

Leptoquark interpretations of $R_{D^{(*)}}$ and top quark FCNC

Peiwen Wu (吴培文)

Korea Institute for Advanced Study (KIAS)

arXiv: 1812.08484, under JHEP revision Tae Jeong Kim (Hanyang U.) Pyungwon Ko (KIAS) Jinmian Li (Sichuan U.) Jiwon Park (Hanyang U.)

> "14th Workshop on TeV Physics" Nanjing Normal University April 19-22, 2019

Outline

- Anomalies in rare *B* decays
- Leptoquark explanations of $R_{D^{(*)}}$
 - SU(2) singlet: S_1 , U_1
- Implications on top FCNC
 - tree level
 - 1-loop level
- Collider prospects
- Summary

Moriond, 2019

Anomalies in rare *B* decays, lepton Non-universality

$$R_{D^{(*)}}^{
m exp} > R_{D^{(*)}}^{
m SM}$$
 ~ 3.8 σ

$$R_{D^{(*)}} = \left. \frac{Br(B \to D^{(*)}\tau\bar{\nu})}{Br(B \to D^{(*)}l\bar{\nu})} \right|_{l \in \{e,\mu\}}$$

 $\mathcal{R}(D) = 0.307 \pm 0.037 \pm 0.016$ $\mathcal{R}(D^*) = 0.283 \pm 0.018 \pm 0.014$

$$R_D^{\rm SM} = 0.300(8), \qquad R_{D^*}^{\rm SM} = 0.257(3)$$

 $R_{K^{(st)}}^{\mathrm{exp}}\,<\,R_{K^{(st)}}^{\mathrm{SM}}\,$ ~ 2.5 σ

$$R_{K^{(*)}}^{[q_1^2, q_2^2]} = \frac{\partial \left(Br(B \to K^{(*)} \mu \mu) \right) / \partial q^2}{\partial \left(Br(B \to K^{(*)} ee) \right) / \partial q^2}$$

$$q^2 = (p_{l^+} + p_{l^-})^2$$
 SM ~ 1

 $R_K \equiv R_{K^+}^{[1,6]} = 0.846^{+0.060+0.016}_{-0.054-0.014} \text{ (LHCb)},$

$$R_{K^*} \equiv R_{K^{*0}}^{[1.1,6]} = 0.96^{+0.45}_{-0.29} \pm 0.11 \text{ (Belle)}.$$

 $R_{K^{*0}}^{[0.045,1.1]} = 0.52^{+0.36}_{-0.26} \pm 0.05 \text{ (Belle)}$

Low-energy EFT,
$$R_{D}^{(*)}$$

$$= (C_{SM}\delta_{l\tau} + C_{V_1}^l)O_{V_1}^l + C_{V_2}^lO_{V_2}^l + C_{S_1}^lO_{S_1}^l + C_{S_2}^lO_{S_2}^l + C_T^lO_T^l$$

$$= 1, 2, 3 \text{ being the neutrino generation index}$$

$$O_{V_{1}}^{l} = (\bar{c}_{L}\gamma^{\mu}b_{L})(\bar{\tau}_{L}\gamma_{\mu}\nu_{lL}), \quad O_{V_{2}}^{l} = (\bar{c}_{R}\gamma^{\mu}b_{R})(\bar{\tau}_{L}\gamma_{\mu}\nu_{lL}), O_{S_{1}}^{l} = (\bar{c}_{L}b_{R})(\bar{\tau}_{R}\nu_{lL}), \quad O_{S_{2}}^{l} = (\bar{c}_{R}b_{L})(\bar{\tau}_{R}\nu_{lL}), O_{T}^{l} = (\bar{c}_{R}\sigma^{\mu\nu}b_{L})(\bar{\tau}_{R}\sigma_{\mu\nu}\nu_{lL}).$$

