplings, new phenomenon...

- Flavor violating interactions with neutrinos: $\nu_{\alpha}f \rightarrow \nu_{\beta}f, l_{\alpha}^{-} \rightarrow \nu_{\beta}e^{-}\bar{\nu}_{e}\cdots$
- 4-fermion vertices: $L_{\text{eff}} = 2\sqrt{2} G_F \left(\epsilon^{L/R}\right)^{\alpha\gamma}_{\beta\delta} \left(\bar{\nu}^{\beta}\gamma^{\rho} P_L \nu_{\alpha}\right) \left(\bar{\ell}^{\delta}\gamma^{\rho} P_{L/R} \ell_{\gamma}\right)$

NSI happens to neutrino propagation in matter

NSI at neutrino productions

Constraints of CC-NSIs at MOMENT

Jian Tang

- Colorful regions are allowed after running a far detector at MOMENT.
- The e-mu sector of NSI are the best constrained.
- Almost all NSI-induced CP phases change the exclusion limits severely except the e-mu sector.
- Limits from other sectors are not as good as those from the e-mu sector of NSI.

arXiv:1705.09500

School of Physics

An exercise: neutrino invisible decays at MOMENT

• Hints in the recent discrepancy of NOvA and T2K.

S. Choubey, D. Dutta and D. Pramanik, JHEP 1808, 141 (2018)

• MOMENT will confirm/resolve the issue with more than 3 sigma C. L.

Tests of unitarity violation

• Light sterile neutrino anomaly (eV scale)

 Heavy sterile neutrinos from see-saw model (GeV scale)

Dark matter candidate (keV scale)

 IUV (indirect unitary violation) by heavy sterile neutrinos

• DUV (direct unitary violation) by light sterile neutrinos: oscillation with active ones

- Simplifying the mixing matrix to deal with DUV and IUV, Phys. Lett., B718:1447-1453, 2013
- Pertubation study of oscillation probabilities for DUV and IUV, Phys. Rev., D93(3):033008

Exclusion limits in terms of unitarity violations

The limits to new paramerters induced by the DUV and IUV effects

Test of neutrino models based on flavor symmetries

- Take the Tri-direct CP symmetry model as an example.
- Reduced degrees of freedom compared with 6 DoFs in PMNS.

 $\mathcal{L} = -y_l L \phi_l E^c - y_{\rm atm} L \phi_{\rm atm} N^c_{\rm atm} - y_{\rm sol} L \phi_{\rm sol} N^c_{\rm sol} - \frac{1}{2} x_{\rm atm} \xi_{\rm atm} N^c_{\rm atm} N^c_{\rm atm} - \frac{1}{2} x_{\rm sol} \xi_{\rm sol} N^c_{\rm sol} N^c_{\rm sol} + \text{h.c.}$

G.J. Ding, S. King, C. C. Li, arXiv: 1807.07538.

Test of neutrino models based on flavor symmetries

- Correlations of new DoFs well constrained by future neutrino experiments.
 - A strong discrimination of tri-direct CP symmetry models.

Jian Tang

-9 -8 -7

-6

X

-5

-4

3.9

3.8

3.7

3.6

3.5

34

Ma [meV]

School of Physics

Table of Contents

- Warm up of neutrino oscillation business.
- Motivations of neutrino physics.
- Discovery of the leptonic CP violation?
- Summary

- Lots of new physics to be done with neutrino oscillation experiments.
- T2HK and DUNE are complementary in discovery of CPV.
- Apart from CPV, we should do precision measurements and search for new physics.
- Chinese efforts are on the way with neutrinos produced by accelerator muon sources.
- Welcome to work together on new physics searches with accelerator neutrinos.

Thanks for your attention!

Simulations of neutrino oscillations w/o new physics

Credits: J. Kopp

1.0

0.8

Fraction of δ

0.2

0.0

Simulations of neutrino oscillations w/o new physics

Li, Tang, Wang.

T2K

0.40

0.45

0.50

 $\sin^2\theta_{23}$

0.55

0.60

0.65

Credits:

J. Kopp

350

300

250

200

150

100

50

0

0.35

 $\delta_{\rm CP}$ [Degrees]

Flux

School of Physics

0.45

0.50

 $\sin^2\theta_{23}$

0.55

0.60

0.65

0.40

NOvA

150

100

50

0

0.35