

Institute of High Energy Physics Chinese Academy of Sciences

Probing Quartic Higgs Boson Self-Interactions at Future Colliders

Jing Ren IHEP

14th Workshop on TeV Physics Nanjing Normal University April 20, 2019

Based on Tao Liu, Kun-Feng Lyu, Jing Ren, Hua Xing Zhu arXiv: 1803.04359

Outline

Brief review on Higgs self-couplings measurement

Probing quartic Higgs self-couplings via dihiggs production

- Features of NLO corrections of quartic Higgs coupling
- Sensitivities to Higgs self-couplings on future lepton colliders

Why Higgs self-couplings interesting?

Higgs is the only SM particle that interact with itself

Higgs is quite SM-like, but less is known about the Higgs potential

SM:
$$\lambda_{3,SM} = \frac{3m_h^2}{v}, \quad \lambda_{4,SM} = \frac{3m_h^2}{v^2}.$$

General: $V_{self} = \frac{1}{3!}\lambda_{3,SM}(1+\kappa_3)h^3 + \frac{1}{4!}\lambda_{4,SM}(1+\kappa_4)h^4$

Higgs self-interactions deeply connected with great puzzles

- Electroweak baryogengesis: strong 1st order EWPT —> large modification of Higgs self-interactions
- Higgs gravitational interaction $H^{\dagger}HR$: new derivative Higgs self-couplings

• • • •

3

Cubic Higgs coupling: dihiggs production

Hadron collider: three main production channels

Cubic Higgs coupling: dihiggs production

Lepton collider: two main production channels

• Z-boson associated production

Vector boson fusion production

Two processes are studied on ILC and CLIC (at different E_{cm}) in great details

ILC sensitivity Zhh, 500GeV, 4/ab: $\Delta \kappa_3 \approx 27\%$ vvhh, ITeV, 2.5/ab: $\Delta \kappa_3 \approx 14\%$ Kurata et al, LCWS15, 2015

5

Quartic Higgs coupling: trihiggs production

Plehn and Rauch, PRD 72, 053008 (2005)

- Production cross section quite small, ~5fb @ 100TeV
- Cross section depend on both cubic, quartic couplings, but the dependence on quartic couplings is much weaker
- Study of $hhh \rightarrow \overline{b}b\overline{b}b\gamma\gamma$ @ I00TeV

Papaefstathiou, Sakurai, JHEP 1602, 006 (2016) Chen, Yan, Zhao, Zhong, Zhao, PRD 93, 013007 (2016)

 κ_4 sensitivity depends strongly on $\kappa_{3.}$ For SM, κ_4 sensitivity is of O(10)

K4 approximate $c_3 - d_4$ exclusion, $hhh \rightarrow (b\bar{b})(b\bar{b})(\gamma\gamma)$, pp@100 TeV $- d_4 = 6c_3$ 15 10 5 0 -5 private communitation with Sakurai -10 **K**3 3 5 -3-2 -1 0 1 2 4

Still quite challenging!

"Indirect" probe of cubic Higgs coupling

Precise measurement of cubic Higgs coupling NLO corrections to single Higgs production

- Finite contribution to the form factor of relevant vertices (log-divergent corrections to Higgs twopoint function absorbed into Higgs mass)
- Complimentary to dihiggs production measurement

Outline

Brief review on Higgs self-couplings measurement

Probing quartic Higgs self-couplings via dihiggs production

- Features of NLO corrections of quartic Higgs coupling
- Sensitivities to Higgs self-couplings on future lepton colliders

Formalism for dihiggs production at NLO

Need to embed the K scheme (K_3, K_4) into an EFT

Brivio and Trott, Physics Reports, arXiv:1706.08945

 SMEFT: Higgs in SU(2)_L doublet (decoupled NP)

 $V = F(H^{\dagger}H),$

If there are more than one new operators $\Gamma(hhh), \Gamma(\pi\pi hh): \kappa_3 \equiv v^2 F_v'''/3F_v''$

 $\Gamma(hhhh): \kappa_4 \equiv 2v^2 F_v''' / F_v'' + v^4 F_v^{(4)} / 3F_v''$

• HEFT: Higgs the EW singlet (composite Higgs models)

$$V(h) = \sum_{n} a_n (h/v)^n$$

more general parameterization

* Here we ignore loop contribution from h^5 , which amounts to a redefinition of κ_3

- Quartic Higgs coupling decouples from other couplings that contribute to the dihiggs production
- Consistent to discuss NLO corrections of quartic coupling by κ_i

NLO correction of quartic Higgs coupling

Two type of NLO corrections from K4

• Corrections to form factor of relevant vertices: finite (process dep)

