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Brief review on Higgs self-couplings measurement

Probing quartic Higgs self-couplings via dihiggs production

• Features of NLO corrections of quartic Higgs coupling  

• Sensitivities to Higgs self-couplings on future lepton colliders 
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Outline



Higgs is the only SM particle that interact with itself 

Higgs is quite SM-like, but less is known about the Higgs potential

Higgs self-interactions deeply connected with great puzzles
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Why Higgs self-couplings interesting?

• Electroweak baryogengesis: strong 1st order EWPT        large modification 
of Higgs self-interactions

• Higgs gravitational interaction H†HR: new derivative Higgs self-couplings

• …  
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The Higgs self-interactions play a crucial role in exploring the underlying mechanisms of electroweak
symmetry breaking and the nature of the phase transition involved. In this article, we propose to probe the
quartic Higgs self-interaction at lepton and hadron colliders, via the di-Higgs productions. We analyze the
contributions of the quartic Higgs coupling, including the renormalization of the cubic Higgs coupling and
the modification of the VVhh form factor, to the vector boson–fusion and the vector boson–associated di-
Higgs productions at one-loop level. Such an effect is independent of the choice of gauge fixing, if the
quartic Higgs coupling is decoupled from other couplings in the contexts considered. Notably, a
combination of these two di-Higgs productions is important for optimizing the collider sensitivities to
probe the quartic Higgs coupling. With this guideline, we explore the International Linear Collider and
Compact Linear Collider sensitivities, and find that the International Linear Collider has the potential to
measure the quartic Higgs coupling, normalized by its standard model value, with a precision of ∼!25

(500 GeV, 4 ab−1 þ 1 TeV, 2.5 ab−1) and ∼!20 (500 GeV, 4 ab−1 þ 1 TeV, 8 ab−1), at 1σ C:L:, after
marginalizing the cubic Higgs coupling in the χ2 analysis. The dependence on the renormalization scheme
of the cubic Higgs coupling is discussed.

DOI: 10.1103/PhysRevD.98.093004

I. INTRODUCTION

The Higgs self-interaction is one of the most important
targets for experimentalists to measure at colliders. In
the standard model (SM), the Higgs potential VSM ¼
−μ2H†H þ λðH†HÞ2 is fully determined by the electroweak
scale v ¼ 246 GeV and the Higgs mass mh ¼ 125 GeV,
with λ ¼ m2

h=2v
2 and μ2 ¼ m2

h=2. The cubic and quartic
Higgs couplings are then completely fixed,

λ3;SM ¼ 3m2
h

v
; λ4;SM ¼ 3m2

h

v2
: ð1:1Þ

Formany reasons, newphysicsmay enter theHiggs potential,
driving the electroweak phase transition (EWPT) and

yielding a deviation of the Higgs self-couplings from the
SM prediction. In a general context, such a deviation can be
parametrized as

Vself ¼
λ3
3!
h3 þ λ4

4!
h4

≡ 1

3!
λ3;SMð1þ κ3Þh3 þ

1

4!
λ4;SMð1þ κ4Þh4; ð1:2Þ

with κ3 and κ4 being free parameters. Pinning down theHiggs
self-couplings with precision therefore is vital for probing the
underlying physics and the nature of EWPT.
The measurements of the cubic Higgs coupling via

various di-Higgs productions have been extensively studied
so far. At hadron colliders, the main channels include
gluon-fusion production, vector boson–fusion (VBF) pro-
duction, top pair–associated production, and vector boson–
associated (VBA) production. At lepton colliders, the
dominant channels are the Z boson–associated production
and the VBF production. The LHC has no sensitivity to the
SM cubic Higgs coupling yet. But, the high-luminosity
LHC, say, L ¼ 3 ab−1@14 TeV, is expected to be able to
probe it with a precision of ∼Oð1Þ in the gluon-fusion
production [1,2], with an improvement of earlier analyses
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Hadron collider: three main production channels 

• Gluon fusion production

• Vector boson fusion production

• Top-pair associated production

h

h

h

h

h

h

h

Cubic Higgs coupling: dihiggs production

4

Frederix, et al, Phys. Lett. B 732 (2014) 142]

h
h HE-LHC, 27TeV, 15/fb: 

100TeV, 30/fb: �3 ⇡ 5%

�3 ⇡ 15%

gg ! hh ! bb̄��Most promising channel 

Gonçalves, Han, Kling, Plehn, Takeuchi, PRD 97, no. 11, 113004 (2018)



Lepton collider: two main production channels 

• Z-boson associated production

• Vector boson fusion production

Cubic Higgs coupling: dihiggs production

5

Two processes are studied on 
ILC and CLIC (at different Ecm) 
in great details

Kurata et al, LCWS15, 2015

Zhh, 500GeV, 4/ab:
vvhh, 1TeV, 2.5/ab: �3 ⇡ 14%

�3 ⇡ 27%

ILC sensitivity



Quartic Higgs coupling: trihiggs production
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hhh ! b̄bb̄b��
Papaefstathiou, Sakurai, JHEP 1602, 006 (2016)
Chen, Yan, Zhao, Zhong, Zhao, PRD 93, 013007 (2016)

κ4 sensitivity depends strongly on κ3. 
For SM, κ4 sensitivity is of O(10)

• Production cross section quite small, 
~5fb @ 100TeV

• Cross section depend on both cubic,  
quartic couplings, but the dependence 
on quartic couplings is much weaker

• Study of                       @ 100TeV

Still quite challenging!

Plehn and Rauch, PRD 72, 053008 (2005)

κ3

κ4

private communitation with Sakurai



“Indirect” probe of cubic Higgs coupling
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Precise measurement of cubic Higgs coupling NLO corrections 
to single Higgs production

Hadron collider Lepton collider McCullough,  PRD  90, no. 1, 015001 
(2014); PRD 92, no. 3, 039903 (2015)

Degrassi, Giardino, Maltoni, Pagani,   
arXiv:1607.04251 [hep-ph].

• Finite contribution to the form 
factor of relevant vertices          
(log-divergent corrections to Higgs two-
point function absorbed into Higgs mass) 

• Complimentary to dihiggs 
production measurement FCC-ee

&
CEPC

HL-LHC

-2 -1 0 1 2 3

( / )

FCC-ee with zero aTGCs

240GeV(5/ab)+350GeV(1.5/ab) (FCC-ee)

240GeV(5/ab)+350GeV(200/fb)

240GeV(5/ab) only (CEPC)

14TeV(3/ab), rates & distributions

δκ
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Figure 12: A summary of the bounds on ”Ÿ⁄ from global fits for various future collider scenarios.
For the “1h only” scenario, only single Higgs measurements at lepton colliders are included.

deviations of O(1) in the Higgs self-coupling. As one can see from Fig. 12, this precision
is comparable to (or better than) the one achievable at low-energy lepton colliders with
low integrated luminosity at 350 GeV runs. This is the case for our circular collider
benchmarks with 200 fb≠1 integrated luminosity at 350 GeV, as well as for the low-energy
runs of the ILC. In these scenarios the HL-LHC data will still play a major role in the
determination of ”Ÿ⁄, while lepton colliders always help constraining large positive ”Ÿ⁄

that the HL-LHC fails to exclude beyond the one-sigma level. On the other hand, with
1 ab≠1 of luminosity collected at 350 GeV, the lepton collider data starts dominating the
combination.

The situation is instead di�erent at high-energy hadron colliders which can benefit
from a sizable cross section in double Higgs production through gluon fusion. A pp

collider with 100 TeV center-of-mass energy is expected to determine ”Ÿ⁄ with a precision
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EFT global fit
Di Vita et.al., JHEP 1802, 178 (2018)
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Formalism for dihiggs production at NLO

8

Need to embed the κ scheme (κ3,κ4) into an EFT
Brivio and Trott, Physics Reports, arXiv:1706.08945

Thus, by improving the measurement precision for the Zhh
at 500 GeV, if sizably, the sensitivities for probing κ4 could
be significantly improved.
We need to keep in mind that the di-Higgs productions

could be contaminated by some other new physics, via,
e.g., the wave function renormalization of gauge bosons or
the Higgs boson, the definition shift of the electroweak
parameters, or the introduction of new vertices. Here, we
have turned off all of these effects and simply assumed that
they can be constrained sufficiently well for our purpose,
by the electroweak and Higgs precision measurements at
future colliders (for recent studies, see, e.g., Refs. [40–43]).
Given the significance of measuring the Higgs self-

interactions in particle physics, it is worthwhile to pursue
a more systematic and complete analysis on its collider
sensitivities.We can extend the analysis from lepton colliders
to hadron colliders, particularly to the next-generation
hadron colliders. More di-Higgs production channels can
be taken into account, such as the gluon-fusion and top
quark–associated processes, in that case. The leading-order
effects of the quartic Higgs coupling appear at two- and one-
loop level, respectively. We may also incorporate the tri-
Higgs productions at both lepton colliders and hadron
colliders in the analysis. The observables arising from these
channels could be characterized by a jΔCijj of Oð10−2Þ as
well and further improve the marginalized precision of κ4.
Additionally, the quartic Higgs coupling contributes to the
single Higgs productions (e.g., Zh and ννh) at two-loop
level, which in turn may facilitate the probe for the quartic
Higgs coupling. To end the discussion,wewould stress again
that to probe κ4 by combining the di-Higgs productions and
other Higgs channels the C41=C31 for both need to be
calculated with proper precisions, to suppress the scheme
dependence of the λ3 renormalization at least at the linear
level. We leave a full study on these to future work.
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Note added.—Recently, Ref. [44] appeared, and it partially
overlaps with this one in analyzing the one-loop corrections
of the quartic Higgs coupling to the Zhh and ννhh
productions at lepton colliders. But our work is different
from Ref. [44] in the following aspects: (i) We developed a
general guideline for optimizing the collider sensitivities of
probing the quartic Higgs coupling, based on Eq. (2.11).

(ii) We analyzed the one-loop corrections of the quartic
Higgs coupling to the Zhh=Whh and jjhh productions at
hadron colliders as well. (III) We presented the ILC
sensitivities for probing κ4 by marginalizing κ3 in the χ2

analysis and discuss the scheme dependence of the λ3
renormalization in detail.

APPENDIX A: GENERAL HIGGS POTENTIAL
AND COUPLINGS IN SMEFT

In this Appendix, we find the relation between Higgs
self-couplings and Higgs-Goldstone couplings in SMEFT.
A general Higgs potential here can be parametrized as a
general function,

V¼FðH†HÞ; H†H¼1

2
ðhþvÞ2þ1

2
π0π0þπþπ−: ðA1Þ

Given the electroweak scale v and the Higgs mass mh, the
first two derivatives of the general function are determined
by ∂V=∂hjv ¼ 0 and ∂2V=∂h2jv ¼ m2

h,

F0
v ¼ 0; F00

v ¼ m2
h=v

2; ðA2Þ

where the subscript v denotes the quantity evaluated at
h ¼ v, πi ¼ 0. After substituting (A2), the cubic couplings
of Higgs and Goldstone bosons turn out to depend on the
general function only up to the second derivative,

Γðπ0π0hÞ ¼ 2∂
∂ðπ0π0Þ

∂V
∂h

!!!!
v
¼ vF00

v ¼
m2

h

v
;

Γðπþπ−hÞ ¼ ∂
∂ðπþπ−Þ

∂V
∂h

!!!!
v
¼ vF00

v ¼
m2

h

v
: ðA3Þ

So, for an arbitrary Higgs potential in (A1), they remain the
same as in the SM.
The cubic Higgs coupling and the quartic Higgs-

Goldstone-boson quartic couplings further depend on the
third derivative of the general function,

ΓðhhhÞ¼∂3V
∂h3

!!!!
v
¼3vF00

vþv3F000
v ¼3m2

h

v
ð1þκ3Þ

Γðπ0π0hhÞ¼ 2∂
∂ðπ0π0Þ

∂2V
∂h2

!!!!
v
¼F00

vþv2F000
v ¼m2

h

v2
ð1þ3κ3Þ

Γðπþπ−hhÞ¼ ∂
∂ðπþπ−Þ

∂2V
∂h2

!!!!
v
¼F00

vþv2F000
v ¼m2

h

v2
ð1þ3κ3Þ;

ðA4Þ

where κ3 ≡ v2F000
v =3F00

v. If the Higgs potential only includes
one higher-dimensional operator, say ðH†HÞ3, κ3 is then
proportional to its coefficient. In the general case with more
than one higher-dimensional operator, κ3 determines one of
their linear combinations. For the later case, the quartic
Higgs coupling receives new independent contribution
from the fourth derivative of the potential,
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If there are more than one new operators

• Quartic Higgs coupling decouples from other couplings that 
contribute to the dihiggs production 

• Consistent to discuss NLO corrections of quartic coupling by κi  

A. General Higgs Potential and Couplings in SMEFT

In this appendix we find the relation between Higgs self-couplings and Higgs-Goldstone couplings

in SMEFT. A general Higgs potential here can be parameterized as a general function

V = F (H†H), H†H =
1

2
(h+ v)2 +

1

2
⇡0⇡0 + ⇡+⇡� . (A.17)

Given the electroweak scale v and the Higgs mass m
h

, the first two derivatives of the general function

are determined by @V/@h|
v

= 0 and @2V/@h2
��
v

= m2
h

,

F 0

v

= 0, F 00

v

= m2
h

/v2, (A.18)

where the subscript v denotes the quantity evaluated at h = v, ⇡i = 0. After substituting (??), the

cubic couplings of Higgs and Goldstone bosons turn out to depend on the general function only up

to the second derivative,
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h

v
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So for an arbitrary Higgs potential in (??) they remain the same as in SM.

The cubic Higgs couplings, quartic couplings of Higgs and Goldstone further depend on the third

derivative of the general function,
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= F 00
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+ v2F 000

v

=
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@

@(⇡+⇡�)
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3m2
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v
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(A.21)

where 3 ⌘ v2F 000

v

/3F 00
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. If the Higgs potential only includes one higher dimensional operator, say

(H†H)3, 3 is then proportional to its coe�cient. In the general case with more than one higher

dimensional operators, 3 determines one of their linear combination. For the later case, the quartic

Higgs coupling receives new independent contribution from the fourth derivative of the potential,
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where 4 ⌘ 2v2F 000

v

/F 00

v

+v4F (4)
v

/3F 00

v

. As in (??) the same combination 4 enters into the coupling for

hhh⇡0(+)⇡0(�). Such relation can be generalized further when the potential has enough independent
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So for an arbitrary Higgs potential in (??) they remain the same as in SM.
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(see, e.g., Refs. [3,4]). At a future 100 TeV hadron collider
(for discussions at 27 TeV, see, e.g., Ref. [5]), the cubic
Higgs coupling could be measured with a higher precision.
For example, in the gluon-fusion channel, the cubic Higgs
coupling could be measured with a precision of percent
level [6,7]. The VBF production is found to be not quite
sensitive [8,9]. The analysis for the top pair–associated
production [10,11] and VBA productions [12] at a future
hadron collider are still absent. As for the lepton colliders,
the International Linear Collider (ILC) is able to measure
the cubic Higgs coupling with a precision of 27% in the
Zhh production at 500 GeV with L ¼ 4 ab−1 and a
precision of 14% in the ννhh production at 1 TeV with
L ¼ 2.5 ab−1 [13]. The Compact Linear Collider (CLIC) is
able to measure the cubic Higgs coupling with a precision
of 54% in the ννhh channel, with L ¼ 1.5 ab−1 data at
1.4 TeV, and 29%, with L ¼ 2 ab−1 data at 3 TeV [14].
To fully pin down the Higgs potential, we also need to

measure the quartic Higgs coupling. The traditional
wisdom for this is to measure the tri-Higgs productions.
However, such measurements are known to be difficult,
even at a future 100 TeV hadron collider [15], due to the
tiny cross section of tri-Higgs production and its weak
dependence on the quartic Higgs coupling. The recent
studies on the tri-Higgs productions in the most promising
decay channel bb̄bb̄γγ showed that the sensitivity to probe
κ4 in the high-luminosity phase of the future hadron
collider, say, 30 ab−1@100 TeV, is ∼Oð10Þ [16,17] (for
studies on the tri-Higgs searches in different decay chan-
nels, see Refs. [18,19]). This motivates the proposal in this
article, say, to probe the quartic Higgs coupling via its loop
corrections to the di-Higgs productions. We expect a
combination of the di-Higgs and tri-Higgs measurements
in the future to improve the precision of measuring the
quartic Higgs coupling.
For the di-Higgs productions at colliders, there are two

types of one-loop effects involving the quartic Higgs
coupling.1 Both of them are independent of the choice
of gauge fixing. The first type is the renormalization of the
cubic Higgs coupling λ3

2, which is universal for different
di-Higgs processes. The rest of the diagrams belong to the
second type. They are irreducible and finite, yielding
nontrivial corrections to the form factor of the relevant
vertices such as VVhh. The two types of diagrams are
reminiscent of the self-energy and the vertex corrections
induced by the cubic Higgs coupling in the single Higgs
production [20,21]. But, there exists a generic difference.
The one-loop correction of the quartic Higgs coupling to
the cubic Higgs coupling is logarithmically divergent. Its

renormalization necessarily introduces a renormalization-
scheme dependence on the interpretation of the experi-
mental constraints for the cubic Higgs coupling.
A full treatment of these di-Higgs productions at one-

loop level needs to embed the κ scheme, essentially a
parametrization of new physics corrections to the Higgs
self-couplings, into an effective field theory (EFT) for the
Higgs boson (for a review, see, e.g., Ref. [22]), and then
take into account the loop effects from all relevant particles.
Here, the EFT could be either the SM EFT, in which new
particles get decoupled at a high-energy scale, or the Higgs
Effective Field Theory (HEFT), which is known to describe
the IR limit of some composite Higgs models (for a review,
see, e.g., Ref. [23]), dilaton constructions [24,25], the SM
extension with a nondecoupling heavy singlet scalar [26],
etc. In these contexts, the quartic Higgs coupling is
generally decoupled from other couplings relevant to the
di-Higgs productions. In the HEFT, with its potential given
by VðhÞ ¼

P
nanðh=vÞn, this feature is generic. In the SM

Effective Field Theory (SMEFT), the quartic Higgs cou-
pling becomes decoupled as long as more than one higher-
dimensional operator is turned on.3 Interestingly, we
observe that the one-loop diagrams with no quartic
Higgs coupling involved (the summation of which is
expected to be independent of gauge fixing and to involve
the SM couplings and κ3 only), though interfering with the
tree-level κ3 diagrams and the one-loop κ4 diagrams, yield a
next-to-leading-order (NLO) impact only for both the κ3
and κ4 sensitivity analysis at lepton colliders after a proper
renormalization for λ3. So, we will ignore such diagrams
below.4 The QCD loop diagrams may yield nontrivial
effects for the analysis at hadron colliders. In this paper,
for a given di-Higgs process, we assume a universal QCD
K factor, which is independent of the corrections of the
Higgs self-couplings.
The rest of the paper is organized as follows. In Sec. II,

we will calculate the one-loop effects of the quartic Higgs
coupling in renormalizing the cubic Higgs coupling and in
correcting the VVhh form factor. We will also discuss how
to extract the κ4 sensitivity in a way that is less dependent
on the λ3 renormalization scheme. The numerical calcu-
lations of the VBF and VBA di-Higgs productions at both
lepton and hadron colliders are presented in Sec. III. We
will analyze the sensitivities of the di-Higgs probe to the
quartic Higgs coupling at the ILC and CLIC in Sec. IV. We
will conclude in Sec. V.

