Implications on Observation of charm CPV

Fu-Sheng Yu Lanzhou University

14th workshop on TeV Physics Nanjing Normal University, 21 April, 2019

LHCb observes charm CPV

1903.08726

$$\Delta A_{CP} = A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-)$$
$$= (-1.54 \pm 0.29) \times 10^{-3}$$

• > 5σ , first observation of CPV in charm

LHCb observes charm CPV

in particle physics

Measurements of ΔA_{CP}

Measurements	ΔΑ _{CP}	Publication	World Average	
2011LHCb (D*)	(-0.82±0.24)%	PRL108,111602		
2012 CDF	(-0.62±0.23)%	PRL109,111801	(-0.74±0.15)%	
2012 Belle	(-0.87±0.41)%	1212.1975		
2013LHCb (D*)	(-0.34±0.18)%	LHCb- CONF-2013-03	(-0.33±0.12)%	
2013LHCb (B)	(+0.49±0.33)%	PLB723(2013)33		
2014LHCb (B)	(+0.14±0.18)%	JHEP07(2014)041	(-0.25±0.10)%	
2016LHCb (D*)	(-0.10±0.09)%	PRL116,191601	(-0.14±0.07)%	
2019LHCb(all)	(-0.15±0.03)%	1903.08726	(-0.16±0.03)%	

Exp Averages

Understanding charm CPV

$$\mathcal{A}(D^0 \to K^+ K^-) = \lambda_s \mathcal{T}^{KK} + \lambda_b \mathcal{P}^{KK}, \qquad \lambda_i = V_{ci}^* V_{ui}$$
$$\mathcal{A}(D^0 \to \pi^+ \pi^-) = \lambda_d \mathcal{T}^{\pi\pi} + \lambda_b \mathcal{P}^{\pi\pi},$$

$$\Delta A_{CP} = -2r \sin \gamma \left(\frac{|\mathcal{P}^{KK}|}{|\mathcal{T}^{KK}|} \sin \delta^{KK} + \frac{|\mathcal{P}^{\pi\pi}|}{|\mathcal{T}^{\pi\pi}|} \sin \delta^{\pi\pi} \right)$$
$$r = |\lambda_b / \lambda_{d,s}|$$
$$2r \sin \gamma = 1.5 \times 10^{-3}$$
$$\Delta A_{CP} = (-1.54 \pm 0.29) \times 10^{-3} \longrightarrow \left(\frac{|\mathcal{P}^{KK}|}{|\mathcal{T}^{KK}|} \sin \delta^{KK} + \frac{|\mathcal{P}^{\pi\pi}|}{|\mathcal{T}^{\pi\pi}|} \sin \delta^{\pi\pi} \right) \approx 1$$

Li, Lu, **FSY**, PRD86,036012(2012); 1903.10638

2r

Understand: tree —> penguin; Branching ratio —> CPV

Charm CPV in theory

- * Ambiguity in perturbative theory
 - heavy quark expansion 1/m_c, m_c=1.3GeV, converges slowly in exclusive decays

* $\Delta A_{CP}(K^+K^-, \pi^+\pi^-)$ predicted from 10-4 to 10-2

Grossman, Kagan, Nir, '07; Bigi, Paul, '11; Isidori, Kamenik, Ligeti, Perez, '11; Brod, Grossmann, Kagan, Zupan, '11, '12; Feldmann, Nandi, Soni, '12; Bhattarcharya, Gronau, Rosner, '12; Cheng, Chiang, '12; Li, Lu, **FSY**, '12; Franco, Mishima, Silvestrini, '12; Hiller, Jung, Schacht, '12. Khodjamirian, Petrov, 17.

Cheng, Chiang, '12: $(-1.51 \pm 0.04) \times 10^{-3}$

in the SM:

Li, Lu, **FSY**, '12 : $(-0.6 \sim -1.9) \times 10^{-3}$

Long-distance dynamics in charm

Topological Amplitudes

- According to the weak flavour flows
- Including all strong interaction effects
- Amplitudes extracted from data

Chau,86'; Chau,Cheng,87'; Bhattacharya, Rosner, 08'; Cheng, Chiang,10'

 Always in the flavour SU(3) symmetry limit, but losing predictive power

Factorization-Assisted Topological-Amplitude Approach (FAT)

- Dynamics In factorization:
 - Short-distance: Wilson coefficients

Long-distance: hadronic matrix elements

Factorization-Assisted Topological-Amplitude Approach (FAT)