LQ contributions

 $\mathcal{L}^{\mathrm{LQ}} = \mathcal{L}^{\mathrm{LQ}}_{F=0} + \mathcal{L}^{\mathrm{LQ}}_{F=-2} \,,$

$$\mathcal{L}_{F=0}^{LQ} = \left(h_{1L}^{ij} \bar{Q}_{L}^{i} \gamma_{\mu} L_{L}^{j} + h_{1R}^{ij} \bar{d}_{R}^{i} \gamma_{\mu} \ell_{R}^{j} \right) U_{1}^{\mu} + h_{3L}^{ij} \bar{Q}_{L}^{i} \boldsymbol{\sigma} \gamma_{\mu} L_{L}^{j} U_{3}^{\mu} + \left(h_{2L}^{ij} \bar{u}_{R}^{i} L_{L}^{j} + h_{2R}^{ij} \bar{Q}_{L}^{i} i \sigma_{2} \ell_{R}^{j} \right) R_{2} + \text{h.c.},$$

$$\mathcal{L}_{F=-2}^{LQ} = \left(g_{1L}^{ij} \bar{Q}_{L}^{c,j} i\sigma_{2} L_{L}^{j} + g_{1R}^{ij} \bar{u}_{R}^{c,i} \ell_{R}^{j} \right) S_{1} + g_{3L}^{ij} \bar{Q}_{L}^{c,i} i\sigma_{2} \boldsymbol{\sigma} L_{L}^{j} \boldsymbol{S}_{3} + \left(g_{2L}^{ij} \bar{d}_{R}^{c,i} \gamma_{\mu} L_{L}^{j} + g_{2R}^{ij} \bar{Q}_{L}^{c,i} \gamma_{\mu} \ell_{R}^{j} \right) V_{2}^{\mu} + \text{h.c.},$$

$$C_{\mathcal{V}_{1}}^{l} = \sum_{k=1}^{3} V_{k3} \left[\frac{g_{1L}^{kl} g_{1L}^{23*}}{2M_{S_{1}}^{2}} - \frac{g_{3L}^{kl} g_{3L}^{23*}}{2M_{S_{3}}^{2}} + \frac{h_{1L}^{2l} h_{1L}^{k3*}}{M_{U_{1}}^{2}} - \frac{h_{3L}^{2l} h_{3L}^{k3*}}{M_{U_{3}}^{2}} \right]$$

$$C_{\mathcal{V}_{2}}^{l} = 0,$$

$$C_{S_{1}}^{l} = \sum_{k=1}^{3} V_{k3} \left[-\frac{2g_{2L}^{kl} g_{2R}^{23*}}{M_{V_{2}}^{2}} - \frac{2h_{1L}^{2l} h_{1R}^{k3*}}{M_{U_{1}}^{2}} \right],$$

$$C_{S_{2}}^{l} = \sum_{k=1}^{3} V_{k3} \left[-\frac{g_{1L}^{kl} g_{1R}^{23*}}{2M_{S_{1}}^{2}} - \frac{h_{2L}^{2l} h_{2R}^{k3*}}{2M_{L_{2}}^{2}} \right],$$

$$C_{\mathcal{T}}^{l} = \sum_{k=1}^{3} V_{k3} \left[\frac{g_{1L}^{kl} g_{1R}^{23*}}{2M_{S_{1}}^{2}} - \frac{h_{2L}^{2l} h_{2R}^{k3*}}{2M_{R_{2}}^{2}} \right],$$

$$D_{\mathcal{T}}^{l} = \sum_{k=1}^{3} V_{k3} \left[\frac{g_{1L}^{kl} g_{1R}^{23*}}{8M_{S_{1}}^{2}} - \frac{h_{2L}^{2l} h_{2R}^{k3*}}{8M_{R_{2}}^{2}} \right],$$

$$D_{\mathcal{T}}^{l} = \sum_{k=1}^{3} V_{k3} \left[\frac{g_{1L}^{kl} g_{1R}^{23*}}{2M_{S_{1}}^{2}} - \frac{h_{2L}^{2l} h_{2R}^{k3*}}{8M_{R_{2}}^{2}} \right],$$

$$D_{\mathcal{T}}^{l} = \sum_{k=1}^{3} V_{k3} \left[\frac{g_{1L}^{kl} g_{1R}^{23*}}{2M_{S_{1}}^{2}} - \frac{h_{2L}^{2l} h_{2R}^{k3*}}{8M_{R_{2}}^{2}} \right],$$