1Unlike other di-Higgs productions, the gluon-fusion one does
not involve the quartic coupling until the two-loop level. But we
will not specify this subtlety below, upon the understanding.

2The quartic Higgs coupling also renormalizes the Higgs mass.
But it can be fully resolved by the physical Higgs mass.

3For discussions on the SMEFT phenomenology with O6
turned on, see, e.g., [27].

4Though a quinary Higgs coupling may appear in the BSM
physics often, it has no contributions to the di-Higgs production
at one-loop level, except renormalizing the cubic Higgs coupling.
In that case, the effects of the quinary Higgs coupling can be fully
absorbed by the counter-term.
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more general parameterization 

* Here we ignore loop contribution from 
h5, which amounts to a redefinition of κ3 

• SMEFT: Higgs in SU(2)L doublet 
(decoupled NP)

• HEFT: Higgs the EW singlet 
(composite Higgs models)

A. General Higgs Potential and Couplings in SMEFT

In this appendix we find the relation between Higgs self-couplings and Higgs-Goldstone couplings

in SMEFT. A general Higgs potential here can be parameterized as a general function

V = F (H†H), H†H =
1

2
(h+ v)2 +

1

2
⇡0⇡0 + ⇡+⇡� . (A.17)

Given the electroweak scale v and the Higgs mass m
h

, the first two derivatives of the general function

are determined by @V/@h|
v

= 0 and @2V/@h2
��
v

= m2
h

,

F 0

v

= 0, F 00

v

= m2
h

/v2, (A.18)

where the subscript v denotes the quantity evaluated at h = v, ⇡i = 0. After substituting (??), the

cubic couplings of Higgs and Goldstone bosons turn out to depend on the general function only up

to the second derivative,

�(⇡0⇡0h) =
2@

@(⇡0⇡0)

@V

@h

����
v

= vF 00

v

=
m2

h

v
,

�(⇡+⇡�h) =
@

@(⇡+⇡�)

@V

@h

����
v

= vF 00

v

=
m2

h

v
.

(A.19)

So for an arbitrary Higgs potential in (??) they remain the same as in SM.

The cubic Higgs couplings, quartic couplings of Higgs and Goldstone further depend on the third

derivative of the general function,
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where 3 ⌘ v2F 000

v

/3F 00

v

. If the Higgs potential only includes one higher dimensional operator, say

(H†H)3, 3 is then proportional to its coe�cient. In the general case with more than one higher

dimensional operators, 3 determines one of their linear combination. For the later case, the quartic

Higgs coupling receives new independent contribution from the fourth derivative of the potential,
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hhh⇡0(+)⇡0(�). Such relation can be generalized further when the potential has enough independent
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,             :

:



NLO correction of quartic Higgs coupling

9

Two type of NLO corrections from κ4

• Corrections to form factor of relevant vertices: finite (process dep)

• Renormalization of cubic Higgs coupling: log divergent (universal)

II. ONE-LOOP EFFECTS OF THE
QUARTIC HIGGS COUPLING

The one-loop effects of the quartic Higgs coupling
include (i) renormalizing the cubic Higgs coupling and
(ii) modifying the form factor of the relevant vertices. The
relevant Feynman diagrams are shown in Figs. 1–3,
respectively. As discussed above, in general, we can
assume that the quartic Higgs coupling is decoupled from
other couplings involved in the di-Higgs productions,
including the cubic Higgs coupling and the quartic cou-
plings involving both Higgs and Goldstone bosons (for
justification regarding this in the SMEFT, please see
Appendix A). Then, its quantum corrections to the di-
Higgs productions are automatically guaranteed to be
independent of the choice of gauge fixing. For the diagrams

renormalizing the cubic Higgs coupling, no Goldstone
bosons nor gauge bosons are involved where the gauge
fixing is applied. These diagrams will contribute to the di-
Higgs productions in a universal way. For the diagrams
modifying the VVhh form factor, though both the gauge
bosons and Goldstone bosons are involved, their summa-
tion yields a cancellation of the gauge dependence. These
diagrams are finite and will contribute to the VBA and VBF
di-Higgs productions. For the diagrams modifying the tt̄hh,
gtt̄hh (or Ztt̄hh), and ggtt̄hh form factors, again, no
Goldstone bosons nor gauge bosons are involved. These
diagrams are finite and will contribute to the gluon fusion
and top quark–associated di-Higgs productions.
Computing the diagrams in Fig. 1 with the dimensional
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where λ3 is the renormalized cubic Higgs coupling and γ ¼
0.577… is the Euler constant. We use δ3 to denote the
counterterm schematically. This counterterm can arise from
the higher-dimensional operators in the SMEFT (e.g., the
dimension-6 operatorO6) or the h3 term in the HEFT. Their
coefficients then match onto the couplings between the
Higgs field and the new fields in a UV-complete model
which have been integrated out to define the EFT.
The renormalized cubic Higgs coupling λ3 can be defined

by properly choosing the p2
j values for Γðp2
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the three Higgs legs cannot be on shell at the same time, we
will consider two schemes:
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j ¼ 0, and define λ3 ≡ Γð0; 0; 0Þ.

Equation (2.1) then becomes
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This choice is effectively equivalent to the MS
renormalization scheme with μ ¼ mh.

FIG. 1. One-loop Feynman diagrams for renormalizing the cubic Higgs coupling that are mediated by the quartic Higgs self-
interaction.

FIG. 2. One-loop Feynman diagrams for modifying the form
factor of the quartic VVhh vertex that are mediated by the quartic
Higgs self-interaction. Here, G is Goldstone boson, and we use
the Z boson as an example.

FIG. 3. One-loop Feynman diagrams for modifying the form
factors of the tt̄hh, gtt̄hh, and ggtt̄hh vertices, which are
mediated by the quartic Higgs self-interaction.
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include (i) renormalizing the cubic Higgs coupling and
(ii) modifying the form factor of the relevant vertices. The
relevant Feynman diagrams are shown in Figs. 1–3,
respectively. As discussed above, in general, we can
assume that the quartic Higgs coupling is decoupled from
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including the cubic Higgs coupling and the quartic cou-
plings involving both Higgs and Goldstone bosons (for
justification regarding this in the SMEFT, please see
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Higgs productions are automatically guaranteed to be
independent of the choice of gauge fixing. For the diagrams

renormalizing the cubic Higgs coupling, no Goldstone
bosons nor gauge bosons are involved where the gauge
fixing is applied. These diagrams will contribute to the di-
Higgs productions in a universal way. For the diagrams
modifying the VVhh form factor, though both the gauge
bosons and Goldstone bosons are involved, their summa-
tion yields a cancellation of the gauge dependence. These
diagrams are finite and will contribute to the VBA and VBF
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gtt̄hh (or Ztt̄hh), and ggtt̄hh form factors, again, no
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diagrams are finite and will contribute to the gluon fusion
and top quark–associated di-Higgs productions.
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where λ3 is the renormalized cubic Higgs coupling and γ ¼
0.577… is the Euler constant. We use δ3 to denote the
counterterm schematically. This counterterm can arise from
the higher-dimensional operators in the SMEFT (e.g., the
dimension-6 operatorO6) or the h3 term in the HEFT. Their
coefficients then match onto the couplings between the
Higgs field and the new fields in a UV-complete model
which have been integrated out to define the EFT.
The renormalized cubic Higgs coupling λ3 can be defined

by properly choosing the p2
j values for Γðp2
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3Þ. Since

the three Higgs legs cannot be on shell at the same time, we
will consider two schemes:

(i) Scheme 1.—Set p2
j ¼ 0, and define λ3 ≡ Γð0; 0; 0Þ.
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This choice is effectively equivalent to the MS
renormalization scheme with μ ¼ mh.

FIG. 1. One-loop Feynman diagrams for renormalizing the cubic Higgs coupling that are mediated by the quartic Higgs self-
interaction.

FIG. 2. One-loop Feynman diagrams for modifying the form
factor of the quartic VVhh vertex that are mediated by the quartic
Higgs self-interaction. Here, G is Goldstone boson, and we use
the Z boson as an example.

FIG. 3. One-loop Feynman diagrams for modifying the form
factors of the tt̄hh, gtt̄hh, and ggtt̄hh vertices, which are
mediated by the quartic Higgs self-interaction.
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The one-loop effects of the quartic Higgs coupling
include (i) renormalizing the cubic Higgs coupling and
(ii) modifying the form factor of the relevant vertices. The
relevant Feynman diagrams are shown in Figs. 1–3,
respectively. As discussed above, in general, we can
assume that the quartic Higgs coupling is decoupled from
other couplings involved in the di-Higgs productions,
including the cubic Higgs coupling and the quartic cou-
plings involving both Higgs and Goldstone bosons (for
justification regarding this in the SMEFT, please see
Appendix A). Then, its quantum corrections to the di-
Higgs productions are automatically guaranteed to be
independent of the choice of gauge fixing. For the diagrams

renormalizing the cubic Higgs coupling, no Goldstone
bosons nor gauge bosons are involved where the gauge
fixing is applied. These diagrams will contribute to the di-
Higgs productions in a universal way. For the diagrams
modifying the VVhh form factor, though both the gauge
bosons and Goldstone bosons are involved, their summa-
tion yields a cancellation of the gauge dependence. These
diagrams are finite and will contribute to the VBA and VBF
di-Higgs productions. For the diagrams modifying the tt̄hh,
gtt̄hh (or Ztt̄hh), and ggtt̄hh form factors, again, no
Goldstone bosons nor gauge bosons are involved. These
diagrams are finite and will contribute to the gluon fusion
and top quark–associated di-Higgs productions.
Computing the diagrams in Fig. 1 with the dimensional

regularization, we obtain the tri-Higgs vertex
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where λ3 is the renormalized cubic Higgs coupling and γ ¼
0.577… is the Euler constant. We use δ3 to denote the
counterterm schematically. This counterterm can arise from
the higher-dimensional operators in the SMEFT (e.g., the
dimension-6 operatorO6) or the h3 term in the HEFT. Their
coefficients then match onto the couplings between the
Higgs field and the new fields in a UV-complete model
which have been integrated out to define the EFT.
The renormalized cubic Higgs coupling λ3 can be defined

by properly choosing the p2
j values for Γðp2
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3Þ. Since

the three Higgs legs cannot be on shell at the same time, we
will consider two schemes:

(i) Scheme 1.—Set p2
j ¼ 0, and define λ3 ≡ Γð0; 0; 0Þ.

Equation (2.1) then becomes
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This choice is effectively equivalent to the MS
renormalization scheme with μ ¼ mh.

FIG. 1. One-loop Feynman diagrams for renormalizing the cubic Higgs coupling that are mediated by the quartic Higgs self-
interaction.

FIG. 2. One-loop Feynman diagrams for modifying the form
factor of the quartic VVhh vertex that are mediated by the quartic
Higgs self-interaction. Here, G is Goldstone boson, and we use
the Z boson as an example.

FIG. 3. One-loop Feynman diagrams for modifying the form
factors of the tt̄hh, gtt̄hh, and ggtt̄hh vertices, which are
mediated by the quartic Higgs self-interaction.

PROBING THE QUARTIC HIGGS BOSON SELF-INTERACTION PHYS. REV. D 98, 093004 (2018)

093004-3



NLO correction of quartic Higgs coupling
Two type of NLO corrections from κ4

• Corrections to form factor of relevant vertices: finite (process dep)

• Renormalization of cubic Higgs coupling: log divergent (universal)

II. ONE-LOOP EFFECTS OF THE
QUARTIC HIGGS COUPLING

The one-loop effects of the quartic Higgs coupling
include (i) renormalizing the cubic Higgs coupling and
(ii) modifying the form factor of the relevant vertices. The
relevant Feynman diagrams are shown in Figs. 1–3,
respectively. As discussed above, in general, we can
assume that the quartic Higgs coupling is decoupled from
other couplings involved in the di-Higgs productions,
including the cubic Higgs coupling and the quartic cou-
plings involving both Higgs and Goldstone bosons (for
justification regarding this in the SMEFT, please see
Appendix A). Then, its quantum corrections to the di-
Higgs productions are automatically guaranteed to be
independent of the choice of gauge fixing. For the diagrams

renormalizing the cubic Higgs coupling, no Goldstone
bosons nor gauge bosons are involved where the gauge
fixing is applied. These diagrams will contribute to the di-
Higgs productions in a universal way. For the diagrams
modifying the VVhh form factor, though both the gauge
bosons and Goldstone bosons are involved, their summa-
tion yields a cancellation of the gauge dependence. These
diagrams are finite and will contribute to the VBA and VBF
di-Higgs productions. For the diagrams modifying the tt̄hh,
gtt̄hh (or Ztt̄hh), and ggtt̄hh form factors, again, no
Goldstone bosons nor gauge bosons are involved. These
diagrams are finite and will contribute to the gluon fusion
and top quark–associated di-Higgs productions.
Computing the diagrams in Fig. 1 with the dimensional
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where λ3 is the renormalized cubic Higgs coupling and γ ¼
0.577… is the Euler constant. We use δ3 to denote the
counterterm schematically. This counterterm can arise from
the higher-dimensional operators in the SMEFT (e.g., the
dimension-6 operatorO6) or the h3 term in the HEFT. Their
coefficients then match onto the couplings between the
Higgs field and the new fields in a UV-complete model
which have been integrated out to define the EFT.
The renormalized cubic Higgs coupling λ3 can be defined

by properly choosing the p2
j values for Γðp2

1; p
2
2; p

2
3Þ. Since

the three Higgs legs cannot be on shell at the same time, we
will consider two schemes:

(i) Scheme 1.—Set p2
j ¼ 0, and define λ3 ≡ Γð0; 0; 0Þ.

Equation (2.1) then becomes
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This choice is effectively equivalent to the MS
renormalization scheme with μ ¼ mh.

FIG. 1. One-loop Feynman diagrams for renormalizing the cubic Higgs coupling that are mediated by the quartic Higgs self-
interaction.

FIG. 2. One-loop Feynman diagrams for modifying the form
factor of the quartic VVhh vertex that are mediated by the quartic
Higgs self-interaction. Here, G is Goldstone boson, and we use
the Z boson as an example.