11

Short-distance: Wilson coefficients

Long-distance: hadronic matrix elements

Non-perturbative quantities

Extracted fron

W-annihilation (A) W-exchange (E)

$$\langle P_1 P_2 | \mathcal{H}_{\text{eff}} | D \rangle_{E,A} = \frac{G_F}{\sqrt{2}} V_{\text{CKM}} b_{q,s}^{E,A}(\mu) f_D m_D^2 \left(\frac{f_{P_1} f_{P_2}}{f_\pi^2} \right)$$

A:
$$b_{q,s}^{A}(\mu) = C_{1}(\mu) \chi_{q,s}^{A} e^{i\phi_{q,s}^{A}}$$

E: $b_{q,s}^{E}(\mu) = C_{2}(\mu) \chi_{q,s}^{E} e^{i\phi_{q,s}^{E}}$
J(3) breaking effects
J(3) breaking effects

Long-distan dynamics in charm	ce	Understand branching ratio first			
	Modes	Br(exp)	Br(this work) A_{CP}^{tot}	$\times 10^{-3}$
	$D^0 ightarrow \pi^+ \pi^-$	1.45 ± 0.05	1.43	0.58	
	$D^0 \rightarrow K^+ K^-$	4.07 ± 0.10	4.19	-0.42	
	$D^0 \rightarrow K^0 \bar{K}^0$	0.320 ± 0.038	0.36	0.05	
	$D^0 ightarrow \pi^0 \pi^0$	0.81 ± 0.05	0.57	1.38	and
	$D^0 ightarrow \pi^0 \eta$	0.68 ± 0.07	0.94	-0.29	and
	$D^0_{ m o} ightarrow \pi^0 \eta'$	0.91 ± 0.13	0.65	1.53	then
	$D^0 \rightarrow \eta \eta$	1.67 ± 0.18	1.48	0.18	
	$D^0 \rightarrow \eta \eta'$	1.05 ± 0.26	1.54	-0.94	predict
	$D^+ \rightarrow \pi^+ \pi^0$	1.18 ± 0.07	0.89	0	CPV
	$D^+ \rightarrow K^+ K^0$	6.12 ± 0.22	5.95	-0.93	
	$D^+ ightarrow \pi^+ \eta$	3.54 ± 0.21	3.39	-0.26	
	$D^+ ightarrow \pi^+ \eta^\prime$	4.68 ± 0.29	4.58	1.18	
	$D_S^+ \rightarrow \pi^0 K^+$	0.62 ± 0.23	0.67	0.39	
	$D_S^+ \rightarrow \pi^+ K^0$	2.52 ± 0.27	2.21	0.84	
	$D_S^+ \rightarrow K^+ \eta$	1.76 ± 0.36	1.00	0.70	
	$\frac{D_S^+ \to K^+ \eta'}{=}$	1.8 ± 0.5	1.92	-1.60	

Factorization-Assisted Topological approach

Implications of LHCb2019 1903.08726

 $\Delta A_{CP} = A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-)$ $= (-1.54 \pm 0.29) \times 10^{-3}$ 2. Precision of order 10-4 **1. Charm CPV** of order 10-3

Implication: What next potential to observe charm CPV?

1. Charm CPV of order 10⁻³ 2. Precision of order 10⁻⁴

1) Large branching fractions

$$Br(D^+ \to K^+ K^- \pi^+) = 9.5 \times 10^{-3}$$

Compared to $Br(D^0 \to \pi^+ \pi^-) = 1.4 \times 10^{-3}$

which dominates error of

 $\Delta A_{CP} = (-1.54 \pm 0.29) \times 10^{-3}$

Li, Lu, **FSY**, 1903.10638

What is the next potential mode to observe charm CPV?

$$Br(D^+ \to K^+ K^- \pi^+) = 9.5 \times 10^{-3}$$

$$A_{CP}(D^+ \to \pi^+ \phi) = 10^{-7}$$

Qin, Li, Lu, **FSY**, '14

$$A_{CP}(D^+ \to K^+ \overline{K}^{*0}) = 0.2 \times 10^{-3}$$
$$A_{CP}(D^+ \to K^+ \overline{K}^{*0}_0(1430)) = -0.88 \times 10^{-3}$$

Li, Lu, **FSY**, 1903.10638

 $m^2_{K^+K^+}$ (GeV²/c⁴)

2.5

1.5

LHCb

1.5 2 m²_{Kπ*} (GeV²/c⁴)