Dumont et al. 1603 05248

LQ contributions

 $\mathcal{L}^{\mathrm{LQ}} = \mathcal{L}^{\mathrm{LQ}}_{F=0} + \mathcal{L}^{\mathrm{LQ}}_{F=-2} \,,$

$$\mathcal{L}_{F=0}^{LQ} = \left(h_{1L}^{ij} \bar{Q}_{L}^{i} \gamma_{\mu} L_{L}^{j} + h_{1R}^{ij} \bar{d}_{R}^{i} \gamma_{\mu} \ell_{R}^{j} \right) U_{1}^{\mu} + h_{3L}^{ij} \bar{Q}_{L}^{i} \boldsymbol{\sigma} \gamma_{\mu} L_{L}^{j} U_{3}^{\mu} + \left(h_{2L}^{ij} \bar{u}_{R}^{i} L_{L}^{j} + h_{2R}^{ij} \bar{Q}_{L}^{i} i \sigma_{2} \ell_{R}^{j} \right) R_{2} + \text{h.c.},$$

$$\mathcal{L}_{F=-2}^{LQ} = \left(g_{1L}^{ij} \bar{Q}_{L}^{c,j} i\sigma_{2} L_{L}^{j} + g_{1R}^{ij} \bar{u}_{R}^{c,i} \ell_{R}^{j} \right) S_{1} + g_{3L}^{ij} \bar{Q}_{L}^{c,i} i\sigma_{2} \boldsymbol{\sigma} L_{L}^{j} \boldsymbol{S}_{3} + \left(g_{2L}^{ij} \bar{d}_{R}^{c,i} \gamma_{\mu} L_{L}^{j} + g_{2R}^{ij} \bar{Q}_{L}^{c,i} \gamma_{\mu} \ell_{R}^{j} \right) V_{2}^{\mu} + \text{h.c.},$$

Angelescu et al, 1808.08179

nerica	l fit	$m_{LQ} = 1 \text{ TeV}$	Dumont <i>et al,</i> 1603.05248
Leptoquark		$\bar{B} \to D^{(*)} \tau \bar{\nu}$	$\bar{B} \to X_s \nu \bar{\nu}$
S_1	1.64 $0.19 < g_{1L}^{33}g_1^2$ 1.04	$\begin{aligned} -0.87 &< g_{1L}^{33} g_{1R}^{23*} < -0.54 \\ &< g_{1L}^{3i} g_{1R}^{23*} < 1.81 (i = 1, 2) \\ _{L}^{3*} &< 0.48, -5.59 < g_{1L}^{33} g_{1L}^{23*} < -5.87 \\ &< g_{1L}^{3i} g_{1L}^{23*} < 1.67 (i = 1, 2) \end{aligned}$	$ g_{1L}^{3i}g_{1L}^{2j*} \lesssim 0.15$
$oldsymbol{S}_3$	$0.19 < g_{3L}^{33} g_3^2$ 1.04	$\begin{aligned} & \overset{3*}{_{L}} < 0.48, \ -5.59 < g_{3L}^{33} g_{3L}^{23*} < -5.87 \\ & < g_{3L}^{3i} g_{1L}^{23*} < 1.67 (i=1,2) \end{aligned}$	$ g_{3L}^{3i}g_{3L}^{2j*} \lesssim 0.15$
R_2	1.	$64 < \left \operatorname{Im}(h_{2L}^{2i} h_{2R}^{33*}) \right < 1.81$	-
V_2	g_{21}^{3}	$_{L}g_{2R}^{23*}$: no region within 2σ	$ g_{2L}^{3i}g_{2L}^{2j*} \lesssim 0.07$
U_1	$0.10 < h_{1L}^{23} h_1^3$ $0.52 \cdot h_1^{22}$	$\begin{aligned} & h_L^{3*} < 0.24, -2.94 < h_{1L}^{23} h_{1L}^{33*} < -2.86 \\ & < h_{1L}^{2i} h_{1L}^{33*} < 0.84 (i=1,2) \\ & h_{1R}^{33*}: \text{ no region within } 2\sigma \end{aligned}$	0
$oldsymbol{U}_3$	$0.10 < h_{3L}^{23} h_3^3$ $0.52 \cdot$	$\begin{aligned} & \overset{3*}{_{L}} < 0.24, \ -2.94 < h^{23}_{3L} h^{33*}_{3L} < -2.8 \\ & < h^{2i}_{3L} h^{33*}_{3L} < 0.84 (i=1,2) \end{aligned}$	$ h_{3L}^{2i}h_{3L}^{3j*} \lesssim 0.04$