FIG. 3. One-loop Feynman diagrams for modifying the form
factors of the tt̄hh, gtt̄hh, and ggtt̄hh vertices, which are
mediated by the quartic Higgs self-interaction.
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The one-loop effects of the quartic Higgs coupling
include (i) renormalizing the cubic Higgs coupling and
(ii) modifying the form factor of the relevant vertices. The
relevant Feynman diagrams are shown in Figs. 1–3,
respectively. As discussed above, in general, we can
assume that the quartic Higgs coupling is decoupled from
other couplings involved in the di-Higgs productions,
including the cubic Higgs coupling and the quartic cou-
plings involving both Higgs and Goldstone bosons (for
justification regarding this in the SMEFT, please see
Appendix A). Then, its quantum corrections to the di-
Higgs productions are automatically guaranteed to be
independent of the choice of gauge fixing. For the diagrams

renormalizing the cubic Higgs coupling, no Goldstone
bosons nor gauge bosons are involved where the gauge
fixing is applied. These diagrams will contribute to the di-
Higgs productions in a universal way. For the diagrams
modifying the VVhh form factor, though both the gauge
bosons and Goldstone bosons are involved, their summa-
tion yields a cancellation of the gauge dependence. These
diagrams are finite and will contribute to the VBA and VBF
di-Higgs productions. For the diagrams modifying the tt̄hh,
gtt̄hh (or Ztt̄hh), and ggtt̄hh form factors, again, no
Goldstone bosons nor gauge bosons are involved. These
diagrams are finite and will contribute to the gluon fusion
and top quark–associated di-Higgs productions.
Computing the diagrams in Fig. 1 with the dimensional

regularization, we obtain the tri-Higgs vertex
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where λ3 is the renormalized cubic Higgs coupling and γ ¼
0.577… is the Euler constant. We use δ3 to denote the
counterterm schematically. This counterterm can arise from
the higher-dimensional operators in the SMEFT (e.g., the
dimension-6 operatorO6) or the h3 term in the HEFT. Their
coefficients then match onto the couplings between the
Higgs field and the new fields in a UV-complete model
which have been integrated out to define the EFT.
The renormalized cubic Higgs coupling λ3 can be defined

by properly choosing the p2
j values for Γðp2

1; p
2
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2
3Þ. Since

the three Higgs legs cannot be on shell at the same time, we
will consider two schemes:

(i) Scheme 1.—Set p2
j ¼ 0, and define λ3 ≡ Γð0; 0; 0Þ.

Equation (2.1) then becomes
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This choice is effectively equivalent to the MS
renormalization scheme with μ ¼ mh.

FIG. 1. One-loop Feynman diagrams for renormalizing the cubic Higgs coupling that are mediated by the quartic Higgs self-
interaction.

FIG. 2. One-loop Feynman diagrams for modifying the form
factor of the quartic VVhh vertex that are mediated by the quartic
Higgs self-interaction. Here, G is Goldstone boson, and we use
the Z boson as an example.

FIG. 3. One-loop Feynman diagrams for modifying the form
factors of the tt̄hh, gtt̄hh, and ggtt̄hh vertices, which are
mediated by the quartic Higgs self-interaction.
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The one-loop effects of the quartic Higgs coupling
include (i) renormalizing the cubic Higgs coupling and
(ii) modifying the form factor of the relevant vertices. The
relevant Feynman diagrams are shown in Figs. 1–3,
respectively. As discussed above, in general, we can
assume that the quartic Higgs coupling is decoupled from
other couplings involved in the di-Higgs productions,
including the cubic Higgs coupling and the quartic cou-
plings involving both Higgs and Goldstone bosons (for
justification regarding this in the SMEFT, please see
Appendix A). Then, its quantum corrections to the di-
Higgs productions are automatically guaranteed to be
independent of the choice of gauge fixing. For the diagrams

renormalizing the cubic Higgs coupling, no Goldstone
bosons nor gauge bosons are involved where the gauge
fixing is applied. These diagrams will contribute to the di-
Higgs productions in a universal way. For the diagrams
modifying the VVhh form factor, though both the gauge
bosons and Goldstone bosons are involved, their summa-
tion yields a cancellation of the gauge dependence. These
diagrams are finite and will contribute to the VBA and VBF
di-Higgs productions. For the diagrams modifying the tt̄hh,
gtt̄hh (or Ztt̄hh), and ggtt̄hh form factors, again, no
Goldstone bosons nor gauge bosons are involved. These
diagrams are finite and will contribute to the gluon fusion
and top quark–associated di-Higgs productions.
Computing the diagrams in Fig. 1 with the dimensional

regularization, we obtain the tri-Higgs vertex
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where λ3 is the renormalized cubic Higgs coupling and γ ¼
0.577… is the Euler constant. We use δ3 to denote the
counterterm schematically. This counterterm can arise from
the higher-dimensional operators in the SMEFT (e.g., the
dimension-6 operatorO6) or the h3 term in the HEFT. Their
coefficients then match onto the couplings between the
Higgs field and the new fields in a UV-complete model
which have been integrated out to define the EFT.
The renormalized cubic Higgs coupling λ3 can be defined

by properly choosing the p2
j values for Γðp2
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3Þ. Since

the three Higgs legs cannot be on shell at the same time, we
will consider two schemes:

(i) Scheme 1.—Set p2
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This choice is effectively equivalent to the MS
renormalization scheme with μ ¼ mh.

FIG. 1. One-loop Feynman diagrams for renormalizing the cubic Higgs coupling that are mediated by the quartic Higgs self-
interaction.

FIG. 2. One-loop Feynman diagrams for modifying the form
factor of the quartic VVhh vertex that are mediated by the quartic
Higgs self-interaction. Here, G is Goldstone boson, and we use
the Z boson as an example.

FIG. 3. One-loop Feynman diagrams for modifying the form
factors of the tt̄hh, gtt̄hh, and ggtt̄hh vertices, which are
mediated by the quartic Higgs self-interaction.
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Difference: renormalization scheme dependence for κ4 sensitivity

9



Dihiggs production cross section

• κ3 denotes renormalized cubic Higgs coupling; coefficients C4i depend on 
the renormalization scheme (ignore NLO corrections from κ3)

(ii) Scheme 2.—Set p2
1;2 ¼ m2

h, p
2
3 ¼ 4m2

h, and define
λ3 ≡ Γðm2

h; m
2
h; 4m

2
hÞ. In any di-Higgs productions,

the cubic Higgs coupling always has two on-shell
Higgs legs, and the third one is characterized by the
di-Higgs invariant mass p2

3 ¼ M2
hh ≥ 4m2

h. So, we
define λ3 ≡ Γðm2

h; m
2
h; 4m

2
hÞ, and Eq. (2.1) becomes

iΓðp2
1; p

2
2; p

2
3Þ ¼ iλ3 þ i

λ3λ4
32π2

×
!X3

j¼1

Z
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0
dx log
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h − xð1 − xÞp2
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#
þ 2.37

$
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ð2:3Þ

This choice is effectively equivalent to the MS
renormalization scheme with μ ¼ 0.67mh.

The one-loop corrections of the quartic Higgs coupling
to the VVhh form factor is a summation of three terms in
the Rξ gauge

F½HHVV& ¼ F1 þ F2 þ F3: ð2:4Þ

Here, Fi denotes the contribution of the ith diagram in
Fig. 2 with the momentum of the incoming gauge bosons
denoted as k1 and k2:

F1 ¼
!
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After a contraction with external massless fermion current
or massive gauge bosons that are on shell, only the qμqν

term is left in F2. Then, the summation of F1 and F2 leads
to a cancellation of ξ dependence, as we expected. One can
also check that F½HHVV& is UV finite, similar to the case
of F½HVV& discussed in Ref. [28].
The calculation of the one-loop corrections of the quartic

Higgs coupling to the tt̄hh, gtt̄hh, and ggtt̄hh form factors
is straightforward, based on the diagrams in Fig. 3. We do
not show the results here, since below we will focus on the
VBF and VBA di-Higgs productions.
With the renormalized cubic Higgs coupling λ3 and the

modified VVhh form factor, we can parametrize the
deviation of the cross section σ from the SM prediction
σ0 in the relevant di-Higgs productions as

δσ
σ0

≡σ−σ0
σ0

¼C31κ3þC32κ23þ κ4ðC41þC42κ3þC43κ23Þ;

ð2:6Þ

where κ3 ¼ λ3v=3m2
h − 1. The first two terms denote the

contributions from the cubic Higgs coupling only, at the
leading order that arises from the tree level. The rest arises
from the interference between the κ4 one-loop corrections
and the tree-level amplitudes. We neglect the quadratic term
in κ4, given that it results from the interference between
one-loop amplitudes. Then, the cubic and quartic Higgs

couplings can be probed by measuring the di-Higgs
production cross sections at colliders.
The interpretation of the collider sensitivities for probing

κ3 depends on the λ3 renormalization scheme. But such a
scheme dependence can be largely suppressed for κ4, by
marginalizing κ3 in the χ2 analysis. This can be understood
in the following way. Consider N ≥ 2 observables fOig,
which depend on two parameters x and y linearly:

Oi ¼ aixþ biy: ð2:7Þ

The two parameters can be fit using the χ2 analysis, with

χ2 ¼
XN
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σi

$
2

¼
XN
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aixþ biy

σi

$
2

: ð2:8Þ

Here, σi is the measurement uncertainty of Oi. Then, the
marginalized constraint for one of the two parameters,
say, y, can be obtained by integrating x out, given by

Δχ2¼detM
Mxx

Δy2¼
"
1

2

XN
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a2j
σ2j
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bi
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−
bj
aj
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#"XN
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a2k
σ2k

#−1
Δy2:

ð2:9Þ

Here,M is the inverse of the covariance matrix for x and y.
At 1σ C:L:, we have Δχ2 ¼ 1, which yields
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Assuming no other NP (or constrained by EW and Higgs precision 
measurement), focus on corrections from Higgs self-couplings 



Dihiggs production cross section

• κ3 denotes renormalized cubic Higgs coupling; coefficients C4i depend on 
the renormalization scheme (ignore NLO corrections from κ3)

• κ3 sensitivity scheme dependent, while for κ4 it can be largely suppressed 
by marginalization of κ3 in 𝜒2 analysis with N≥2 physical observables 
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Higgs legs, and the third one is characterized by the
di-Higgs invariant mass p2

3 ¼ M2
hh ≥ 4m2

h. So, we
define λ3 ≡ Γðm2

h; m
2
h; 4m

2
hÞ, and Eq. (2.1) becomes
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This choice is effectively equivalent to the MS
renormalization scheme with μ ¼ 0.67mh.

The one-loop corrections of the quartic Higgs coupling
to the VVhh form factor is a summation of three terms in
the Rξ gauge

F½HHVV& ¼ F1 þ F2 þ F3: ð2:4Þ

Here, Fi denotes the contribution of the ith diagram in
Fig. 2 with the momentum of the incoming gauge bosons
denoted as k1 and k2:
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After a contraction with external massless fermion current
or massive gauge bosons that are on shell, only the qμqν

term is left in F2. Then, the summation of F1 and F2 leads
to a cancellation of ξ dependence, as we expected. One can
also check that F½HHVV& is UV finite, similar to the case
of F½HVV& discussed in Ref. [28].
The calculation of the one-loop corrections of the quartic

Higgs coupling to the tt̄hh, gtt̄hh, and ggtt̄hh form factors
is straightforward, based on the diagrams in Fig. 3. We do
not show the results here, since below we will focus on the
VBF and VBA di-Higgs productions.
With the renormalized cubic Higgs coupling λ3 and the

modified VVhh form factor, we can parametrize the
deviation of the cross section σ from the SM prediction
σ0 in the relevant di-Higgs productions as

δσ
σ0

≡σ−σ0
σ0

¼C31κ3þC32κ23þ κ4ðC41þC42κ3þC43κ23Þ;

ð2:6Þ

where κ3 ¼ λ3v=3m2
h − 1. The first two terms denote the

contributions from the cubic Higgs coupling only, at the
leading order that arises from the tree level. The rest arises
from the interference between the κ4 one-loop corrections
and the tree-level amplitudes. We neglect the quadratic term
in κ4, given that it results from the interference between
one-loop amplitudes. Then, the cubic and quartic Higgs

couplings can be probed by measuring the di-Higgs
production cross sections at colliders.
The interpretation of the collider sensitivities for probing

κ3 depends on the λ3 renormalization scheme. But such a
scheme dependence can be largely suppressed for κ4, by
marginalizing κ3 in the χ2 analysis. This can be understood
in the following way. Consider N ≥ 2 observables fOig,
which depend on two parameters x and y linearly:

Oi ¼ aixþ biy: ð2:7Þ

The two parameters can be fit using the χ2 analysis, with

χ2 ¼
XN
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$
2
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!
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σi

$
2

: ð2:8Þ

Here, σi is the measurement uncertainty of Oi. Then, the
marginalized constraint for one of the two parameters,
say, y, can be obtained by integrating x out, given by

Δχ2¼detM
Mxx
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ð2:9Þ

Here,M is the inverse of the covariance matrix for x and y.
At 1σ C:L:, we have Δχ2 ¼ 1, which yields

LIU, LYU, REN, and ZHU PHYS. REV. D 98, 093004 (2018)

093004-4

Considering only linear terms:                                 (with measurement uncertainty    )
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To match with the discussions on the Higgs self-
couplings, we can make replacements: ðx; yÞ → ðκ3; κ4Þ
and ðai; biÞ → ðCðiÞ

31 ; C
ðiÞ
41Þ. At the leading order, CðiÞ

31 is
scheme independent, but CðiÞ

41 is not. For any given pair of
observables Oi and Oj, we can eliminate κ3, yielding the
relation

Oi
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−
Oj

CðjÞ
31

¼
$
CðiÞ
41

CðiÞ
31

−
CðjÞ
41

CðjÞ
31

%
κ4 ≡ ΔCijκ4: ð2:11Þ

Since the left side of this equation is independent of the λ3
renormalization scheme at the leading order, ΔCij should
be nearly scheme independent, given that κ4 by definition is
a parameter independent of κ3 or λ3. Then, we are able to
obtain Δκ4 by applying Eq. (2.10), with the scheme
dependence suppressed, if all pairs of fCðiÞ

41 ; C
ðjÞ
41 g are

calculated with proper precisions. Note that the “if”
condition is important for suppressing the linear-level
scheme dependence. For example, if one were to combine
the di-Higgs productions discussed above with the single
Higgs productions in the analysis, the two-loop contribu-
tions of the quartic Higgs coupling to the latter channels
would need to be incorporated. The nonlinear terms in
Eq. (2.6), if turned on, may weaken this argument. But
the scheme dependence introduced is of next-to-next-to-
leading order (NNLO) and could be further suppressed if
the NNLO nonlinear terms, such as the ones proportional to
κ24, are properly calculated.
If there are two observables only, the formula for Δκ4 is

reduced to

Δκ4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσi=C

ðiÞ
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q

jΔCijj
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Here, jσi=Ci
31j and jσj=C

j
31j represent the precision of

measuring κ3 via Oi and Oj, respectively, with κ4 being

turned off. An interesting observation is that a larger jΔCijj
tends to yield a higher precision for the κ4 measurement.
This can be the case when the two observables Oi and Oj

constrain the κ3 − κ4 plane in two clearly separated
directions. Below, we will show how to optimize the
measurement precision for κ4 using this guideline.

III. ANALYSES AT LEPTON
AND HADRON COLLIDERS

In this section, we calculate the one-loop contributions of
the quartic Higgs coupling in the VBF and VBA di-Higgs
productions at both lepton and hadron colliders. We use
FEYNRULE [29] to generate themodel file. The cross sections
are then calculatedwithFEYNARTS3.8 andFORMCALC9.5 [30]
using a factorization scale of mh ¼ 125 GeV, where the
LOOPTOOLS [31] is linked to calculate the loop integral. The
electroweak input parameters in the analysis are chosen as
GF ¼ 1.1663787 × 10−5 GeV−2, mZ ¼ 91.1876 GeV, and
mW ¼ 80.385 GeV [32]. For consistency checks, we com-
pare the tree-level cross sections with those given by
MADGRAPH@AMC2.3.3 [33] and CALCHEP3.6.27 [34].
Also, we have checked the values of the squared one-loop
amplitudes at some given points in the phase space by
comparing with the results calculated by hand.

FIG. 4. The leading-order cross sections in the SM, as functions
of the center-of-mass energy

ffiffiffi
s

p
. The initial states are unpolarized.

TABLE I. The leading-order SM cross sections and the parametrization of the κ3, κ4 contributions for the Zhh and ννhh di-Higgs
productions at lepton colliders. Here, the ILC beam is polarized as Pðe−; eþÞ ¼ ð−0.8; 0.3Þ at 500 GeVand Pðe−; eþÞ ¼ ð−0.8; 0.2Þ at
1 TeV.

Channels σ0 (fb) C31 C32 C41 C42 C43

ILC Zhh (500 GeV) 0.232 0.564 0.0965 −0.00517 −0.00390 −0.000810
Zhh (1 TeV) 0.166 0.350 0.0913 −0.00271 −0.00181 −0.000541
ννhh (1 TeV) 0.159 −1.20 1.10 −0.00327 0.00790 −0.00750

CLIC Zhh (1.4 TeV) 0.0833 0.263 0.0827 −0.00186 −0.00122 −0.000422
ννhh (1.4 TeV) 0.191 −0.965 0.819 −0.0024 0.00541 −0.00505
ννhh (3 TeV) 0.825 −0.645 0.488 −0.00119 0.00251 −0.00247
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Higgs legs, and the third one is characterized by the
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This choice is effectively equivalent to the MS
renormalization scheme with μ ¼ 0.67mh.

