CMS-PAS-HIG-19-001

第十四届TeV物理工作组学术研讨会

Measurement of Higgs properties in the H→ZZ*→4l channel with full Run-2 data at CMS

Mingshui Chen

20/04/2019

中國科學院為能物招酬完備 Institute of High Energy Physics Chinese Academy of Sciences

Overview

- The $H \rightarrow ZZ \rightarrow 4I$ ($l=e,\mu$) channel:
 - Large S/B ratio, excellent resolution, complete reconstruction of the final state
 - "Golden channel" for discovery and properties measurements

Overview

- The $H \rightarrow ZZ \rightarrow 4I$ (l=e, μ) channel:
 - Large S/B ratio, excellent resolution, complete reconstruction of the final state
 - "Golden channel" for discovery and properties measurements

Results with *partial* **datasets**

 $\Gamma_H < 1.10 GeV at 95 \% C.L.$

 $m_H = 125.26 \pm 0.20(stat) \pm 0.08(syst)GeV$

- Mass & width
 - most precise determination of the mass so far
- Spin & parity, tensor structure of the interaction

 10^{2}

| U| 10

Ņ

• Cross sections

 $\sigma_{fid} = 2.92^{+0.48}_{-0.44}(stat)^{+0.28}_{-0.24}(syst)fb$

Analysis Strategy

- Analysis strongly depends on (efficiency)⁴ of selecting leptons:
 - Electrons (muons) reconstructed down to 7 (5) GeV
 - Electron identification BDT includes electron isolation variables and is retrained for the upgraded pixel detector leading to strongly reduced misidentification of electrons
- ZZ candidates built from selected leptons
- Background and signal modeling:
 - Irreducible: $qq \rightarrow ZZ$ and $gg \rightarrow ZZ$ from simulation with additional QCD and EW k-factors as a function of m_{41}
 - Reducible: Z+X estimated from data in control regions using 2 independent methods
 - Signal: ggH, VBF, WH, ZH, ttH, tHq and bbH production modes considered from simulation

Event Categorization

- ZZ candidates classified into 7 categories designed to target main Higgs production modes
 - based on number of jets, b-tags, extra leptons and cuts on the 3 matrix-element based production discriminants (D_{2jet}, D_{1jet} and D_{VH})

Events / 0.

14

12

Event Categorization

- Events further classified in 22 stage 1.1 subcategories to target different stage 1.1 production bins defined by LHCHXSWG
 - Define cross sections in exclusive fiducial regions
 - Maximize the sensitivity of measurements and reduce its theory dependence

Event Categorization

• Events further classified in 22 stage 1.1 subcategories to target different stage 1.1 production bins defined by LHCHXSWG

Signal fraction

Observables

- Two observables used in all PDFs: m₄₁ and kinematic discriminant
- Depending on event category 3 different kinematic discriminants used:
 - D^{kin}_{bkg} (decay only information) provides separation between Higgs signal and SM backgrounds
 - **Production + decay discriminants** developed providing separation of VBF ($D^{VBF+dec}_{bkg}$) and VH (D^{VH+dec}_{bkg}) from gluon fusion signal and SM backgrounds using **additional jet information** (information about production) in combination with decay variables to build matrix elements

Results of Event Selection

 Good data/MC agreement over the whole m4l range in all 3 final states (4e, 4μ, 2e2μ)

	Channel	4e	4μ	2e2µ	4ℓ
Table for 2018 ~60/fb	$q\bar{q} \to ZZ$	333^{+57}_{-53}	622^{+31}_{-44}	815 ± 73	1770^{+98}_{-101}
	$gg \rightarrow ZZ$	$75.1^{+14.3}_{-13.5}$	$116.6^{+11.7}_{-12.8}$	176.9 ± 23.0	$368.5^{+29.5}_{-29.6}$
	Z + X	19.3 ± 7.2	50.8 ± 15.2	64.6 ± 15.6	134.7 ± 22.9
	Sum of backgrounds	$428^{+59.2}_{55.2}$	$790^{+36.4}_{-48.3}$	1057 ± 78.1	$2274^{+104.9}_{-107.7}$
	Signal ($m_{\rm H} = 125$ GeV)	$19.6^{+3.3}_{-3.1}$	$40.8^{+2.5}_{-2.9}$	50.7 ± 5.6	$111.1^{+6.9}_{-7.0}$
	Total expected	$447^{+59.3}_{55.2}$	$830_{-48.4}^{+36.5}$	1108 ± 78.3	$2385^{+105.1}_{-107.9}$
	Observed	462	850	1130	2442