Sept. 2018 LHCTopWG Summary

Top quark at LHC

- fairly good agreements for cross section
- within theoretical uncertainties: scales of Ren. & Fact., PDF, α_S

$t\bar{t}$ cross section (pb)

single t cross section (pb)

√s [TeV]

Sept. 2018 | LHCTopWG Summary

Top quark at LHC

$m_t = 172.69 \pm 0.48 \text{ GeV}$

ATLAS+CMS Preliminary LHCtopWG	m _{top} summary, √s = 7-13 TeV	November 2018
World comb. (Mar 2014) [2] stat total uncertainty	total stat	- Def
	$m_{top} \pm total (stat \pm syst)$	Vs Ret.
World comb (Mar 2014)	$173.23 \pm 0.33 (0.33 \pm 0.00)$	7 IEV [1]
	$172.33 \pm 1.27 (0.75 \pm 1.02)$	7 ToV [2]
ATLAS dilenton	$172.00 \pm 1.21 (0.70 \pm 1.02)$	7 TeV [3]
ATLAS all iets	175.1+1.8 (1.4+1.2)	7 TeV [4]
ATLAS single top	172.2±2.1 (0.7±2.0)	8 TeV [5]
ATLAS, dilepton	172.99 ± 0.85 (0.41± 0.74)	8 TeV [6]
ATLAS. all jets	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [7]
ATLAS, I+jets	172.08 ± 0.91 (0.39 ± 0.82)	8 TeV [8]
ATLAS comb. (Oct 2018) H	버 172.69 ± 0.48 (0.25 ± 0.41)	7+8 TeV [8]
CMS, I+jets ⊢	173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [9]
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [10]
CMS, all jets 🛏	173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [11]
CMS, I+jets	172.35 ± 0.51 (0.16 ± 0.48)	8 TeV [12]
CMS, dilepton	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [12]
CMS, all jets	H 172.32 ± 0.64 (0.25 ± 0.59)	8 TeV [12]
CMS, single top	• + 1 172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [13]
CMS comb. (Sep 2015)	H 172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [12]
CMS, I+jets	1 172.25 ± 0.63 (0.08 ± 0.62)	13 TeV [14]
CMS, dilepton	H 172.33 ± 0.70 (0.14 ± 0.69)	13 TeV [15]
CMS, all jets ⊢⊶	IT22.34 ± 0.79 (0.20 ± 0.76) [1] ATLAS-CONF-2013-102 [2] aXix+1403.4427 [3] Eur.Phys.J.C75 (2015) 330 [4] Eur.Phys.J.C75 (2015) 181 [6] Phys.Lett.B781 (2016) 350 [6] Phys.Lett.B781 (2016) 350	13 TeV [16] [13] EPJC 77 (2017) 354 [14] arXiv:1805.01428 [15] CMS PAS TOP-17-001 [16] CMS PAS TOP-17-008
		105
170 170	170 180	100
	m _{top} [GeV]	

q = c $V = \{g, Z, \gamma, H\} \sim \{10^{-4}, 10^{-4}, 10^{-3}, 10^{-3}\}$

q = u, slightly stronger limits, but same order

 $Br(t \to qV)$

LQ limits at LHC

- to set limits, specific LQ decay modes are assumed
- currently, LQ mass bounds are 1 ~ 2 TeV, stronger for Vector LQ