The one-loop corrections of the quartic Higgs coupling
to the VVhh form factor is a summation of three terms in
the Rξ gauge

F½HHVV& ¼ F1 þ F2 þ F3: ð2:4Þ

Here, Fi denotes the contribution of the ith diagram in
Fig. 2 with the momentum of the incoming gauge bosons
denoted as k1 and k2:
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After a contraction with external massless fermion current
or massive gauge bosons that are on shell, only the qμqν

term is left in F2. Then, the summation of F1 and F2 leads
to a cancellation of ξ dependence, as we expected. One can
also check that F½HHVV& is UV finite, similar to the case
of F½HVV& discussed in Ref. [28].
The calculation of the one-loop corrections of the quartic

Higgs coupling to the tt̄hh, gtt̄hh, and ggtt̄hh form factors
is straightforward, based on the diagrams in Fig. 3. We do
not show the results here, since below we will focus on the
VBF and VBA di-Higgs productions.
With the renormalized cubic Higgs coupling λ3 and the

modified VVhh form factor, we can parametrize the
deviation of the cross section σ from the SM prediction
σ0 in the relevant di-Higgs productions as

δσ
σ0

≡σ−σ0
σ0

¼C31κ3þC32κ23þ κ4ðC41þC42κ3þC43κ23Þ;

ð2:6Þ

where κ3 ¼ λ3v=3m2
h − 1. The first two terms denote the

contributions from the cubic Higgs coupling only, at the
leading order that arises from the tree level. The rest arises
from the interference between the κ4 one-loop corrections
and the tree-level amplitudes. We neglect the quadratic term
in κ4, given that it results from the interference between
one-loop amplitudes. Then, the cubic and quartic Higgs

couplings can be probed by measuring the di-Higgs
production cross sections at colliders.
The interpretation of the collider sensitivities for probing

κ3 depends on the λ3 renormalization scheme. But such a
scheme dependence can be largely suppressed for κ4, by
marginalizing κ3 in the χ2 analysis. This can be understood
in the following way. Consider N ≥ 2 observables fOig,
which depend on two parameters x and y linearly:

Oi ¼ aixþ biy: ð2:7Þ

The two parameters can be fit using the χ2 analysis, with

χ2 ¼
XN

i¼1

!
Oi

σi

$
2

¼
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!
aixþ biy

σi

$
2

: ð2:8Þ

Here, σi is the measurement uncertainty of Oi. Then, the
marginalized constraint for one of the two parameters,
say, y, can be obtained by integrating x out, given by

Δχ2¼detM
Mxx

Δy2¼
"
1

2
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Here,M is the inverse of the covariance matrix for x and y.
At 1σ C:L:, we have Δχ2 ¼ 1, which yields
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Assuming no other NP (or constrained by EW and Higgs precision 
measurement), focus on corrections from Higgs self-couplings 
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To match with the discussions on the Higgs self-
couplings, we can make replacements: ðx; yÞ → ðκ3; κ4Þ
and ðai; biÞ → ðCðiÞ

31 ; C
ðiÞ
41Þ. At the leading order, CðiÞ

31 is
scheme independent, but CðiÞ

41 is not. For any given pair of
observables Oi and Oj, we can eliminate κ3, yielding the
relation

Oi

CðiÞ
31

−
Oj

CðjÞ
31

¼
$
CðiÞ
41

CðiÞ
31

−
CðjÞ
41

CðjÞ
31

%
κ4 ≡ ΔCijκ4: ð2:11Þ

Since the left side of this equation is independent of the λ3
renormalization scheme at the leading order, ΔCij should
be nearly scheme independent, given that κ4 by definition is
a parameter independent of κ3 or λ3. Then, we are able to
obtain Δκ4 by applying Eq. (2.10), with the scheme
dependence suppressed, if all pairs of fCðiÞ

41 ; C
ðjÞ
41 g are

calculated with proper precisions. Note that the “if”
condition is important for suppressing the linear-level
scheme dependence. For example, if one were to combine
the di-Higgs productions discussed above with the single
Higgs productions in the analysis, the two-loop contribu-
tions of the quartic Higgs coupling to the latter channels
would need to be incorporated. The nonlinear terms in
Eq. (2.6), if turned on, may weaken this argument. But
the scheme dependence introduced is of next-to-next-to-
leading order (NNLO) and could be further suppressed if
the NNLO nonlinear terms, such as the ones proportional to
κ24, are properly calculated.
If there are two observables only, the formula for Δκ4 is

reduced to

Δκ4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσi=C

ðiÞ
31Þ2 þ ðσj=C

ðjÞ
31 Þ2

q

jΔCijj
: ð2:12Þ

Here, jσi=Ci
31j and jσj=C

j
31j represent the precision of

measuring κ3 via Oi and Oj, respectively, with κ4 being

turned off. An interesting observation is that a larger jΔCijj
tends to yield a higher precision for the κ4 measurement.
This can be the case when the two observables Oi and Oj

constrain the κ3 − κ4 plane in two clearly separated
directions. Below, we will show how to optimize the
measurement precision for κ4 using this guideline.

III. ANALYSES AT LEPTON
AND HADRON COLLIDERS

In this section, we calculate the one-loop contributions of
the quartic Higgs coupling in the VBF and VBA di-Higgs
productions at both lepton and hadron colliders. We use
FEYNRULE [29] to generate themodel file. The cross sections
are then calculatedwithFEYNARTS3.8 andFORMCALC9.5 [30]
using a factorization scale of mh ¼ 125 GeV, where the
LOOPTOOLS [31] is linked to calculate the loop integral. The
electroweak input parameters in the analysis are chosen as
GF ¼ 1.1663787 × 10−5 GeV−2, mZ ¼ 91.1876 GeV, and
mW ¼ 80.385 GeV [32]. For consistency checks, we com-
pare the tree-level cross sections with those given by
MADGRAPH@AMC2.3.3 [33] and CALCHEP3.6.27 [34].
Also, we have checked the values of the squared one-loop
amplitudes at some given points in the phase space by
comparing with the results calculated by hand.

FIG. 4. The leading-order cross sections in the SM, as functions
of the center-of-mass energy

ffiffiffi
s

p
. The initial states are unpolarized.

TABLE I. The leading-order SM cross sections and the parametrization of the κ3, κ4 contributions for the Zhh and ννhh di-Higgs
productions at lepton colliders. Here, the ILC beam is polarized as Pðe−; eþÞ ¼ ð−0.8; 0.3Þ at 500 GeVand Pðe−; eþÞ ¼ ð−0.8; 0.2Þ at
1 TeV.

Channels σ0 (fb) C31 C32 C41 C42 C43

ILC Zhh (500 GeV) 0.232 0.564 0.0965 −0.00517 −0.00390 −0.000810
Zhh (1 TeV) 0.166 0.350 0.0913 −0.00271 −0.00181 −0.000541
ννhh (1 TeV) 0.159 −1.20 1.10 −0.00327 0.00790 −0.00750

CLIC Zhh (1.4 TeV) 0.0833 0.263 0.0827 −0.00186 −0.00122 −0.000422
ννhh (1.4 TeV) 0.191 −0.965 0.819 −0.0024 0.00541 −0.00505
ννhh (3 TeV) 0.825 −0.645 0.488 −0.00119 0.00251 −0.00247
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To match with the discussions on the Higgs self-
couplings, we can make replacements: ðx; yÞ → ðκ3; κ4Þ
and ðai; biÞ → ðCðiÞ

31 ; C
ðiÞ
41Þ. At the leading order, CðiÞ

31 is
scheme independent, but CðiÞ

41 is not. For any given pair of
observables Oi and Oj, we can eliminate κ3, yielding the
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Since the left side of this equation is independent of the λ3
renormalization scheme at the leading order, ΔCij should
be nearly scheme independent, given that κ4 by definition is
a parameter independent of κ3 or λ3. Then, we are able to
obtain Δκ4 by applying Eq. (2.10), with the scheme
dependence suppressed, if all pairs of fCðiÞ

41 ; C
ðjÞ
41 g are

calculated with proper precisions. Note that the “if”
condition is important for suppressing the linear-level
scheme dependence. For example, if one were to combine
the di-Higgs productions discussed above with the single
Higgs productions in the analysis, the two-loop contribu-
tions of the quartic Higgs coupling to the latter channels
would need to be incorporated. The nonlinear terms in
Eq. (2.6), if turned on, may weaken this argument. But
the scheme dependence introduced is of next-to-next-to-
leading order (NNLO) and could be further suppressed if
the NNLO nonlinear terms, such as the ones proportional to
κ24, are properly calculated.
If there are two observables only, the formula for Δκ4 is

reduced to

Δκ4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Here, jσi=Ci
31j and jσj=C

j
31j represent the precision of

measuring κ3 via Oi and Oj, respectively, with κ4 being

turned off. An interesting observation is that a larger jΔCijj
tends to yield a higher precision for the κ4 measurement.
This can be the case when the two observables Oi and Oj

constrain the κ3 − κ4 plane in two clearly separated
directions. Below, we will show how to optimize the
measurement precision for κ4 using this guideline.

III. ANALYSES AT LEPTON
AND HADRON COLLIDERS

In this section, we calculate the one-loop contributions of
the quartic Higgs coupling in the VBF and VBA di-Higgs
productions at both lepton and hadron colliders. We use
FEYNRULE [29] to generate themodel file. The cross sections
are then calculatedwithFEYNARTS3.8 andFORMCALC9.5 [30]
using a factorization scale of mh ¼ 125 GeV, where the
LOOPTOOLS [31] is linked to calculate the loop integral. The
electroweak input parameters in the analysis are chosen as
GF ¼ 1.1663787 × 10−5 GeV−2, mZ ¼ 91.1876 GeV, and
mW ¼ 80.385 GeV [32]. For consistency checks, we com-
pare the tree-level cross sections with those given by
MADGRAPH@AMC2.3.3 [33] and CALCHEP3.6.27 [34].
Also, we have checked the values of the squared one-loop
amplitudes at some given points in the phase space by
comparing with the results calculated by hand.

FIG. 4. The leading-order cross sections in the SM, as functions
of the center-of-mass energy

ffiffiffi
s

p
. The initial states are unpolarized.

TABLE I. The leading-order SM cross sections and the parametrization of the κ3, κ4 contributions for the Zhh and ννhh di-Higgs
productions at lepton colliders. Here, the ILC beam is polarized as Pðe−; eþÞ ¼ ð−0.8; 0.3Þ at 500 GeVand Pðe−; eþÞ ¼ ð−0.8; 0.2Þ at
1 TeV.

Channels σ0 (fb) C31 C32 C41 C42 C43

ILC Zhh (500 GeV) 0.232 0.564 0.0965 −0.00517 −0.00390 −0.000810
Zhh (1 TeV) 0.166 0.350 0.0913 −0.00271 −0.00181 −0.000541
ννhh (1 TeV) 0.159 −1.20 1.10 −0.00327 0.00790 −0.00750

CLIC Zhh (1.4 TeV) 0.0833 0.263 0.0827 −0.00186 −0.00122 −0.000422
ννhh (1.4 TeV) 0.191 −0.965 0.819 −0.0024 0.00541 −0.00505
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A. Lepton colliders

At lepton colliders, the main di-Higgs production proc-
esses include the Z-associated production eþe− → Zhh
and the VBF production eþe− → ννhh. Though they could
be kinematically turned on, the VBF production eþe− →
eþe−hh and the top pair–associated production eþe− →
tt̄hh suffer a suppression of cross section. So, we will focus
on the former two channels. Figure 4 shows their leading-
order cross sections in the SM, as functions of the center-of-
mass energy

ffiffiffi
s

p
, with an unpolarized initial state. The cross

section for the Zhh process reaches the peak at
ffiffiffi
s

p
∼

500 GeV and then slowly decreases due to an s-channel
suppression. As for the VBF production of ννhh, due to the
t-channel contributions mediated by the W boson, its cross
section keeps growing up to a few TeV. In Table I, we show
the leading-order SM cross sections and the coefficients
defined in Eq. (2.6) for these two processes, in different
collider configurations. The cubic Higgs coupling is
renormalized in scheme 1. Note that the beam polarization
does not modify the values of C3a and C4b but changes the
total cross section only.
As we demonstrated in Sec. II, the ΔCij defined in

Eq. (2.11) is independent of the λ3 renormalization scheme
at the linear level. Particularly, a larger jΔCijj tends to yield
a higher precision for the κ4 measurement, after κ3 is
marginalized. For optimizing the collider sensitivities and

potentially its configuration design, therefore, it is helpful
to have the information on jΔCijj for various observable
pairs available. In Fig. 5, we show ΔCij for the observables
available in the Zhh and ννhh channels. The dashed and
solid lines denote the cases in which the two observables
are from the same and different channels, respectively. The
red and blue colors represent different choices for the
reference observable Oj. Then, we show the

ffiffiffi
s

p
depend-

ence of ΔCij by varying
ffiffiffi
s

p
from 500 GeV to 3 TeV forOi.

Interestingly, the two observables, if arising from the Zhh
and ννhh channels separately, result in a jΔCijj ofOð10−2Þ.
This is several times or even one order larger than that
obtained in the complementary cases and is not sensitive to
the value of

ffiffiffi
s

p
. Indeed, such a pair of observables has

clearly separated degenerate directions at the κ3 − κ4 plane.
A combination of them will be very important for optimiz-
ing the sensitivities to probe κ4.

B. Hadron colliders

The main di-Higgs production processes at hadron
colliders include the gluon-fusion production (gg → hh),
the top pair–associated production (pp → t̄thh), the VBF
production (pp → hhjj), and the VBA production
(pp → Vhh, V ¼ Z, W). For all of these processes, the
cross sections increase as

ffiffiffi
s

p
increases from 14 to 100 TeV.

At 100 TeV, the gluon-fusion cross section is around 1 pb;

FIG. 5. ΔCij for the observable pairs fOi;Ojg available in the eþe− → Zhh and eþe− → ννhh channels. Here, Oj represents the
reference observable, with

ffiffiffi
s

p
varied for Oi from 500 GeV to 3 TeV.

TABLE II. The leading-order SM cross sections and the parametrization of the κ3, κ4 contributions for the Zhh=Whh and jjhh di-
Higgs productions at hadron colliders. For simplicity, we only include the contributions arising from the (anti)up and (anti)down quarks
initiated processes. Also, we require the W boson to be electrically positive in the Whh production.

Channels σ0 (fb) C31 C32 C41 C42 C43

14 TeV jjhh 1.26 −0.781 0.688 −0.00233 −0.00466 −0.00426
Zhh 0.274 0.496 0.0954 −0.00441 −0.00327 −0.000738
Whh 0.268 0.521 0.109 −0.0041 −0.00331 −0.000807

100 TeV jjhh 59.3 −0.537 0.411 −0.00123 0.00238 −0.00220
Zhh 2.95 0.454 0.091 −0.00416 −0.00293 −0.000677
Whh 2.49 0.483 0.105 −0.00386 −0.003 −0.00075
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the hhjj and tthh ones are roughly 80–90 fb; the Vhh ones
are several femtobarns [35,36]. For illustration purposes,
we will focus on the VBA and VBF productions.
Table II shows the leading-order cross sections in the SM

and the coefficients defined in Eq. (2.6) for the VBA and
VBF productions, at 14 and 100 TeV. Here, we find the
contribution from the VBF productions at hadron colliders
by imposing a set of universal VBF selection cuts as [9]

pT;j > 25 GeV; ΔRjj > 4; Mjj > 600 GeV

ð3:1Þ

except a rapidity cut jηjj < 4.5 at 14 TeV and jηjj < 10 at
100 TeV. The cubic Higgs coupling is renormalized in
scheme 1.
Similar to the analyses at lepton colliders, the knowledge

on jΔCijj is helpful for optimizing the sensitivities at the
hadron collider to probe the quartic Higgs coupling. In
Fig. 6, we show ΔCij for the observable pairs, which are
available in the Zhh and jjhh channels.5 We use the red and
blue colors to denote the Zhh and the jjhh as Oi,
respectively. The lines of different styles (solid, dashed,
and dotted-dashed) represent different reference observ-
ablesOj for a givenOi. Then, we show the

ffiffiffi
s

p
dependence

of ΔCij by varying
ffiffiffi
s

p
from 14 to 100 TeV for Oi. The two

observables, if arising from the Zhh=Whh and the jjhh at
the hadron collider separately, result in a jΔCijj of
Oð10−2Þ. This magnitude is several times or even one
order larger than that obtained in the cases in which both
observables are from the Zhh=Whh channels or both are
from the jjhh channel and is not very sensitive to the
value of

ffiffiffi
s

p
. These observations are similar to what we

had at lepton colliders. So, a combination of such a pair of
observables is very important for optimizing the

sensitivities to probe κ4 at hadron colliders. This conclusion
can be generalized to the combination of two observables
that are defined at lepton colliders and hadron colliders,
separately. As is shown in Fig. 6, the jjhh and the Zhh at
hadron colliders can result in a jΔCijj of Oð10−2Þ as well,
by pairing with the Zhh and the ννhh at lepton colliders,
respectively.