10²

$$D^+ \rightarrow \pi^+ \phi$$
, $Br = 2.6 \times 10^{-3}$; $A_{CP} = 10^{-7}$
Benchmark

$$Br(D^+ \to K^+ K^- \pi^+) = 9.5 \times 10^{-3}$$
LHCb, '11, '19

1. Binned
$$D^+ \to K^+ K^- \pi^+$$

Searching Strategies

Searching Strategies

2. Phase Space Integrated Li, Lu, FSY, 1903.10638

(1)
$$A_{CP}(D^+ \to K^+ K^- \pi^+) - A_{CP}(D^+ \to \pi^+ \pi^- \pi^+)$$

= $A_{CP}^{\text{raw}}(D^+ \to K^+ K^- \pi^+) - A_{CP}^{\text{raw}}(D^+ \to \pi^+ \pi^- \pi^+)$
Br=0.95% Br=0.3%

(2)
$$A_{CP}(D^+ \to K^+ K^- \pi^+) - A_{CP}(D_s^+ \to K^+ \pi^+ \pi^-)$$

 $= \begin{bmatrix} A_{CP}^{\text{raw}}(D^+ \to K^+ K^- \pi^+) - A_{CP}^{\text{raw}}(D^+ \to K^- \pi^+ \pi^+) \end{bmatrix}$ Br=0.95% $- \begin{bmatrix} A_{CP}^{\text{raw}}(D_s^+ \to K^+ \pi^+ \pi^-) - A_{CP}^{\text{raw}}(D_s^+ \to K^+ K^- \pi^+) \end{bmatrix}$ Br=0.66% Br=5.5%

Summary & Outlook

- * CPV in D0->K+K- and pi+pi-
 - Understandable in the Standard Model
 - factorization-assisted topological approach works well in charm decays
 - Next potential is D+ ->K+K-pi+
- Charm CPV is becoming more charming with precision at order of 10⁻⁴
- Impacts on new physics to be studied

Thank you for your attention!

Backups

Direct CPV in charm

 $\Delta A_{CP} \equiv A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+)$

$$\left(\frac{|\mathcal{P}^{KK}|}{|\mathcal{T}^{KK}|}\sin\delta^{KK} + \frac{|\mathcal{P}^{\pi\pi}|}{|\mathcal{T}^{\pi\pi}|}\sin\delta^{\pi\pi}\right) \approx 1$$

$$\frac{|\mathcal{P}|}{|\mathcal{T}|}\sin\delta \sim 1/2 \quad \text{or Im}[\mathcal{P}/\mathcal{T}] \sim 1/2$$

FAT2012
$$\frac{\mathcal{P}^{\pi\pi}}{\mathcal{T}^{\pi\pi}} = 0.66e^{i134^{\circ}}, \text{ and } \frac{\mathcal{P}^{KK}}{\mathcal{T}^{KK}} = 0.45e^{i131^{\circ}}$$

$$\frac{P}{T} = \frac{a_4 + a_6 r_{\chi}}{a_1} = 0.36e^{-i108^{\circ}}$$
$$r_{\chi} = \frac{2m_0^2}{m_c} = 2.8, \text{ where } m_0^{\pi} = \frac{m_{\pi}^2}{(m_u + m_d)^2}$$

 $a_4 = -0.036 - i0.098, a_6 = -0.031 - i0.098$

$$C_{3,5}(\mu) \to C_{3,5} - \frac{\alpha_s(\mu)}{8\pi N_c} \sum_{q=d,s} \frac{\lambda_q}{\lambda_b} C^q(\mu, \langle l^2 \rangle) + \frac{1}{N_c} \frac{\alpha_s(\mu)}{4\pi} \frac{m_c^2}{\langle l^2 \rangle} [C_{8g}(\mu) + C_5(\mu)],$$

$$C_{4,6}(\mu) \to C_{4,6} + \frac{\alpha_s(\mu)}{8\pi} \sum_{q=d,s} \frac{\lambda_q}{\lambda_b} C^q(\mu, \langle l^2 \rangle) - \frac{\alpha_s(\mu)}{4\pi} \frac{m_c^2}{\langle l^2 \rangle} [C_{8g}(\mu) + C_5(\mu)],$$

Tree

Penguin

Before 2011...

$$A_{CP} \sim \frac{|V_{cb}^* V_{ub}|}{|V_{cs}^* V_{us}|} \frac{\alpha_s}{\pi} \sim 10^{-4}$$

CPV in charm is expected to be $\leq 10^{-3}$

Grossman, Kagan, Nir, '07; Bigi, Paul, Recksiegel, '11