Decays	LQs	Scalar LQ limits	Vector LQ limits	\mathcal{L}_{int} / Ref.
$jj \tau \bar{\tau}$	S_1, R_2, S_3, U_1, U_3	_	_	_
$b\bar{b}\tau\bar{\tau}$	R_2, S_3, U_1, U_3	$850 \ (550) \ { m GeV}$	1550 (1290) GeV	$12.9 \text{ fb}^{-1} [52]$
$t\bar{t}\tau\bar{\tau}$	S_1, R_2, S_3, U_3	$900~(560)~{ m GeV}$	1440 (1220) GeV	$35.9 \text{ fb}^{-1} [53]$
$jj\muar\mu$	S_1, R_2, S_3, U_1, U_3	1530 (1275) GeV	2110 (1860) GeV	$35.9 \text{ fb}^{-1} [54]$
$b ar{b} \mu ar{\mu}$	R_2, U_1, U_3	$1400 (-) {\rm GeV}$	1900 (1700) GeV	$36.1 \text{ fb}^{-1} [55]$
$t \bar{t} \mu \bar{\mu}$	S_1, R_2, S_3, U_3	$1420 (950) { m GeV}$	$1780 \ (1560) \ {\rm GeV}$	$36.1 \text{ fb}^{-1} [56, 57]$
jj uar u	R_2, S_3, U_1, U_3	$980~(640)~{\rm GeV}$	1790 (1500) GeV	$35.9 \text{ fb}^{-1} [58]$
$b\bar{b}\nu\bar{ u}$	S_1, R_2, S_3, U_3	$1100 (800) { m GeV}$	1810 (1540) GeV	$35.9 \text{ fb}^{-1} [58]$
$t\bar{t}\nu\bar{ u}$	R_2, S_3, U_1, U_3	$1020 (820) { m GeV}$	$1780 \ (1530) \ {\rm GeV}$	$35.9 \text{ fb}^{-1} [58]$

Angelescu *et al,* 1808.08179

Top FCNC at tree-level, 3-body Tree $t \to c \tau^- \ell_i^+$ $t \rightarrow c \nu_{\tau} \bar{\nu}_i$ scalar S_1 vector U_1 t(b)t(b) S_1 [R] U_1 [L][L][L] \mathcal{C} С $\begin{bmatrix} g_{1R}^{ij} \overline{u_{Ri}^C} e_{Rj} S_1 & h_{1L}^{ij} \overline{Q}_i \gamma_\mu L_j U_1^\mu \end{bmatrix}$ $h_{1L}^{ij} ar{Q}_i \gamma_\mu L_j U_1^\mu$ $g_{1L}^{ij}\,\overline{Q^C}i au_2L_jS_1$ $\bar{\nu}_i$ $\ell_i^+(\bar{\nu}_i)$

12

1-loop Top FCNC at one-loop, 2-body

- we only consider loop for scalar S_1
- loop of vector U_1 needs UV-completion of m_{U_1} generation
 - SM-GIM-like mechanism needed to cancel divergence
 - more complete flavor structure needed

+ external leg diagrams

$$\begin{array}{c} \text{Tree-level:} \ R_{D}(*) \ \text{fit of} \ \frac{g_{L}g_{R}}{m_{LQ}^{2}} \text{ naturally implies } Br_{t}^{FCNC} \\ \hline \text{scalar } S_{1} \quad t \to c\tau^{-}\ell_{i}^{+} \qquad t \to c\nu_{\tau}\bar{\nu}_{i} \qquad \text{vector } U_{1} \\ \hline \begin{pmatrix} t(b) & [L] & S_{1} & [R] & c \\ \hline & \ell_{i}^{+}(\bar{\nu}_{i}) & \tau^{-} & \ell_{i}^{+} \\ \hline & \ell_{i}^{+}(\bar{\nu}_{i}) & \tau^{-} & \ell_{i}^{+} \\ \hline & \nu_{\tau}(\tau^{-}) & \bar{\nu}_{i} \\ \hline & S_{1}: Br(t \to c\tau^{-}\ell_{l}^{+}) \approx \frac{1}{\Gamma_{t,SM}} \left(\frac{m_{t}^{5}}{6144\pi^{3}}\right) |\frac{g_{L}^{3l}g_{1R}^{23*}}{M_{S_{1}}^{2}}|^{2} = 10^{-6} \times \begin{cases} 1.4 \sim 1.8 \quad l = 1,2 \\ 0.16 \sim 0.41 \quad l = 3 \\ 0.16 \sim 0.41 \quad l = 3 \\ \hline & U_{1}: Br(t \to c\nu_{\tau}\bar{\nu}_{l}) \approx \frac{1}{\Gamma_{t,SM}} \left(\frac{m_{t}^{5}}{1536\pi^{3}}\right) |\frac{h_{11}^{33}h_{1L}^{2l*}}{M_{U_{1}}^{2}}|^{2} = 10^{-6} \times \begin{cases} 0.58 \sim 1.5 \quad l = 1,2 \\ 17 \sim 19 \quad l = 3 \end{cases} \end{array}$$