IV. COLLIDER SENSITIVITIES
TO THE HIGGS SELF-COUPLINGS

In this section, we reinterpret the projected precisions of
the di-Higgs measurements as the sensitivities to probe
both the cubic and quartic Higgs couplings. At hadron
colliders, the sensitivity of measuring the VBA production
at the LHC is poor [12], and the study on a future collider is
absent. The VBF production, on the other hand, is not quite
sensitive to the cubic Higgs coupling [8,9], and new
analysis strategies have yet to be developed. So, we will
focus on the analysis at lepton colliders. For simplification,
we assume that the Higgs self-couplings only yield
negligible modifications for the signal efficiency of the
SM contributions. Then, the projected precisions as sum-
marized in Table III can be directly applied to our analysis
below, using the parametrization in Eq. (2.6). For the
convenience of discussions, we define two ILC scenarios:

(i) ILC1¼ ILC (500 GeV, 4 ab−1þ1TeV, 2.5 ab−1

[13]);
(ii) ILC2 ¼ ILC (500 GeV, 4 ab−1 þ 1 TeV, 8 ab−1

[37]).
Figure 7 shows the sensitivity contours of measuring κ3

and κ4 at 1σ C:L:, at the ILC and CLIC. Here, the cubic
Higgs coupling is renormalized in scheme 1. In this figure,
the yellow region is defined by the perturbative unitarity
bound of the hh → hh scattering (the derivation is pre-
sented in Appendix B). This unitarity requirement sets a
range between ∼%65 for κ4, within which κ3 is allowed to
vary from∼ −9 to∼7. The brown and blue circles represent
the sensitivities of the ILC1 and the ILC2, respectively.

FIG. 6. ΔCij for the observable pairs fOi;Ojg available in the pp → Zhh and pp → jjhh channels. Here,Oj represents the reference
observable, with

ffiffiffi
s

p
varied for Oi from 14 to 100 TeV.

5The Zhh and Whh productions share similar dependence on
κ3 and κ4, as is indicated in Table II. Considering this, we do not
show the Whh-related curves in Fig. 6.
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A. Lepton colliders

At lepton colliders, the main di-Higgs production proc-
esses include the Z-associated production eþe− → Zhh
and the VBF production eþe− → ννhh. Though they could
be kinematically turned on, the VBF production eþe− →
eþe−hh and the top pair–associated production eþe− →
tt̄hh suffer a suppression of cross section. So, we will focus
on the former two channels. Figure 4 shows their leading-
order cross sections in the SM, as functions of the center-of-
mass energy

ffiffiffi
s

p
, with an unpolarized initial state. The cross

section for the Zhh process reaches the peak at
ffiffiffi
s

p
∼

500 GeV and then slowly decreases due to an s-channel
suppression. As for the VBF production of ννhh, due to the
t-channel contributions mediated by the W boson, its cross
section keeps growing up to a few TeV. In Table I, we show
the leading-order SM cross sections and the coefficients
defined in Eq. (2.6) for these two processes, in different
collider configurations. The cubic Higgs coupling is
renormalized in scheme 1. Note that the beam polarization
does not modify the values of C3a and C4b but changes the
total cross section only.
As we demonstrated in Sec. II, the ΔCij defined in

Eq. (2.11) is independent of the λ3 renormalization scheme
at the linear level. Particularly, a larger jΔCijj tends to yield
a higher precision for the κ4 measurement, after κ3 is
marginalized. For optimizing the collider sensitivities and

potentially its configuration design, therefore, it is helpful
to have the information on jΔCijj for various observable
pairs available. In Fig. 5, we show ΔCij for the observables
available in the Zhh and ννhh channels. The dashed and
solid lines denote the cases in which the two observables
are from the same and different channels, respectively. The
red and blue colors represent different choices for the
reference observable Oj. Then, we show the

ffiffiffi
s

p
depend-

ence of ΔCij by varying
ffiffiffi
s

p
from 500 GeV to 3 TeV forOi.

Interestingly, the two observables, if arising from the Zhh
and ννhh channels separately, result in a jΔCijj ofOð10−2Þ.
This is several times or even one order larger than that
obtained in the complementary cases and is not sensitive to
the value of

ffiffiffi
s

p
. Indeed, such a pair of observables has

clearly separated degenerate directions at the κ3 − κ4 plane.
A combination of them will be very important for optimiz-
ing the sensitivities to probe κ4.

B. Hadron colliders

The main di-Higgs production processes at hadron
colliders include the gluon-fusion production (gg → hh),
the top pair–associated production (pp → t̄thh), the VBF
production (pp → hhjj), and the VBA production
(pp → Vhh, V ¼ Z, W). For all of these processes, the
cross sections increase as

ffiffiffi
s

p
increases from 14 to 100 TeV.

At 100 TeV, the gluon-fusion cross section is around 1 pb;

FIG. 5. ΔCij for the observable pairs fOi;Ojg available in the eþe− → Zhh and eþe− → ννhh channels. Here, Oj represents the
reference observable, with

ffiffiffi
s

p
varied for Oi from 500 GeV to 3 TeV.

TABLE II. The leading-order SM cross sections and the parametrization of the κ3, κ4 contributions for the Zhh=Whh and jjhh di-
Higgs productions at hadron colliders. For simplicity, we only include the contributions arising from the (anti)up and (anti)down quarks
initiated processes. Also, we require the W boson to be electrically positive in the Whh production.

Channels σ0 (fb) C31 C32 C41 C42 C43

14 TeV jjhh 1.26 −0.781 0.688 −0.00233 −0.00466 −0.00426
Zhh 0.274 0.496 0.0954 −0.00441 −0.00327 −0.000738
Whh 0.268 0.521 0.109 −0.0041 −0.00331 −0.000807

100 TeV jjhh 59.3 −0.537 0.411 −0.00123 0.00238 −0.00220
Zhh 2.95 0.454 0.091 −0.00416 −0.00293 −0.000677
Whh 2.49 0.483 0.105 −0.00386 −0.003 −0.00075
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and the VBF production eþe− → ννhh. Though they could
be kinematically turned on, the VBF production eþe− →
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section keeps growing up to a few TeV. In Table I, we show
the leading-order SM cross sections and the coefficients
defined in Eq. (2.6) for these two processes, in different
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renormalized in scheme 1. Note that the beam polarization
does not modify the values of C3a and C4b but changes the
total cross section only.
As we demonstrated in Sec. II, the ΔCij defined in
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at the linear level. Particularly, a larger jΔCijj tends to yield
a higher precision for the κ4 measurement, after κ3 is
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potentially its configuration design, therefore, it is helpful
to have the information on jΔCijj for various observable
pairs available. In Fig. 5, we show ΔCij for the observables
available in the Zhh and ννhh channels. The dashed and
solid lines denote the cases in which the two observables
are from the same and different channels, respectively. The
red and blue colors represent different choices for the
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ILC and CLIC in different operating scenarios 

In both scenarios, the ILC yields an exclusion limit
for κ3 and κ4 well within the perturbative regime.6 This
can be understood, since the ILC sensitivities benefit a
lot from:

(i) the combination of the Zhh and ννhh observables,
which are characterized by relatively large jΔCijj
values of Oð10−2Þ

(ii) the good precisions for measuring the Zhh at
500 GeV (almost maximized cross section, high
luminosity) and the ννhh at 1 TeV (large cross
section, high luminosity).

The purple circle represents the CLIC sensitivities by
combining the measurements of Zhh at 1.4 GeV and
ννhh at 1.4 and 3 TeV. As a comparison, it is difficult
for the CLIC to reach an exclusion limit for κ4 within the
perturbative regime. Its sensitivities suffer from both the
suppressed Zhh cross section at a higher beam energy scale
and the relatively low luminosity.
Given its potential in probing the Higgs self-interactions,

let us look into the ILC analysis and sensitivities in more
detail. In Fig. 8, we present the ILC sensitivities in both
scheme 1 and scheme 2 of the λ3 renormalization, with and
without the nonlinear terms in Eq. (2.6). At the linear level,
the exclusion contours at the κ3 − κ4 plane are an ellipse
with the major axis being close to the κ4 direction. As is
indicated in the left panel, the change from scheme 1 to
scheme 2 yields a counterclockwise rotation for the
exclusion contours. The nonlinear terms deform these
ellipses. Compared to scheme 2, the ellipse orientation in
scheme 1 restricts κ3 to be smaller and makes the nonlinear
effects less important. In the right panel, the sensitivities to
probe κ3 and κ4 are shown by marginalizing κ4 and κ3,
respectively, in the χ2 fit. The κ3 sensitivity depends strongly
on the λ3 renormalization scheme by definition, while the κ4
sensitivity is nearly scheme independent at the linear level, as
we advertised in Sec. II. The scheme dependence is mainly
introduced via the nonlinear terms in Eq. (2.6) in this context.
The allowed ranges for κ4 can then vary by a few percent
between scheme 1 and scheme 2.

To illustrate the scheme dependence more clearly, we
present in Fig. 9 the κ4 sensitivity in the ILC2 scenario for
a wide range of the renormalization scale μ, say, from 50
to 500 GeV. The difference between the yellow and the
light blue regions shows the scheme dependence intro-
duced via nonlinear terms in Eq. (2.6). Scheme 1 turns out
to yield the almost minimal discrepancy between the
linear and nonlinear results. For a smaller or larger
renormalization scale, the constrained region shifts
downward, yielding a less positive upper limit and a
more negative lower limit. In a scenario with lower
sensitivities, say ILC1, the nonlinear effects would be
more significant.
In all, the ILC has a potential to probe jκ4j as small as

∼25 in the ILC1 scenario and ∼20 in the ILC2 scenario,
respectively, at 1σ C:L:, in a λ3 renormalization scheme in
which nonlinear effects are minimized. Such a sensitivity is
comparable to the one that could be achieved by measuring
the tri-Higgs production at a high-luminosity future hadron
collider, say, 30 ab−1@100 TeV [16,17].

TABLE III. Projected precision of the di-Higgs measurements at 1σ C.L., at the ILC and CLIC. The numbers in
red are obtained by naively rescaling the signal rates.

δσ=σSM ILC CLIC

Operating
scenarios 500 GeV, 4 ab−1 1 TeV, 2.5 ab−1 [13] 1 TeV, 8 ab−1 [37] 1.4 TeV, 1.5 ab−1 3TeV, 3 ab−1 [38]

Zhh 15% [13] 22.5% [13] 12.6% [13] 30% [13] …
ννhh … 16.8% [13] 9.4% [13] 44% [14] 16.3% [14]

FIG. 7. The sensitivity contours of measuring κ3 and κ4 at
1σ C:L:, at the ILC and CLIC. The yellow region is perturba-
tively unitarity safe. As a benchmark, we indicate the region that
is favored by first-order EWPT in the SMEFTwith theO6 andO8

operators turned on (the discussions are presented in Appendix C)
in orange.

6By marginalizing κ3, the circled ILC1 and ILC2 regions with
κ3 ∼ 1 − 2 and κ4 > 60 yield a κ4 falling outside the unitarity
bound. Also, these regions could be excluded by combining with
the single Higgs productions, e.g., the Zh and ννh ones, at future
lepton colliders [39]. So, we will not consider it here.
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the hhjj and tthh ones are roughly 80–90 fb; the Vhh ones
are several femtobarns [35,36]. For illustration purposes,
we will focus on the VBA and VBF productions.
Table II shows the leading-order cross sections in the SM

and the coefficients defined in Eq. (2.6) for the VBA and
VBF productions, at 14 and 100 TeV. Here, we find the
contribution from the VBF productions at hadron colliders
by imposing a set of universal VBF selection cuts as [9]

pT;j > 25 GeV; ΔRjj > 4; Mjj > 600 GeV

ð3:1Þ

except a rapidity cut jηjj < 4.5 at 14 TeV and jηjj < 10 at
100 TeV. The cubic Higgs coupling is renormalized in
scheme 1.
Similar to the analyses at lepton colliders, the knowledge

on jΔCijj is helpful for optimizing the sensitivities at the
hadron collider to probe the quartic Higgs coupling. In
Fig. 6, we show ΔCij for the observable pairs, which are
available in the Zhh and jjhh channels.5 We use the red and
blue colors to denote the Zhh and the jjhh as Oi,
respectively. The lines of different styles (solid, dashed,
and dotted-dashed) represent different reference observ-
ablesOj for a givenOi. Then, we show the

ffiffiffi
s

p
dependence

of ΔCij by varying
ffiffiffi
s

p
from 14 to 100 TeV for Oi. The two

observables, if arising from the Zhh=Whh and the jjhh at
the hadron collider separately, result in a jΔCijj of
Oð10−2Þ. This magnitude is several times or even one
order larger than that obtained in the cases in which both
observables are from the Zhh=Whh channels or both are
from the jjhh channel and is not very sensitive to the
value of

ffiffiffi
s

p
. These observations are similar to what we

had at lepton colliders. So, a combination of such a pair of
observables is very important for optimizing the

sensitivities to probe κ4 at hadron colliders. This conclusion
can be generalized to the combination of two observables
that are defined at lepton colliders and hadron colliders,
separately. As is shown in Fig. 6, the jjhh and the Zhh at
hadron colliders can result in a jΔCijj of Oð10−2Þ as well,
by pairing with the Zhh and the ννhh at lepton colliders,
respectively.

IV. COLLIDER SENSITIVITIES
TO THE HIGGS SELF-COUPLINGS

In this section, we reinterpret the projected precisions of
the di-Higgs measurements as the sensitivities to probe
both the cubic and quartic Higgs couplings. At hadron
colliders, the sensitivity of measuring the VBA production
at the LHC is poor [12], and the study on a future collider is
absent. The VBF production, on the other hand, is not quite
sensitive to the cubic Higgs coupling [8,9], and new
analysis strategies have yet to be developed. So, we will
focus on the analysis at lepton colliders. For simplification,
we assume that the Higgs self-couplings only yield
negligible modifications for the signal efficiency of the
SM contributions. Then, the projected precisions as sum-
marized in Table III can be directly applied to our analysis
below, using the parametrization in Eq. (2.6). For the
convenience of discussions, we define two ILC scenarios:

(i) ILC1¼ ILC (500 GeV, 4 ab−1þ1TeV, 2.5 ab−1

[13]);
(ii) ILC2 ¼ ILC (500 GeV, 4 ab−1 þ 1 TeV, 8 ab−1

[37]).
Figure 7 shows the sensitivity contours of measuring κ3

and κ4 at 1σ C:L:, at the ILC and CLIC. Here, the cubic
Higgs coupling is renormalized in scheme 1. In this figure,
the yellow region is defined by the perturbative unitarity
bound of the hh → hh scattering (the derivation is pre-
sented in Appendix B). This unitarity requirement sets a
range between ∼%65 for κ4, within which κ3 is allowed to
vary from∼ −9 to∼7. The brown and blue circles represent
the sensitivities of the ILC1 and the ILC2, respectively.

FIG. 6. ΔCij for the observable pairs fOi;Ojg available in the pp → Zhh and pp → jjhh channels. Here,Oj represents the reference
observable, with

ffiffiffi
s

p
varied for Oi from 14 to 100 TeV.

5The Zhh and Whh productions share similar dependence on
κ3 and κ4, as is indicated in Table II. Considering this, we do not
show the Whh-related curves in Fig. 6.
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the hhjj and tthh ones are roughly 80–90 fb; the Vhh ones
are several femtobarns [35,36]. For illustration purposes,
we will focus on the VBA and VBF productions.
Table II shows the leading-order cross sections in the SM

and the coefficients defined in Eq. (2.6) for the VBA and
VBF productions, at 14 and 100 TeV. Here, we find the
contribution from the VBF productions at hadron colliders
by imposing a set of universal VBF selection cuts as [9]

pT;j > 25 GeV; ΔRjj > 4; Mjj > 600 GeV

ð3:1Þ

except a rapidity cut jηjj < 4.5 at 14 TeV and jηjj < 10 at
100 TeV. The cubic Higgs coupling is renormalized in
scheme 1.
Similar to the analyses at lepton colliders, the knowledge

on jΔCijj is helpful for optimizing the sensitivities at the
hadron collider to probe the quartic Higgs coupling. In
Fig. 6, we show ΔCij for the observable pairs, which are
available in the Zhh and jjhh channels.5 We use the red and
blue colors to denote the Zhh and the jjhh as Oi,
respectively. The lines of different styles (solid, dashed,
and dotted-dashed) represent different reference observ-
ablesOj for a givenOi. Then, we show the

ffiffiffi
s

p
dependence

of ΔCij by varying
ffiffiffi
s

p
from 14 to 100 TeV for Oi. The two

observables, if arising from the Zhh=Whh and the jjhh at
the hadron collider separately, result in a jΔCijj of
Oð10−2Þ. This magnitude is several times or even one
order larger than that obtained in the cases in which both
observables are from the Zhh=Whh channels or both are
from the jjhh channel and is not very sensitive to the
value of

ffiffiffi
s

p
. These observations are similar to what we

had at lepton colliders. So, a combination of such a pair of
observables is very important for optimizing the

sensitivities to probe κ4 at hadron colliders. This conclusion
can be generalized to the combination of two observables
that are defined at lepton colliders and hadron colliders,
separately. As is shown in Fig. 6, the jjhh and the Zhh at
hadron colliders can result in a jΔCijj of Oð10−2Þ as well,
by pairing with the Zhh and the ννhh at lepton colliders,
respectively.