• Renormalization of cubic Higgs coupling: log divergent (universal)

NLO correction of quartic Higgs coupling

Two type of NLO corrections from K₄

• Corrections to form factor of relevant vertices: finite (process dep)

• Renormalization of cubic Higgs coupling: log divergent (universal)

Difference: renormalization scheme dependence for K₄ sensitivity

Dihiggs production cross section

Assuming no other NP (or constrained by EW and Higgs precision measurement), focus on corrections from Higgs self-couplings

$$\frac{\delta\sigma}{\sigma_0} \equiv \frac{\sigma - \sigma_0}{\sigma_0} = C_{31}\kappa_3 + C_{32}\kappa_3^2 + \kappa_4(C_{41} + C_{42}\kappa_3 + C_{43}\kappa_3^2)$$

• K₃ denotes renormalized cubic Higgs coupling; coefficients C_{4i} depend on the renormalization scheme (ignore NLO corrections from K₃)

Dihiggs production cross section

Assuming no other NP (or constrained by EW and Higgs precision measurement), focus on corrections from Higgs self-couplings

$$\frac{\delta\sigma}{\sigma_0} \equiv \frac{\sigma - \sigma_0}{\sigma_0} = C_{31}\kappa_3 + C_{32}\kappa_3^2 + \kappa_4(C_{41} + C_{42}\kappa_3 + C_{43}\kappa_3^2)$$

- K₃ denotes renormalized cubic Higgs coupling; coefficients C_{4i} depend on the renormalization scheme (ignore NLO corrections from K₃)
- K_3 sensitivity scheme dependent, while for K_4 it can be largely suppressed by marginalization of K_3 in χ^2 analysis with $N \ge 2$ physical observables

Considering only linear terms: $O_i = C_{31}^{(i)} \kappa_3 + C_{41}^{(i)} \kappa_4$ (with measurement uncertainty σ_i)

$$\Delta \kappa_{4} = \sqrt{\left[\sum_{k=1}^{N} \frac{a_{k}^{2}}{\sigma_{k}^{2}}\right] \left[\frac{1}{2} \sum_{i,j=1}^{N} \frac{a_{i}^{2}}{\sigma_{i}^{2}} \frac{a_{j}^{2}}{\sigma_{j}^{2}} \left(\frac{b_{i}}{a_{i}} - \frac{b_{j}}{a_{j}}\right)^{2}\right]^{-1}} \qquad \Delta C_{ij} = \frac{C_{41}^{(i)}}{C_{31}^{(i)}} - \frac{C_{41}^{(j)}}{C_{31}^{(j)}} \qquad \text{scheme independent}}$$
$$(a_{i}, b_{i}) \rightarrow (C_{31}^{(i)}, C_{41}^{(i)})$$

Dihiggs production on lepton colliders

Focus on Zhh and whh production channels. Use FeynArt, FormCalc to calculate cross sections and fit coefficients C_{ij}

 $\delta\sigma/\sigma_0 = C_{31}\kappa_3 + C_{32}\kappa_3^2 + \kappa_4(C_{41} + C_{42}\kappa_3 + C_{43}\kappa_3^2)$

 $\Delta C_{ij} = C_{41}^{(i)} / C_{31}^{(i)} - C_{41}^{(j)} / C_{31}^{(j)}$

- ΔC_{ij} quite insensitive to s
- Combining Zhh and vvhh leads to a larger $|\Delta C_{ij}| \sim O(10^{-2})$, a better sensitivity on K₄

$$\Delta \kappa_4 = rac{\sqrt{(\sigma_i/C_{31}^{(i)})^2 + (\sigma_j/C_{31}^{(j)})^2}}{|\Delta C_{ij}|}$$

 O_j is the reference observable; s varied for O_i

Lepton colliders sensitivities

ILC and CLIC in different operating scenarios

K₃

$\delta\sigma/\sigma_{ m SM}$		ILC			CLIC		
Operating scenarios	500 GeV, 4 ab ⁻¹	1 TeV, 2.5 ab ⁻¹ [13]	1 TeV, 8 ab ⁻¹ [37]	1.4 TeV, 1.5 ab ⁻¹	3TeV, 3 ab ⁻¹ [38]		
Zhh vvhh	15% [13] 	22.5% [13] 16.8% [13]	12.6% [13] 9.4% [13]	30% [13] 44% [14]	 16.3% [14]		
100 50 50 -50 -50 1σ	perturbative unitarity C.L.	ILC2 ILCI Ist order EVVPT (c6, c8 in SMEFT) CLIC	(i) ILC1 = ILC (5 (ii) ILC2 = ILC (5	500 GeV, 4ab ⁻¹ + 500 GeV, 4ab ⁻¹ +	-1 TeV, 2.5 ab ⁻¹) - 1 TeV, 8 ab ⁻¹)		