Results of Event Selection

Good data/MC agreement over all event categories

Event				Signal				Total	Ba	ackground		Total	Observed
category	ggH	VBF	WH	ZH	ttH	bbH	tqH	signal	$q\bar{q} \rightarrow ZZ$	$gg \to ZZ$	Z + X	expected	
ggH-0j/pT[0,10]	25.3	0.08	0.02	0.02	0.00	0.14	0.00	25.6	26.5	0.97	1.19	54.2	61
ggH-0j/pT[10-200]	86.8	1.69	0.54	0.86	0.00	0.90	0.00	90.8	35.4	3.79	15.5	145	153
ggH-1j/pT[0-60]	26.2	1.43	0.50	0.45	0.01	0.43	0.01	29.1	10.3	1.19	5.54	46.1	40
ggH-1j/pT[60-120]	12.4	1.24	0.45	0.47	0.01	0.10	0.01	14.6	2.76	0.16	3.21	20.8	17
ggH-1j/pT[120-200]	3.31	0.62	0.17	0.26	0.00	0.02	0.00	4.38	0.38	0.00	0.52	5.28	6
ggH-2j/pT[0-60]	3.68	0.29	0.14	0.14	0.06	0.09	0.02	4.42	0.97	0.15	2.07	7.60	9
ggH-2j/pT[60-120]	5.17	0.54	0.22	0.22	0.09	0.04	0.02	6.30	0.84	0.07	1.86	9.06	12
ggH-2j/pT[120-200]	2.90	0.40	0.15	0.17	0.07	0.01	0.02	3.71	0.26	0.00	0.40	4.37	5
ggH/pT>200	2.72	0.65	0.21	0.24	0.06	0.01	0.02	3.91	0.16	0.00	0.21	4.28	2
ggH-2j/mJJ>350	0.82	0.17	0.06	0.05	0.04	0.01	0.01	1.16	0.16	0.02	0.65	1.98	3
VBF-1j	14.2	2.94	0.20	0.18	0.00	0.12	0.01	17.6	2.37	0.43	1.05	21.5	20
VBF-2j/mJJ[350,700]	0.80	1.11	0.01	0.01	0.00	0.01	0.00	1.95	0.08	0.02	0.04	2.09	2
VBF-2j/mJJ>700	0.43	1.80	0.00	0.00	0.00	0.00	0.00	2.25	0.02	0.01	0.03	2.31	2
VBF-3j/mJJ>350	2.43	2.15	0.06	0.07	0.02	0.03	0.05	4.81	0.24	0.06	0.96	6.07	6
VBF-2j/pT>200	0.42	0.76	0.01	0.01	0.01	0.00	0.01	1.22	0.01	0.00	0.03	1.26	0
VBF-rest	2.40	0.87	0.11	0.10	0.03	0.04	0.01	3.56	0.34	0.06	0.74	4.70	2
VH-lep/pTV[0-150]	0.24	0.04	0.71	0.25	0.08	0.02	0.02	1.37	0.82	0.14	0.40	2.72	5
VH-lep/pTV>150	0.02	0.01	0.21	0.08	0.04	0.00	0.01	0.36	0.01	0.00	0.02	0.40	0
VH-had/mJJ[60-120]	4.11	0.25	1.01	1.20	0.11	0.07	0.02	6.77	0.70	0.05	1.36	8.89	8
VH-rest	0.56	0.04	0.08	0.07	0.03	0.00	0.00	0.77	0.08	0.00	0.15	1.01	1
ttH-had	0.19	0.05	0.03	0.06	0.82	0.01	0.03	1.19	0.01	0.00	0.45	1.66	2
ttH-lep	0.02	0.00	0.02	0.02	0.60	0.00	0.03	0.70	0.03	0.00	0.12	0.85	0

Results of Event Selection

 Good data/MC agreement over all event categories

Measurement Strategy

- 2D maximum-likelihood fit in 3 final states x 22 categories
 - mass dimension un-binned, uses signal shape parameterized as a function of $\rm m_{4l}$
 - 2D templates normalized to 1 for each bin of m_{4l} $\mathscr{L}_{2D}(m_{4\ell}, D_{bkg}^{kin}) = \mathscr{L}(m_{4\ell})\mathscr{L}(D_{bkg}^{kin} | m_{4\ell})$