IV. COLLIDER SENSITIVITIES
TO THE HIGGS SELF-COUPLINGS

In this section, we reinterpret the projected precisions of
the di-Higgs measurements as the sensitivities to probe
both the cubic and quartic Higgs couplings. At hadron
colliders, the sensitivity of measuring the VBA production
at the LHC is poor [12], and the study on a future collider is
absent. The VBF production, on the other hand, is not quite
sensitive to the cubic Higgs coupling [8,9], and new
analysis strategies have yet to be developed. So, we will
focus on the analysis at lepton colliders. For simplification,
we assume that the Higgs self-couplings only yield
negligible modifications for the signal efficiency of the
SM contributions. Then, the projected precisions as sum-
marized in Table III can be directly applied to our analysis
below, using the parametrization in Eq. (2.6). For the
convenience of discussions, we define two ILC scenarios:

(i) ILC1¼ ILC (500 GeV, 4 ab−1þ1TeV, 2.5 ab−1

[13]);
(ii) ILC2 ¼ ILC (500 GeV, 4 ab−1 þ 1 TeV, 8 ab−1

[37]).
Figure 7 shows the sensitivity contours of measuring κ3

and κ4 at 1σ C:L:, at the ILC and CLIC. Here, the cubic
Higgs coupling is renormalized in scheme 1. In this figure,
the yellow region is defined by the perturbative unitarity
bound of the hh → hh scattering (the derivation is pre-
sented in Appendix B). This unitarity requirement sets a
range between ∼%65 for κ4, within which κ3 is allowed to
vary from∼ −9 to∼7. The brown and blue circles represent
the sensitivities of the ILC1 and the ILC2, respectively.

FIG. 6. ΔCij for the observable pairs fOi;Ojg available in the pp → Zhh and pp → jjhh channels. Here,Oj represents the reference
observable, with

ffiffiffi
s

p
varied for Oi from 14 to 100 TeV.

5The Zhh and Whh productions share similar dependence on
κ3 and κ4, as is indicated in Table II. Considering this, we do not
show the Whh-related curves in Fig. 6.
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In both scenarios, the ILC yields an exclusion limit
for κ3 and κ4 well within the perturbative regime.6 This
can be understood, since the ILC sensitivities benefit a
lot from:

(i) the combination of the Zhh and ννhh observables,
which are characterized by relatively large jΔCijj
values of Oð10−2Þ

(ii) the good precisions for measuring the Zhh at
500 GeV (almost maximized cross section, high
luminosity) and the ννhh at 1 TeV (large cross
section, high luminosity).

The purple circle represents the CLIC sensitivities by
combining the measurements of Zhh at 1.4 GeV and
ννhh at 1.4 and 3 TeV. As a comparison, it is difficult
for the CLIC to reach an exclusion limit for κ4 within the
perturbative regime. Its sensitivities suffer from both the
suppressed Zhh cross section at a higher beam energy scale
and the relatively low luminosity.
Given its potential in probing the Higgs self-interactions,

let us look into the ILC analysis and sensitivities in more
detail. In Fig. 8, we present the ILC sensitivities in both
scheme 1 and scheme 2 of the λ3 renormalization, with and
without the nonlinear terms in Eq. (2.6). At the linear level,
the exclusion contours at the κ3 − κ4 plane are an ellipse
with the major axis being close to the κ4 direction. As is
indicated in the left panel, the change from scheme 1 to
scheme 2 yields a counterclockwise rotation for the
exclusion contours. The nonlinear terms deform these
ellipses. Compared to scheme 2, the ellipse orientation in
scheme 1 restricts κ3 to be smaller and makes the nonlinear
effects less important. In the right panel, the sensitivities to
probe κ3 and κ4 are shown by marginalizing κ4 and κ3,
respectively, in the χ2 fit. The κ3 sensitivity depends strongly
on the λ3 renormalization scheme by definition, while the κ4
sensitivity is nearly scheme independent at the linear level, as
we advertised in Sec. II. The scheme dependence is mainly
introduced via the nonlinear terms in Eq. (2.6) in this context.
The allowed ranges for κ4 can then vary by a few percent
between scheme 1 and scheme 2.

To illustrate the scheme dependence more clearly, we
present in Fig. 9 the κ4 sensitivity in the ILC2 scenario for
a wide range of the renormalization scale μ, say, from 50
to 500 GeV. The difference between the yellow and the
light blue regions shows the scheme dependence intro-
duced via nonlinear terms in Eq. (2.6). Scheme 1 turns out
to yield the almost minimal discrepancy between the
linear and nonlinear results. For a smaller or larger
renormalization scale, the constrained region shifts
downward, yielding a less positive upper limit and a
more negative lower limit. In a scenario with lower
sensitivities, say ILC1, the nonlinear effects would be
more significant.
In all, the ILC has a potential to probe jκ4j as small as

∼25 in the ILC1 scenario and ∼20 in the ILC2 scenario,
respectively, at 1σ C:L:, in a λ3 renormalization scheme in
which nonlinear effects are minimized. Such a sensitivity is
comparable to the one that could be achieved by measuring
the tri-Higgs production at a high-luminosity future hadron
collider, say, 30 ab−1@100 TeV [16,17].

TABLE III. Projected precision of the di-Higgs measurements at 1σ C.L., at the ILC and CLIC. The numbers in
red are obtained by naively rescaling the signal rates.

δσ=σSM ILC CLIC

Operating
scenarios 500 GeV, 4 ab−1 1 TeV, 2.5 ab−1 [13] 1 TeV, 8 ab−1 [37] 1.4 TeV, 1.5 ab−1 3TeV, 3 ab−1 [38]

Zhh 15% [13] 22.5% [13] 12.6% [13] 30% [13] …
ννhh … 16.8% [13] 9.4% [13] 44% [14] 16.3% [14]

FIG. 7. The sensitivity contours of measuring κ3 and κ4 at
1σ C:L:, at the ILC and CLIC. The yellow region is perturba-
tively unitarity safe. As a benchmark, we indicate the region that
is favored by first-order EWPT in the SMEFTwith theO6 andO8

operators turned on (the discussions are presented in Appendix C)
in orange.

6By marginalizing κ3, the circled ILC1 and ILC2 regions with
κ3 ∼ 1 − 2 and κ4 > 60 yield a κ4 falling outside the unitarity
bound. Also, these regions could be excluded by combining with
the single Higgs productions, e.g., the Zh and ννh ones, at future
lepton colliders [39]. So, we will not consider it here.
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V. CONCLUSION

The Higgs self-interactions play a crucial role for
exploring the underlying mechanisms of electroweak sym-
metry breaking and the nature of the phase transition
involved. Motivated by this, we proposed to probe the
quartic Higgs self-interaction at lepton and hadron col-
liders, via the di-Higgs productions. We analyzed the
corrections of the quartic Higgs coupling to the VBF
and VBA di-Higgs productions at the one-loop level.
Such an effect is independent of the gauge fixing, if the
quartic Higgs coupling is decoupled from other couplings
in the given context. In the calculations, we ignored the
one-loop diagrams with no quartic Higgs coupling
involved. These diagrams yield a NLO impact only for
the sensitivity analysis of κ3 and κ4 at lepton colliders, after
a proper renormalization for λ3. One notable observation in
the analysis is that the observables from the VBF and VBA

di-Higgs productions probe the κ3 − κ4 plane in two clearly
separated directions, at both lepton and hadron colliders.
A combination of these two channels therefore is important
for optimizing the collider sensitivities. With this guideline,
we analyzed the ILC and CLIC sensitivities. We are able to
extract the sensitivity on κ4, which is nearly independent of
the λ3 renormalization scheme at the linear level, by
marginalizing the cubic Higgs coupling in the χ2 analysis.
Then, in a λ3 renormalization scheme in which the non-
linear effects are almost minimized, we found that the ILC
has the potential to measure the quartic Higgs coupling,
normalized by its SM value, with a marginalized precision
of ∼!25 in the ILC1 scenario and ∼!20 in the ILC2
scenario at 1σ C:L.
The collider sensitivities could be further improved by

utilizing the di-Higgs invariant mass distribution of the di-
Higgs events. In the analysis pursued, we have assumed
that new physics does not significantly modify the kin-
ematics of the SM di-Higgs events. To look into this further,
we show the SM cross sections and the values of C3a and
C4b in the di-Higgs invariant mass bins of e−eþ → Zhh and
e−eþ → ννhh at ILC, in Tables IV and V of Appendix D,
respectively. It is easy to see, though the C41

C31
defined in the

Zhh channel is not very sensitive to the mhh values, a
relatively small mhh value yields a more negative C41

C31
in the

ννhh channel and hence a larger jΔCijj between the two
channels. Additionally, both channels become more sensi-
tive to κ3 in the low mhh region, with a larger jC31j value.
According to Eq. (2.11), therefore, the collider sensitivities
could be further improved by requiring relatively smallmhh
for the di-Higgs events. Furthermore, if Eq. (2.12) is
applied to the pair of observables Zhh at 500 GeV and
ννhh at 1 TeV, we can check

!
σZhh
CZhh
31

"
2

≫
!
σννhh
Cννhh
31

"
2

: ð5:1Þ

FIG. 8. The ILC sensitivities of measuring κ3 and κ4 at 1σ C.L., in different λ3 renormalization schemes, with and without the
nonlinear terms in Eq. (2.6). In the right panel, the sensitivities to probe κ3 and κ4 are presented with κ4 and κ3 marginalized, respectively.

FIG. 9. The renormalization scheme dependence of the sensi-
tivities of measuring κ4 in the ILC2 scenario. The purple dashed
and black dotted-dashed vertical lines correspond to scheme 1
and scheme 2, respectively. The shaded light blue region
represents the sensitivity at the linear level, and the yellow
region includes the nonlinear terms in Eq. (2.6) in addition.
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In both scenarios, the ILC yields an exclusion limit
for κ3 and κ4 well within the perturbative regime.6 This
can be understood, since the ILC sensitivities benefit a
lot from:

(i) the combination of the Zhh and ννhh observables,
which are characterized by relatively large jΔCijj
values of Oð10−2Þ

(ii) the good precisions for measuring the Zhh at
500 GeV (almost maximized cross section, high
luminosity) and the ννhh at 1 TeV (large cross
section, high luminosity).

The purple circle represents the CLIC sensitivities by
combining the measurements of Zhh at 1.4 GeV and
ννhh at 1.4 and 3 TeV. As a comparison, it is difficult
for the CLIC to reach an exclusion limit for κ4 within the
perturbative regime. Its sensitivities suffer from both the
suppressed Zhh cross section at a higher beam energy scale
and the relatively low luminosity.
Given its potential in probing the Higgs self-interactions,

let us look into the ILC analysis and sensitivities in more
detail. In Fig. 8, we present the ILC sensitivities in both
scheme 1 and scheme 2 of the λ3 renormalization, with and
without the nonlinear terms in Eq. (2.6). At the linear level,
the exclusion contours at the κ3 − κ4 plane are an ellipse
with the major axis being close to the κ4 direction. As is
indicated in the left panel, the change from scheme 1 to
scheme 2 yields a counterclockwise rotation for the
exclusion contours. The nonlinear terms deform these
ellipses. Compared to scheme 2, the ellipse orientation in
scheme 1 restricts κ3 to be smaller and makes the nonlinear
effects less important. In the right panel, the sensitivities to
probe κ3 and κ4 are shown by marginalizing κ4 and κ3,
respectively, in the χ2 fit. The κ3 sensitivity depends strongly
on the λ3 renormalization scheme by definition, while the κ4
sensitivity is nearly scheme independent at the linear level, as
we advertised in Sec. II. The scheme dependence is mainly
introduced via the nonlinear terms in Eq. (2.6) in this context.
The allowed ranges for κ4 can then vary by a few percent
between scheme 1 and scheme 2.

To illustrate the scheme dependence more clearly, we
present in Fig. 9 the κ4 sensitivity in the ILC2 scenario for
a wide range of the renormalization scale μ, say, from 50
to 500 GeV. The difference between the yellow and the
light blue regions shows the scheme dependence intro-
duced via nonlinear terms in Eq. (2.6). Scheme 1 turns out
to yield the almost minimal discrepancy between the
linear and nonlinear results. For a smaller or larger
renormalization scale, the constrained region shifts
downward, yielding a less positive upper limit and a
more negative lower limit. In a scenario with lower
sensitivities, say ILC1, the nonlinear effects would be
more significant.
In all, the ILC has a potential to probe jκ4j as small as

∼25 in the ILC1 scenario and ∼20 in the ILC2 scenario,
respectively, at 1σ C:L:, in a λ3 renormalization scheme in
which nonlinear effects are minimized. Such a sensitivity is
comparable to the one that could be achieved by measuring
the tri-Higgs production at a high-luminosity future hadron
collider, say, 30 ab−1@100 TeV [16,17].

TABLE III. Projected precision of the di-Higgs measurements at 1σ C.L., at the ILC and CLIC. The numbers in
red are obtained by naively rescaling the signal rates.

δσ=σSM ILC CLIC

Operating
scenarios 500 GeV, 4 ab−1 1 TeV, 2.5 ab−1 [13] 1 TeV, 8 ab−1 [37] 1.4 TeV, 1.5 ab−1 3TeV, 3 ab−1 [38]

Zhh 15% [13] 22.5% [13] 12.6% [13] 30% [13] …
ννhh … 16.8% [13] 9.4% [13] 44% [14] 16.3% [14]

FIG. 7. The sensitivity contours of measuring κ3 and κ4 at
1σ C:L:, at the ILC and CLIC. The yellow region is perturba-
tively unitarity safe. As a benchmark, we indicate the region that
is favored by first-order EWPT in the SMEFTwith theO6 andO8

operators turned on (the discussions are presented in Appendix C)
in orange.

6By marginalizing κ3, the circled ILC1 and ILC2 regions with
κ3 ∼ 1 − 2 and κ4 > 60 yield a κ4 falling outside the unitarity
bound. Also, these regions could be excluded by combining with
the single Higgs productions, e.g., the Zh and ννh ones, at future
lepton colliders [39]. So, we will not consider it here.
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the hhjj and tthh ones are roughly 80–90 fb; the Vhh ones
are several femtobarns [35,36]. For illustration purposes,
we will focus on the VBA and VBF productions.
Table II shows the leading-order cross sections in the SM

and the coefficients defined in Eq. (2.6) for the VBA and
VBF productions, at 14 and 100 TeV. Here, we find the
contribution from the VBF productions at hadron colliders
by imposing a set of universal VBF selection cuts as [9]

pT;j > 25 GeV; ΔRjj > 4; Mjj > 600 GeV

ð3:1Þ

except a rapidity cut jηjj < 4.5 at 14 TeV and jηjj < 10 at
100 TeV. The cubic Higgs coupling is renormalized in
scheme 1.
Similar to the analyses at lepton colliders, the knowledge

on jΔCijj is helpful for optimizing the sensitivities at the
hadron collider to probe the quartic Higgs coupling. In
Fig. 6, we show ΔCij for the observable pairs, which are
available in the Zhh and jjhh channels.5 We use the red and
blue colors to denote the Zhh and the jjhh as Oi,
respectively. The lines of different styles (solid, dashed,
and dotted-dashed) represent different reference observ-
ablesOj for a givenOi. Then, we show the

ffiffiffi
s

p
dependence

of ΔCij by varying
ffiffiffi
s

p
from 14 to 100 TeV for Oi. The two

observables, if arising from the Zhh=Whh and the jjhh at
the hadron collider separately, result in a jΔCijj of
Oð10−2Þ. This magnitude is several times or even one
order larger than that obtained in the cases in which both
observables are from the Zhh=Whh channels or both are
from the jjhh channel and is not very sensitive to the
value of

ffiffiffi
s

p
. These observations are similar to what we

had at lepton colliders. So, a combination of such a pair of
observables is very important for optimizing the

sensitivities to probe κ4 at hadron colliders. This conclusion
can be generalized to the combination of two observables
that are defined at lepton colliders and hadron colliders,
separately. As is shown in Fig. 6, the jjhh and the Zhh at
hadron colliders can result in a jΔCijj of Oð10−2Þ as well,
by pairing with the Zhh and the ννhh at lepton colliders,
respectively.

IV. COLLIDER SENSITIVITIES
TO THE HIGGS SELF-COUPLINGS

In this section, we reinterpret the projected precisions of
the di-Higgs measurements as the sensitivities to probe
both the cubic and quartic Higgs couplings. At hadron
colliders, the sensitivity of measuring the VBA production
at the LHC is poor [12], and the study on a future collider is
absent. The VBF production, on the other hand, is not quite
sensitive to the cubic Higgs coupling [8,9], and new
analysis strategies have yet to be developed. So, we will
focus on the analysis at lepton colliders. For simplification,
we assume that the Higgs self-couplings only yield
negligible modifications for the signal efficiency of the
SM contributions. Then, the projected precisions as sum-
marized in Table III can be directly applied to our analysis
below, using the parametrization in Eq. (2.6). For the
convenience of discussions, we define two ILC scenarios:

(i) ILC1¼ ILC (500 GeV, 4 ab−1þ1TeV, 2.5 ab−1

[13]);
(ii) ILC2 ¼ ILC (500 GeV, 4 ab−1 þ 1 TeV, 8 ab−1

[37]).
Figure 7 shows the sensitivity contours of measuring κ3

and κ4 at 1σ C:L:, at the ILC and CLIC. Here, the cubic
Higgs coupling is renormalized in scheme 1. In this figure,
the yellow region is defined by the perturbative unitarity
bound of the hh → hh scattering (the derivation is pre-
sented in Appendix B). This unitarity requirement sets a
range between ∼%65 for κ4, within which κ3 is allowed to
vary from∼ −9 to∼7. The brown and blue circles represent
the sensitivities of the ILC1 and the ILC2, respectively.