Lepton colliders sensitivities

ILC and CLIC in different operating scenarios

$\delta\sigma/\sigma_{ m SM}$		ILC	CLIC		
Operating scenarios	500 GeV, 4 ab ⁻¹	1 TeV, 2.5 ab ⁻¹ [13]	1 TeV, 8 ab ⁻¹ [37]	1.4 TeV, 1.5 ab ⁻¹	3TeV, 3 ab ⁻¹ [38]
Zhh vvhh	15% [13] 	22.5% [13] 16.8% [13]	12.6% [13] 9.4% [13]	30% [13] 44% [14]	 16.3% [14]

(i) ILC1 = ILC (500 GeV, $4ab^{-1} + 1$ TeV, $2.5ab^{-1}$) (ii) ILC2 = ILC (500 GeV, $4ab^{-1} + 1$ TeV, $8ab^{-1}$)

- The sensitivity of K₄ is much better on ILC than CLIC
- ILC can measure both Zhh and whh to a good precison, combination of which gives large $|\Delta C_{ij}|$

ILC Sensitivities and scheme dependence

 Scheme change leads to a rotation of sensitivity contour on K₃-K₄ plane; marginal ΔK₃ depends strongly on scheme

ILC Sensitivities and scheme dependence

- Scheme change leads to a rotation of sensitivity contour on K₃-K₄ plane; marginal ΔK₃ depends strongly on scheme
- ILC2: marginal ΔK₄~±20 nearly scheme independent (some dep) at linear (nonlinear) level

Summary

- Dihiggs production can be used to indirectly probe quartic Higgs coupling. Need to consider renormalization scheme dependence in the interpretation of sensitivity
- Combining Zhh and whh channels on lepton colliders leads to $\Delta \kappa_4 \sim \pm 20$ in the optimal scenario, same order as the "direct" probe by trihiggs production at 100TeV pp collider
- Future study:
 - Utilize dihiggs invariant mass distribution
 - Study "indirect" probe on hadron colliders, i.e. gluon fusion; search for different dihiggs channels for a larger $|\Delta C_{ij}|$
 - Combine "indirect probe" by dihiggs production and "direct probe" by trihiggs production

Thank You!

Cross section fit formula

Vector boson-associated production and vector boson-fusion production on both lepton and hadron colliders ($\mu = m_h$)

 $\delta\sigma/\sigma_0 = C_{31}\kappa_3 + C_{32}\kappa_3^2 + \kappa_4(C_{41} + C_{42}\kappa_3 + C_{43}\kappa_3^2)$

Leptor	n collider	σ_0 (fb)	C_{31}	C_{32}	C_{41}	C_{42}	C_{43}
ILC	Zhh (500 GeV)	0.232	0.564	0.0965	-0.00517	-0.00390	-0.000810
	Zhh (1 TeV)	0.166	0.350	0.0913	-0.00271	-0.00181	-0.000541
	$\nu\nu hh$ (1 TeV)	0.159	-1.20	1.10	-0.00327	0.00790	-0.00750
CLIC	Zhh (1.4 TeV)	0.0833	0.263	0.0827	-0.00186	-0.00122	-0.000422
	vvhh (1.4 TeV)	0.191	-0.965	0.819	-0.0024	0.00541	-0.00505
	$\nu\nu hh$ (3 TeV)	0.825	-0.645	0.488	-0.00119	0.00251	-0.00247
Hadron	collider	σ_0 (fb)	C_{31}	C_{32}	C_{41}	C_{42}	C_{43}
14 TeV	jjhh	1.26	-0.781	0.688	-0.00233	-0.00466	-0.00426
	Zhh	0.274	0.496	0.0954	-0.00441	-0.00327	-0.000738
	Whh	0.268	0.521	0.109	-0.0041	-0.00331	-0.000807
100 TeV	jjhh	59.3	-0.537	0.411	-0.00123	0.00238	-0.00220
	Zhh	2.95	0.454	0.091	-0.00416	-0.00293	-0.000677
	Whh	2 49	0.483	0.105	-0.00386	-0.003	-0.00075

K₄ sensitivity from gluon fusion production

Comparison with sensitivities from trihiggs production $hhh \rightarrow \bar{b}b\bar{b}b\gamma\gamma$ (depend strongly on b-tagging efficiency): quite different shapes