13

Probing Higgs Production Modes

- Combined signal strength at $m_{\mu}=125.09 \text{ GeV}$ $\mu = 0.94^{+0.07}_{-0.07} (\text{stat.})^{+0.08}_{-0.07} (\text{syst.})$
 - Extract signal strength in each major production mode
 - Extract signal strength of production processes in a 2-parameter model

Probing Higgs Production Modes

 Define simplified fiducial volume as |y_H| < 2.5 and remove theoretical uncertainties on the overall signal cross section

15

Fiducial Cross Sections

• Inclusive fidutial xsec: $\sigma_{\text{fid.}} = 2.73^{+0.23}_{-0.22} (\text{stat.})^{+0.24}_{-0.19} (\text{syst.}) \text{ fb}$

- Cross sections measured in tight fiducial volume closely matching reconstruction selection -> Maximum model independence
- Signal extracted using a 1D m_{4l} fit

Differential Cross Sections

- Unfolding performed by including response matrix in the likelihood
- Compared to predictions from POWHEG and NNLOPS

Differential Cross Sections

- Unfolding performed by including response matrix in the likelihood
- Compared to predictions from POWHEG and NNLOPS

Summary

- Properties of Higgs boson in H→ZZ→4I at √s=13 TeV using full Run 2 data presented
 - All measurements compatible with SM predictions
- Improves on previously published CMS results Inclusive analysis no longer dominated by statistical uncertainties
- More Higgs properties measurements with full Run 2 data in pipeline

Thanks for your attention !

References

 CMS Higgs Physics Results <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/</u> <u>PhysicsResultsHIG</u>

CMS collaboration now has over 4000 members from ~200 institutes from more than 40 countries

Higgs Discovery

 On July 4th, 2012, Higgs discovered mainly in two high resolution channels

> H→γγ candidate

 $H \rightarrow 4\mu$ candidate

Higgs Mass

- A free parameter in the SM
- Fundamental position in the SM:
 - calculation of the Higgs boson production and decay rates
 - precise knowledge necessary to test the coupling structure

Consistency tests of SM parameters

For HWW/HZZ: $(\Delta BR/BR)/\Delta m_{H} \approx 8\%/GeV$

Simplified Template Cross Sections

- Aim to maximize the sensitivity of measurements and reduce its theory dependence
 - All decay channels are combined
- Cross-sections are measured directly instead of signal strengths
- Results obtained for a given production mode
- No need to normalize to a theory xsec which can change over time

Stage-1 splitting

(Differential) Fiducial Cross Sections

- Measure within fiducial phase space to minimize model dependence
- Differential measurements of p_T(H), N(jets), p_T(jet)

Probing for Anomalous Couplings

Test specific non-SM Lagrangian structure with discriminating distributions

Production (VBF and VH tagged events) used together with **decay** information

Probing for Anomalous Couplings

Test specific non-SM Lagrangian structure with discriminating distributions

Production (VBF and VH tagged events) used together with **decay** information

Matrix Element Discriminators

Used in categorisation of events to

provide discrimination between different production mode

$$\mathcal{D}_{bkg}^{kin} = \left[1 + \frac{\mathcal{P}_{bkg}^{q\bar{q}}(\vec{\Omega}^{H \to 4\ell} | m_{4\ell})}{\mathcal{P}_{sig}^{gg}(\vec{\Omega}^{H \to 4\ell} | m_{4\ell})}\right]^{-1}$$

$$\begin{split} \mathcal{D}_{bkg}^{\text{VBF+dec}} &= \frac{\mathcal{P}_{sig}^{\text{VBF+VH+dec}}(\vec{\Omega})}{\mathcal{P}_{sig}^{\text{VBF+VH+dec}}(\vec{\Omega}) + c^{\text{VBF2jet}}(m_{4\ell}) \times (\mathcal{P}_{bkg}^{\text{VBS+VVV}}(\vec{\Omega}) + \mathcal{P}_{bkg}^{\text{QCD+dec}}(\vec{\Omega}))} \\ \mathcal{D}_{bkg}^{\text{VH+dec}} &= \frac{\mathcal{P}_{sig}^{\text{VBF+VH+dec}}(\vec{\Omega})}{\mathcal{P}_{sig}^{\text{VBF+VH+dec}}(\vec{\Omega}) + c^{\text{had.VH}}(m_{4\ell}) \times (\mathcal{P}_{bkg}^{\text{VBS+VVV}}(\vec{\Omega}) + \mathcal{P}_{bkg}^{\text{QCD+dec}}(\vec{\Omega}))}, \end{split}$$