FIG. 6. ΔCij for the observable pairs fOi;Ojg available in the pp → Zhh and pp → jjhh channels. Here,Oj represents the reference
observable, with

ffiffiffi
s

p
varied for Oi from 14 to 100 TeV.

5The Zhh and Whh productions share similar dependence on
κ3 and κ4, as is indicated in Table II. Considering this, we do not
show the Whh-related curves in Fig. 6.
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the hhjj and tthh ones are roughly 80–90 fb; the Vhh ones
are several femtobarns [35,36]. For illustration purposes,
we will focus on the VBA and VBF productions.
Table II shows the leading-order cross sections in the SM

and the coefficients defined in Eq. (2.6) for the VBA and
VBF productions, at 14 and 100 TeV. Here, we find the
contribution from the VBF productions at hadron colliders
by imposing a set of universal VBF selection cuts as [9]

pT;j > 25 GeV; ΔRjj > 4; Mjj > 600 GeV

ð3:1Þ

except a rapidity cut jηjj < 4.5 at 14 TeV and jηjj < 10 at
100 TeV. The cubic Higgs coupling is renormalized in
scheme 1.
Similar to the analyses at lepton colliders, the knowledge

on jΔCijj is helpful for optimizing the sensitivities at the
hadron collider to probe the quartic Higgs coupling. In
Fig. 6, we show ΔCij for the observable pairs, which are
available in the Zhh and jjhh channels.5 We use the red and
blue colors to denote the Zhh and the jjhh as Oi,
respectively. The lines of different styles (solid, dashed,
and dotted-dashed) represent different reference observ-
ablesOj for a givenOi. Then, we show the

ffiffiffi
s

p
dependence

of ΔCij by varying
ffiffiffi
s

p
from 14 to 100 TeV for Oi. The two

observables, if arising from the Zhh=Whh and the jjhh at
the hadron collider separately, result in a jΔCijj of
Oð10−2Þ. This magnitude is several times or even one
order larger than that obtained in the cases in which both
observables are from the Zhh=Whh channels or both are
from the jjhh channel and is not very sensitive to the
value of

ffiffiffi
s

p
. These observations are similar to what we

had at lepton colliders. So, a combination of such a pair of
observables is very important for optimizing the

sensitivities to probe κ4 at hadron colliders. This conclusion
can be generalized to the combination of two observables
that are defined at lepton colliders and hadron colliders,
separately. As is shown in Fig. 6, the jjhh and the Zhh at
hadron colliders can result in a jΔCijj of Oð10−2Þ as well,
by pairing with the Zhh and the ννhh at lepton colliders,
respectively.

IV. COLLIDER SENSITIVITIES
TO THE HIGGS SELF-COUPLINGS

In this section, we reinterpret the projected precisions of
the di-Higgs measurements as the sensitivities to probe
both the cubic and quartic Higgs couplings. At hadron
colliders, the sensitivity of measuring the VBA production
at the LHC is poor [12], and the study on a future collider is
absent. The VBF production, on the other hand, is not quite
sensitive to the cubic Higgs coupling [8,9], and new
analysis strategies have yet to be developed. So, we will
focus on the analysis at lepton colliders. For simplification,
we assume that the Higgs self-couplings only yield
negligible modifications for the signal efficiency of the
SM contributions. Then, the projected precisions as sum-
marized in Table III can be directly applied to our analysis
below, using the parametrization in Eq. (2.6). For the
convenience of discussions, we define two ILC scenarios:

(i) ILC1¼ ILC (500 GeV, 4 ab−1þ1TeV, 2.5 ab−1

[13]);
(ii) ILC2 ¼ ILC (500 GeV, 4 ab−1 þ 1 TeV, 8 ab−1

[37]).
Figure 7 shows the sensitivity contours of measuring κ3

and κ4 at 1σ C:L:, at the ILC and CLIC. Here, the cubic
Higgs coupling is renormalized in scheme 1. In this figure,
the yellow region is defined by the perturbative unitarity
bound of the hh → hh scattering (the derivation is pre-
sented in Appendix B). This unitarity requirement sets a
range between ∼%65 for κ4, within which κ3 is allowed to
vary from∼ −9 to∼7. The brown and blue circles represent
the sensitivities of the ILC1 and the ILC2, respectively.

FIG. 6. ΔCij for the observable pairs fOi;Ojg available in the pp → Zhh and pp → jjhh channels. Here,Oj represents the reference
observable, with

ffiffiffi
s

p
varied for Oi from 14 to 100 TeV.

5The Zhh and Whh productions share similar dependence on
κ3 and κ4, as is indicated in Table II. Considering this, we do not
show the Whh-related curves in Fig. 6.
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• The sensitivity of κ4 is much better 
on ILC than CLIC 

• ILC can measure both Zhh and vvhh 
to a good precison, combination of 
which gives large |𝛥Cij| 

In both scenarios, the ILC yields an exclusion limit
for κ3 and κ4 well within the perturbative regime.6 This
can be understood, since the ILC sensitivities benefit a
lot from:

(i) the combination of the Zhh and ννhh observables,
which are characterized by relatively large jΔCijj
values of Oð10−2Þ

(ii) the good precisions for measuring the Zhh at
500 GeV (almost maximized cross section, high
luminosity) and the ννhh at 1 TeV (large cross
section, high luminosity).

The purple circle represents the CLIC sensitivities by
combining the measurements of Zhh at 1.4 GeV and
ννhh at 1.4 and 3 TeV. As a comparison, it is difficult
for the CLIC to reach an exclusion limit for κ4 within the
perturbative regime. Its sensitivities suffer from both the
suppressed Zhh cross section at a higher beam energy scale
and the relatively low luminosity.
Given its potential in probing the Higgs self-interactions,

let us look into the ILC analysis and sensitivities in more
detail. In Fig. 8, we present the ILC sensitivities in both
scheme 1 and scheme 2 of the λ3 renormalization, with and
without the nonlinear terms in Eq. (2.6). At the linear level,
the exclusion contours at the κ3 − κ4 plane are an ellipse
with the major axis being close to the κ4 direction. As is
indicated in the left panel, the change from scheme 1 to
scheme 2 yields a counterclockwise rotation for the
exclusion contours. The nonlinear terms deform these
ellipses. Compared to scheme 2, the ellipse orientation in
scheme 1 restricts κ3 to be smaller and makes the nonlinear
effects less important. In the right panel, the sensitivities to
probe κ3 and κ4 are shown by marginalizing κ4 and κ3,
respectively, in the χ2 fit. The κ3 sensitivity depends strongly
on the λ3 renormalization scheme by definition, while the κ4
sensitivity is nearly scheme independent at the linear level, as
we advertised in Sec. II. The scheme dependence is mainly
introduced via the nonlinear terms in Eq. (2.6) in this context.
The allowed ranges for κ4 can then vary by a few percent
between scheme 1 and scheme 2.

To illustrate the scheme dependence more clearly, we
present in Fig. 9 the κ4 sensitivity in the ILC2 scenario for
a wide range of the renormalization scale μ, say, from 50
to 500 GeV. The difference between the yellow and the
light blue regions shows the scheme dependence intro-
duced via nonlinear terms in Eq. (2.6). Scheme 1 turns out
to yield the almost minimal discrepancy between the
linear and nonlinear results. For a smaller or larger
renormalization scale, the constrained region shifts
downward, yielding a less positive upper limit and a
more negative lower limit. In a scenario with lower
sensitivities, say ILC1, the nonlinear effects would be
more significant.
In all, the ILC has a potential to probe jκ4j as small as

∼25 in the ILC1 scenario and ∼20 in the ILC2 scenario,
respectively, at 1σ C:L:, in a λ3 renormalization scheme in
which nonlinear effects are minimized. Such a sensitivity is
comparable to the one that could be achieved by measuring
the tri-Higgs production at a high-luminosity future hadron
collider, say, 30 ab−1@100 TeV [16,17].

TABLE III. Projected precision of the di-Higgs measurements at 1σ C.L., at the ILC and CLIC. The numbers in
red are obtained by naively rescaling the signal rates.

δσ=σSM ILC CLIC

Operating
scenarios 500 GeV, 4 ab−1 1 TeV, 2.5 ab−1 [13] 1 TeV, 8 ab−1 [37] 1.4 TeV, 1.5 ab−1 3TeV, 3 ab−1 [38]

Zhh 15% [13] 22.5% [13] 12.6% [13] 30% [13] …
ννhh … 16.8% [13] 9.4% [13] 44% [14] 16.3% [14]

FIG. 7. The sensitivity contours of measuring κ3 and κ4 at
1σ C:L:, at the ILC and CLIC. The yellow region is perturba-
tively unitarity safe. As a benchmark, we indicate the region that
is favored by first-order EWPT in the SMEFTwith theO6 andO8

operators turned on (the discussions are presented in Appendix C)
in orange.

6By marginalizing κ3, the circled ILC1 and ILC2 regions with
κ3 ∼ 1 − 2 and κ4 > 60 yield a κ4 falling outside the unitarity
bound. Also, these regions could be excluded by combining with
the single Higgs productions, e.g., the Zh and ννh ones, at future
lepton colliders [39]. So, we will not consider it here.
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V. CONCLUSION

The Higgs self-interactions play a crucial role for
exploring the underlying mechanisms of electroweak sym-
metry breaking and the nature of the phase transition
involved. Motivated by this, we proposed to probe the
quartic Higgs self-interaction at lepton and hadron col-
liders, via the di-Higgs productions. We analyzed the
corrections of the quartic Higgs coupling to the VBF
and VBA di-Higgs productions at the one-loop level.
Such an effect is independent of the gauge fixing, if the
quartic Higgs coupling is decoupled from other couplings
in the given context. In the calculations, we ignored the
one-loop diagrams with no quartic Higgs coupling
involved. These diagrams yield a NLO impact only for
the sensitivity analysis of κ3 and κ4 at lepton colliders, after
a proper renormalization for λ3. One notable observation in
the analysis is that the observables from the VBF and VBA

di-Higgs productions probe the κ3 − κ4 plane in two clearly
separated directions, at both lepton and hadron colliders.
A combination of these two channels therefore is important
for optimizing the collider sensitivities. With this guideline,
we analyzed the ILC and CLIC sensitivities. We are able to
extract the sensitivity on κ4, which is nearly independent of
the λ3 renormalization scheme at the linear level, by
marginalizing the cubic Higgs coupling in the χ2 analysis.
Then, in a λ3 renormalization scheme in which the non-
linear effects are almost minimized, we found that the ILC
has the potential to measure the quartic Higgs coupling,
normalized by its SM value, with a marginalized precision
of ∼!25 in the ILC1 scenario and ∼!20 in the ILC2
scenario at 1σ C:L.
The collider sensitivities could be further improved by

utilizing the di-Higgs invariant mass distribution of the di-
Higgs events. In the analysis pursued, we have assumed
that new physics does not significantly modify the kin-
ematics of the SM di-Higgs events. To look into this further,
we show the SM cross sections and the values of C3a and
C4b in the di-Higgs invariant mass bins of e−eþ → Zhh and
e−eþ → ννhh at ILC, in Tables IV and V of Appendix D,
respectively. It is easy to see, though the C41

C31
defined in the

Zhh channel is not very sensitive to the mhh values, a
relatively small mhh value yields a more negative C41

C31
in the

ννhh channel and hence a larger jΔCijj between the two
channels. Additionally, both channels become more sensi-
tive to κ3 in the low mhh region, with a larger jC31j value.
According to Eq. (2.11), therefore, the collider sensitivities
could be further improved by requiring relatively smallmhh
for the di-Higgs events. Furthermore, if Eq. (2.12) is
applied to the pair of observables Zhh at 500 GeV and
ννhh at 1 TeV, we can check

!
σZhh
CZhh
31

"
2

≫
!
σννhh
Cννhh
31

"
2

: ð5:1Þ

FIG. 8. The ILC sensitivities of measuring κ3 and κ4 at 1σ C.L., in different λ3 renormalization schemes, with and without the
nonlinear terms in Eq. (2.6). In the right panel, the sensitivities to probe κ3 and κ4 are presented with κ4 and κ3 marginalized, respectively.

FIG. 9. The renormalization scheme dependence of the sensi-
tivities of measuring κ4 in the ILC2 scenario. The purple dashed
and black dotted-dashed vertical lines correspond to scheme 1
and scheme 2, respectively. The shaded light blue region
represents the sensitivity at the linear level, and the yellow
region includes the nonlinear terms in Eq. (2.6) in addition.
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V. CONCLUSION

The Higgs self-interactions play a crucial role for
exploring the underlying mechanisms of electroweak sym-
metry breaking and the nature of the phase transition
involved. Motivated by this, we proposed to probe the
quartic Higgs self-interaction at lepton and hadron col-
liders, via the di-Higgs productions. We analyzed the
corrections of the quartic Higgs coupling to the VBF
and VBA di-Higgs productions at the one-loop level.
Such an effect is independent of the gauge fixing, if the
quartic Higgs coupling is decoupled from other couplings
in the given context. In the calculations, we ignored the
one-loop diagrams with no quartic Higgs coupling
involved. These diagrams yield a NLO impact only for
the sensitivity analysis of κ3 and κ4 at lepton colliders, after
a proper renormalization for λ3. One notable observation in
the analysis is that the observables from the VBF and VBA

di-Higgs productions probe the κ3 − κ4 plane in two clearly
separated directions, at both lepton and hadron colliders.
A combination of these two channels therefore is important
for optimizing the collider sensitivities. With this guideline,
we analyzed the ILC and CLIC sensitivities. We are able to
extract the sensitivity on κ4, which is nearly independent of
the λ3 renormalization scheme at the linear level, by
marginalizing the cubic Higgs coupling in the χ2 analysis.
Then, in a λ3 renormalization scheme in which the non-
linear effects are almost minimized, we found that the ILC
has the potential to measure the quartic Higgs coupling,
normalized by its SM value, with a marginalized precision
of ∼!25 in the ILC1 scenario and ∼!20 in the ILC2
scenario at 1σ C:L.
The collider sensitivities could be further improved by

utilizing the di-Higgs invariant mass distribution of the di-
Higgs events. In the analysis pursued, we have assumed
that new physics does not significantly modify the kin-
ematics of the SM di-Higgs events. To look into this further,
we show the SM cross sections and the values of C3a and
C4b in the di-Higgs invariant mass bins of e−eþ → Zhh and
e−eþ → ννhh at ILC, in Tables IV and V of Appendix D,
respectively. It is easy to see, though the C41

C31
defined in the

Zhh channel is not very sensitive to the mhh values, a
relatively small mhh value yields a more negative C41

C31
in the

ννhh channel and hence a larger jΔCijj between the two
channels. Additionally, both channels become more sensi-
tive to κ3 in the low mhh region, with a larger jC31j value.
According to Eq. (2.11), therefore, the collider sensitivities
could be further improved by requiring relatively smallmhh
for the di-Higgs events. Furthermore, if Eq. (2.12) is
applied to the pair of observables Zhh at 500 GeV and
ννhh at 1 TeV, we can check
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FIG. 8. The ILC sensitivities of measuring κ3 and κ4 at 1σ C.L., in different λ3 renormalization schemes, with and without the
nonlinear terms in Eq. (2.6). In the right panel, the sensitivities to probe κ3 and κ4 are presented with κ4 and κ3 marginalized, respectively.

FIG. 9. The renormalization scheme dependence of the sensi-
tivities of measuring κ4 in the ILC2 scenario. The purple dashed
and black dotted-dashed vertical lines correspond to scheme 1
and scheme 2, respectively. The shaded light blue region
represents the sensitivity at the linear level, and the yellow
region includes the nonlinear terms in Eq. (2.6) in addition.
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corrections of the quartic Higgs coupling to the VBF
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in the given context. In the calculations, we ignored the
one-loop diagrams with no quartic Higgs coupling
involved. These diagrams yield a NLO impact only for
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a proper renormalization for λ3. One notable observation in
the analysis is that the observables from the VBF and VBA

di-Higgs productions probe the κ3 − κ4 plane in two clearly
separated directions, at both lepton and hadron colliders.
A combination of these two channels therefore is important
for optimizing the collider sensitivities. With this guideline,
we analyzed the ILC and CLIC sensitivities. We are able to
extract the sensitivity on κ4, which is nearly independent of
the λ3 renormalization scheme at the linear level, by
marginalizing the cubic Higgs coupling in the χ2 analysis.
Then, in a λ3 renormalization scheme in which the non-
linear effects are almost minimized, we found that the ILC
has the potential to measure the quartic Higgs coupling,
normalized by its SM value, with a marginalized precision
of ∼!25 in the ILC1 scenario and ∼!20 in the ILC2
scenario at 1σ C:L.
The collider sensitivities could be further improved by

utilizing the di-Higgs invariant mass distribution of the di-
Higgs events. In the analysis pursued, we have assumed
that new physics does not significantly modify the kin-
ematics of the SM di-Higgs events. To look into this further,
we show the SM cross sections and the values of C3a and
C4b in the di-Higgs invariant mass bins of e−eþ → Zhh and
e−eþ → ννhh at ILC, in Tables IV and V of Appendix D,
respectively. It is easy to see, though the C41

C31
defined in the

Zhh channel is not very sensitive to the mhh values, a
relatively small mhh value yields a more negative C41

C31
in the

ννhh channel and hence a larger jΔCijj between the two
channels. Additionally, both channels become more sensi-
tive to κ3 in the low mhh region, with a larger jC31j value.
According to Eq. (2.11), therefore, the collider sensitivities
could be further improved by requiring relatively smallmhh
for the di-Higgs events. Furthermore, if Eq. (2.12) is
applied to the pair of observables Zhh at 500 GeV and
ννhh at 1 TeV, we can check
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FIG. 8. The ILC sensitivities of measuring κ3 and κ4 at 1σ C.L., in different λ3 renormalization schemes, with and without the
nonlinear terms in Eq. (2.6). In the right panel, the sensitivities to probe κ3 and κ4 are presented with κ4 and κ3 marginalized, respectively.

FIG. 9. The renormalization scheme dependence of the sensi-
tivities of measuring κ4 in the ILC2 scenario. The purple dashed
and black dotted-dashed vertical lines correspond to scheme 1
and scheme 2, respectively. The shaded light blue region
represents the sensitivity at the linear level, and the yellow
region includes the nonlinear terms in Eq. (2.6) in addition.
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FIG. 8. The ILC sensitivities of measuring κ3 and κ4 at 1σ C.L., in different λ3 renormalization schemes, with and without the
nonlinear terms in Eq. (2.6). In the right panel, the sensitivities to probe κ3 and κ4 are presented with κ4 and κ3 marginalized, respectively.

FIG. 9. The renormalization scheme dependence of the sensi-
tivities of measuring κ4 in the ILC2 scenario. The purple dashed
and black dotted-dashed vertical lines correspond to scheme 1
and scheme 2, respectively. The shaded light blue region
represents the sensitivity at the linear level, and the yellow
region includes the nonlinear terms in Eq. (2.6) in addition.

PROBING THE QUARTIC HIGGS BOSON SELF-INTERACTION PHYS. REV. D 98, 093004 (2018)

093004-9

marginal sensitivities



ILC Sensitivities and scheme dependence
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scheme
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scheme independent (some dep) at 
linear (nonlinear) level
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liders, via the di-Higgs productions. We analyzed the
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Such an effect is independent of the gauge fixing, if the
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involved. These diagrams yield a NLO impact only for
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the λ3 renormalization scheme at the linear level, by
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FIG. 8. The ILC sensitivities of measuring κ3 and κ4 at 1σ C.L., in different λ3 renormalization schemes, with and without the
nonlinear terms in Eq. (2.6). In the right panel, the sensitivities to probe κ3 and κ4 are presented with κ4 and κ3 marginalized, respectively.

FIG. 9. The renormalization scheme dependence of the sensi-
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and black dotted-dashed vertical lines correspond to scheme 1
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represents the sensitivity at the linear level, and the yellow
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V. CONCLUSION

The Higgs self-interactions play a crucial role for
exploring the underlying mechanisms of electroweak sym-
metry breaking and the nature of the phase transition
involved. Motivated by this, we proposed to probe the
quartic Higgs self-interaction at lepton and hadron col-
liders, via the di-Higgs productions. We analyzed the
corrections of the quartic Higgs coupling to the VBF
and VBA di-Higgs productions at the one-loop level.
Such an effect is independent of the gauge fixing, if the
quartic Higgs coupling is decoupled from other couplings
in the given context. In the calculations, we ignored the
one-loop diagrams with no quartic Higgs coupling
involved. These diagrams yield a NLO impact only for
the sensitivity analysis of κ3 and κ4 at lepton colliders, after
a proper renormalization for λ3. One notable observation in
the analysis is that the observables from the VBF and VBA

di-Higgs productions probe the κ3 − κ4 plane in two clearly
separated directions, at both lepton and hadron colliders.
A combination of these two channels therefore is important
for optimizing the collider sensitivities. With this guideline,
we analyzed the ILC and CLIC sensitivities. We are able to
extract the sensitivity on κ4, which is nearly independent of
the λ3 renormalization scheme at the linear level, by
marginalizing the cubic Higgs coupling in the χ2 analysis.
Then, in a λ3 renormalization scheme in which the non-
linear effects are almost minimized, we found that the ILC
has the potential to measure the quartic Higgs coupling,
normalized by its SM value, with a marginalized precision
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• Dihiggs production can be used to indirectly probe quartic Higgs 
coupling. Need to consider renormalization scheme dependence 
in the interpretation of sensitivity

• Combining Zhh and vvhh channels on lepton colliders leads to 
𝛥κ4 ~ ± 20 in the optimal scenario, same order as the “direct” 
probe by trihiggs production at 100TeV pp collider 

• Future study:

• Utilize dihiggs invariant mass distribution 

• Study “indirect” probe on hadron colliders, i.e. gluon fusion; search 
for different dihiggs channels for a larger |𝛥Cij| 

• Combine “indirect probe” by dihiggs production and “direct probe” 
by trihiggs production  

14

Summary
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Cross section fit formula 
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Vector boson-associated production and vector boson-fusion production 
on both lepton and hadron colliders (            )

Δy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"XN

k¼1

a2k
σ2k

#"
1

2

XN

i;j¼1

a2i
σ2i

a2j
σ2j

$
bi
ai

−
bj
aj

%
2
#−1

vuut : ð2:10Þ

To match with the discussions on the Higgs self-
couplings, we can make replacements: ðx; yÞ → ðκ3; κ4Þ
and ðai; biÞ → ðCðiÞ

31 ; C
ðiÞ
41Þ. At the leading order, CðiÞ

31 is
scheme independent, but CðiÞ

41 is not. For any given pair of
observables Oi and Oj, we can eliminate κ3, yielding the
relation

Oi

CðiÞ
31

−
Oj

CðjÞ
31

¼
$
CðiÞ
41

CðiÞ
31

−
CðjÞ
41

CðjÞ
31

%
κ4 ≡ ΔCijκ4: ð2:11Þ

Since the left side of this equation is independent of the λ3
renormalization scheme at the leading order, ΔCij should
be nearly scheme independent, given that κ4 by definition is
a parameter independent of κ3 or λ3. Then, we are able to
obtain Δκ4 by applying Eq. (2.10), with the scheme
dependence suppressed, if all pairs of fCðiÞ

41 ; C
ðjÞ
41 g are

calculated with proper precisions. Note that the “if”
condition is important for suppressing the linear-level
scheme dependence. For example, if one were to combine
the di-Higgs productions discussed above with the single
Higgs productions in the analysis, the two-loop contribu-
tions of the quartic Higgs coupling to the latter channels
would need to be incorporated. The nonlinear terms in
Eq. (2.6), if turned on, may weaken this argument. But
the scheme dependence introduced is of next-to-next-to-
leading order (NNLO) and could be further suppressed if
the NNLO nonlinear terms, such as the ones proportional to
κ24, are properly calculated.
If there are two observables only, the formula for Δκ4 is

reduced to

Δκ4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσi=C

ðiÞ
31Þ2 þ ðσj=C

ðjÞ
31 Þ2

q

jΔCijj
: ð2:12Þ

Here, jσi=Ci
31j and jσj=C

j
31j represent the precision of

measuring κ3 via Oi and Oj, respectively, with κ4 being

turned off. An interesting observation is that a larger jΔCijj
tends to yield a higher precision for the κ4 measurement.
This can be the case when the two observables Oi and Oj

constrain the κ3 − κ4 plane in two clearly separated
directions. Below, we will show how to optimize the
measurement precision for κ4 using this guideline.

III. ANALYSES AT LEPTON
AND HADRON COLLIDERS

In this section, we calculate the one-loop contributions of
the quartic Higgs coupling in the VBF and VBA di-Higgs
productions at both lepton and hadron colliders. We use
FEYNRULE [29] to generate themodel file. The cross sections
are then calculatedwithFEYNARTS3.8 andFORMCALC9.5 [30]
using a factorization scale of mh ¼ 125 GeV, where the
LOOPTOOLS [31] is linked to calculate the loop integral. The
electroweak input parameters in the analysis are chosen as
GF ¼ 1.1663787 × 10−5 GeV−2, mZ ¼ 91.1876 GeV, and
mW ¼ 80.385 GeV [32]. For consistency checks, we com-
pare the tree-level cross sections with those given by
MADGRAPH@AMC2.3.3 [33] and CALCHEP3.6.27 [34].
Also, we have checked the values of the squared one-loop
amplitudes at some given points in the phase space by
comparing with the results calculated by hand.

FIG. 4. The leading-order cross sections in the SM, as functions
of the center-of-mass energy

ffiffiffi
s

p
. The initial states are unpolarized.

TABLE I. The leading-order SM cross sections and the parametrization of the κ3, κ4 contributions for the Zhh and ννhh di-Higgs
productions at lepton colliders. Here, the ILC beam is polarized as Pðe−; eþÞ ¼ ð−0.8; 0.3Þ at 500 GeVand Pðe−; eþÞ ¼ ð−0.8; 0.2Þ at
1 TeV.

Channels σ0 (fb) C31 C32 C41 C42 C43

ILC Zhh (500 GeV) 0.232 0.564 0.0965 −0.00517 −0.00390 −0.000810
Zhh (1 TeV) 0.166 0.350 0.0913 −0.00271 −0.00181 −0.000541
ννhh (1 TeV) 0.159 −1.20 1.10 −0.00327 0.00790 −0.00750

CLIC Zhh (1.4 TeV) 0.0833 0.263 0.0827 −0.00186 −0.00122 −0.000422
ννhh (1.4 TeV) 0.191 −0.965 0.819 −0.0024 0.00541 −0.00505
ννhh (3 TeV) 0.825 −0.645 0.488 −0.00119 0.00251 −0.00247
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Lepton collider

A. Lepton colliders

At lepton colliders, the main di-Higgs production proc-
esses include the Z-associated production eþe− → Zhh
and the VBF production eþe− → ννhh. Though they could
be kinematically turned on, the VBF production eþe− →
eþe−hh and the top pair–associated production eþe− →
tt̄hh suffer a suppression of cross section. So, we will focus
on the former two channels. Figure 4 shows their leading-
order cross sections in the SM, as functions of the center-of-
mass energy

ffiffiffi
s

p
, with an unpolarized initial state. The cross

section for the Zhh process reaches the peak at
ffiffiffi
s

p
∼

500 GeV and then slowly decreases due to an s-channel
suppression. As for the VBF production of ννhh, due to the
t-channel contributions mediated by the W boson, its cross
section keeps growing up to a few TeV. In Table I, we show
the leading-order SM cross sections and the coefficients
defined in Eq. (2.6) for these two processes, in different
collider configurations. The cubic Higgs coupling is
renormalized in scheme 1. Note that the beam polarization
does not modify the values of C3a and C4b but changes the
total cross section only.
As we demonstrated in Sec. II, the ΔCij defined in

Eq. (2.11) is independent of the λ3 renormalization scheme
at the linear level. Particularly, a larger jΔCijj tends to yield
a higher precision for the κ4 measurement, after κ3 is
marginalized. For optimizing the collider sensitivities and

potentially its configuration design, therefore, it is helpful
to have the information on jΔCijj for various observable
pairs available. In Fig. 5, we show ΔCij for the observables
available in the Zhh and ννhh channels. The dashed and
solid lines denote the cases in which the two observables
are from the same and different channels, respectively. The
red and blue colors represent different choices for the
reference observable Oj. Then, we show the

ffiffiffi
s

p
depend-

ence of ΔCij by varying
ffiffiffi
s

p
from 500 GeV to 3 TeV forOi.

Interestingly, the two observables, if arising from the Zhh
and ννhh channels separately, result in a jΔCijj ofOð10−2Þ.
This is several times or even one order larger than that
obtained in the complementary cases and is not sensitive to
the value of

ffiffiffi
s

p
. Indeed, such a pair of observables has

clearly separated degenerate directions at the κ3 − κ4 plane.
A combination of them will be very important for optimiz-
ing the sensitivities to probe κ4.

B. Hadron colliders

The main di-Higgs production processes at hadron
colliders include the gluon-fusion production (gg → hh),
the top pair–associated production (pp → t̄thh), the VBF
production (pp → hhjj), and the VBA production
(pp → Vhh, V ¼ Z, W). For all of these processes, the
cross sections increase as

ffiffiffi
s

p
increases from 14 to 100 TeV.

At 100 TeV, the gluon-fusion cross section is around 1 pb;

FIG. 5. ΔCij for the observable pairs fOi;Ojg available in the eþe− → Zhh and eþe− → ννhh channels. Here, Oj represents the
reference observable, with

ffiffiffi
s

p
varied for Oi from 500 GeV to 3 TeV.

TABLE II. The leading-order SM cross sections and the parametrization of the κ3, κ4 contributions for the Zhh=Whh and jjhh di-
Higgs productions at hadron colliders. For simplicity, we only include the contributions arising from the (anti)up and (anti)down quarks
initiated processes. Also, we require the W boson to be electrically positive in the Whh production.

Channels σ0 (fb) C31 C32 C41 C42 C43

14 TeV jjhh 1.26 −0.781 0.688 −0.00233 −0.00466 −0.00426
Zhh 0.274 0.496 0.0954 −0.00441 −0.00327 −0.000738
Whh 0.268 0.521 0.109 −0.0041 −0.00331 −0.000807

100 TeV jjhh 59.3 −0.537 0.411 −0.00123 0.00238 −0.00220
Zhh 2.95 0.454 0.091 −0.00416 −0.00293 −0.000677
Whh 2.49 0.483 0.105 −0.00386 −0.003 −0.00075
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Hadron collider

��/�0 = C313 + C32
2
3 + 4(C41 + C423 + C43

2
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µ = mh
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κ4 sensitivity from gluon fusion production
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Figure 12. Expected 1� and 2� bounds in the (c̄6,c̄8) plane at 14 (left) and 100 TeV (right),
assuming c̄true6 = c̄true8 = 0 (denoted by red dots).

4.3 Scenario 2

This scenario allows us to discuss the most important phenomenological results of this
work, i.e., the expected constraints on c̄6 and c̄8 (3 and 4) that can be obtained via
double Higgs production at HL-LHC and a 100 TeV future collider. Assuming c̄true8 = 0,
these constraints are shown in the left and right plot of Fig. 12, respectively. We show 2�

results and again the effect due to the “flat µ-bin” assumption, the red area corresponds to
the region where the cross-section is negative (cf. left plots in Fig. 5). As already mentioned,
no phenomenological study can be performed in this configuration. Similarly, for a given
(c̄6, c̄8), predictions for some bins can be negative, while positive for others; we retain the
information only for those bins where the cross-section is predicted to be positive. As can
be seen from fig. 12, at HL-LHC the presence of c̄8 contributions is not sizeably affecting
the result in (4.1), obtained under the assumption c̄8 = 0. On the other hand, no sensible
constraints can be obtained at the HL-LHC on the c̄8 parameter. In other words, with a
complete calculation and taking into account selection cuts and background effects, we find
a much less optimistic result than in Ref. [62].

Results at 100 TeV collisions are qualitatively very different than at the HL-LHC. The
bounds on c̄6 are affected by the presence on c̄8. As can be seen from the right plot of
Fig. 12, the bounds are 0.4 < 3 = 1 + c̄6 < 2, which is less precise than (4.2), obtained
under the assumption c̄8 = 0. Although most of the perturbativity c̄8 region is not excluded,
there is a clear direction in the contours of the constraints in the (c̄6, c̄8) plane.

In Figs. 13 and 14 we show the constraints that can be set in the (c̄6, c̄8) plane assuming
c̄true8 = 0 and c̄true6 = ±1, ±2, ±4 for HL-LHC and a 100 TeV collider, respectively. As can
be seen in Fig. 13, at HL-LHC for large and positive values of c̄true6 we find results very
close to c̄true6 = 0. In general, including c̄true6 negative values, we see that limits on c̄6 are
not sizeably affected by the presence of c̄8. However, sensible constraints on c̄8 cannot be
obtained at the HL-LHC. At 100 TeV, Fig. 14, (large) negative values of c̄true6 lead to strong
constraints in the (c̄6, c̄8) plane. However, we remind the reader that we do not take into
account theory and experimental systematic uncertainties. As said for the corresponding
results in Scenario 1, these results may be affected by the aforementioned uncertainties.

Last but not least, in Fig. 15 we compare the constraints obtained for c̄true6 = 0 at
100 TeV (right plot of Fig. 12) with the corresponding ones obtained following the analysis
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3 = c̄6 4 = 6c̄6 + c̄8

Borowka, Duhr, Maltoni, Pagani, Shivaji, Zhao, 
arXiv:1811.12366 [hep-ph]

Consider NLO corrections of κ4 
at two loops

Comparison with sensitivities 
from trihiggs production    
                      (depend strongly 
on b-tagging efficiency): quite 
different shapes

hhh ! b̄bb̄b��

Results from cross section fit with 
renormalization scale µ = 2mh