$$\mathcal{D}_{2\text{jet}} = \left[1 + \frac{\mathcal{P}_{\text{HJJ}}(\vec{\Omega}^{\text{H}+\text{JJ}}|m_{4\ell})}{\mathcal{P}_{\text{VBF}}(\vec{\Omega}^{\text{H}+\text{JJ}}|m_{4\ell})}\right]^{-1}$$
$$\mathcal{D}_{1\text{jet}} = \left[1 + \frac{\mathcal{P}_{\text{HJ}}(\vec{\Omega}^{\text{H}+\text{J}}|m_{4\ell})}{\int d\eta_{\text{J}} \mathcal{P}_{\text{VBF}}(\vec{\Omega}^{\text{H}+\text{JJ}}|m_{4\ell})}\right]^{-1}$$

$$\mathcal{D}_{\rm WH} = \left[1 + \frac{\mathcal{P}_{\rm HJJ}(\vec{\Omega}^{\rm H+JJ}|m_{4\ell})}{\mathcal{P}_{\rm ZH}(\vec{\Omega}^{\rm H+JJ}|m_{4\ell})}\right]^{-1}$$
$$\mathcal{D}_{\rm ZH} = \left[1 + \frac{\mathcal{P}_{\rm HJJ}(\vec{\Omega}^{\rm H+JJ}|m_{4\ell})}{\mathcal{P}_{\rm WH}(\vec{\Omega}^{\rm H+JJ}|m_{4\ell})}\right]^{-1}$$

Coupling Deviations in BSM

- How well do we need to measure Higgs couplings ?
- Typical effect on coupling from heavy particle M or new physics at scale M:

$$\Delta \sim \left(\frac{\upsilon}{M}\right)^2 \sim 5\% @ M \sim 1 \text{ TeV}$$

Han et al., hep-ph/0302188 Gupta et al., arXiv:1206.3560

.

Typical sizes of coupling modifications:

arXiv:1310.8361

Model	κ_V	κ_b	κ_γ	
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$	
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$	
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$	
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$	
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$	

Fiducial Volume

Lepton kinematics and isolation						
Leading lepton $p_{\rm T}$	$p_{\rm T} > 20 {\rm GeV}$					
Subleading lepton $p_{\rm T}$	$p_{\rm T} > 10 { m GeV}$					
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7 (5) {\rm GeV}$					
Pseudorapidity of electrons (muons)	$ \eta < 2.5 (2.4)$					
Sum $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 p_{\rm T}$					
Event topology						
Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above						
Invariant mass of the Z_1 candidate	$40 < m_{Z_1} < 120 \text{GeV}$					
Invariant mass of the Z ₂ candidate	$12 < m_{Z_2} < 120 \text{GeV}$					
Distance between selected four leptons	$\Delta R(\ell_i, \ell_i) > 0.02$ for any $i \neq j$					
Invariant mass of any opposite-sign lepton pair	$m_{\ell^+\ell'^-} > 4 \mathrm{GeV}$					
Invariant mass of the selected four leptons	$105 < m_{4\ell} < 140 \text{GeV}$					

Correlation matrix of the fitted signal strengths for Stage 1.1 Bins

32

ZZ Candidate Selection

Z candidate = any OS-SF pair that satisfy $12 < m_{ll(\gamma)} < 120$ GeV

Build all possible ZZ candidates, define Z_1 candidate with $m_{ll(\gamma)}$ closest to the PDG m(Z) mass

- $m_{Z1} > 40 \text{ GeV}, p_T(11) > 20 \text{ GeV}, p_T(12) > 10 \text{ GeV}$
- \odot ΔR >0.02 between each of the four leptons
- $m_{II} > 4$ GeV for OS pairs (regardless of flavour)
- reject 4µ and 4e candidates where the alternate pairing Z_aZ_b satisfies Im(Z_a)-m(Z)I<Im(Z₁)-m(Z)I and m(Z_b)<12 GeV
 m_{4I} > 70 GeV

If more than one ZZ candidate is left, choose the one of highest \mathcal{D}_{bkg}^{kin} If \mathcal{D}_{bkg}^{kin} is the same, take the one with Z₁ mass closest to m(Z)*

*For fiducial measurements take the one with Z₁ mass closest to m(Z)