Loop-level:

Given the coupling chirality we choose, only left-handed part appears in dipole $f_{TR}^g = f_{TR}^\gamma = f_{TR}^Z = 0$

$$f_{TR}^{g} = f_{TR}^{\gamma} = f_{TR}^{Z} = 0$$

$$f_{TL}^{g} \simeq g_{1L}^{33} g_{1R}^{23*} \frac{1}{16\pi^{2}} g_{s} m_{\tau}$$

$$\times \frac{1}{M_{S_{1}}^{2}} \frac{1}{12} \left(-6 \left(22x_{\tau} x_{t} + 3x_{t} + 16x_{\tau} + 6 \right) \log x_{\tau} - 49x_{t} - 48 \right)$$

$$f_{TL}^{\gamma} \simeq -g_{1L}^{33} g_{1R}^{23*} \frac{1}{48\pi^{2}} em_{\tau}$$

$$\times \frac{1}{M_{S_{1}}^{2}} \left(\frac{1}{6} \left(14x_{t} x_{\tau} + x_{t} + 9x_{\tau} + 3 \right) + (x_{t} + 1) x_{\tau} \log x_{\tau} \right)$$

Leptoquark

 S_1

$$i\mathcal{M}_{tcV} = \bar{u}(p_2) \Gamma^{\mu} u(p_1) \epsilon_{\mu}(k,\lambda)$$

$$\Gamma^{\mu}_{tcZ} = \gamma^{\mu} (P_L f_{VL}^Z + P_R f_{VR}^Z) + i\sigma^{\mu\nu} k_{\nu} (P_L f_{TL}^Z + P_R f_{TR}^Z),$$

$$\Gamma^{\mu}_{tc\gamma} = i\sigma^{\mu\nu} k_{\nu} (P_L f_{TL}^{\gamma} + P_R f_{TR}^{\gamma}),$$

$$\Gamma^{\mu}_{tcg} = T^a i\sigma^{\mu\nu} k_{\nu} (P_L f_{TL}^g + P_R f_{TL}^g),$$

15

,23*

.3l

we kept $O(m_t^1)$ in loop function expansions for $m_V = 0$ unlike $b \to s\gamma$, $\mu \to e\gamma$ where m_b, m_μ are ignored

Leptoquark	2σ range for $\bar{B} \to D^{(*)}\tau\bar{\nu}$			
S_1	$g_{1L}^{3l}g_{1R}^{23*} \in \left(\frac{M_{S_1}}{1 \text{ TeV}}\right)^2 \times \begin{cases} (1.64, 1.81) \\ (-0.87, -0.54) \end{cases}$	l = 1, 2 l = 3		

S_1 collider prospects via $t\bar{t}$ production

(step-1) N ~ 2.5×10^9 @ 3 ab⁻¹ LHC-13

$t\overline{t}$ estimation

$$1 \ell, \geq 3 j \ni \{1 b, 2 \tau\}$$

- Selection 1: Exactly one lepton, at least three jets including exactly one b jet and two τ jets. $2 \ell \ni \{\mu, \ell\}, \ge 2 j \ni \{1 b, 1 \tau\}$
- Selection 2: Exactly two leptons, at least one muon, at least 2 jets including exactly one b jet and one τ jet. $1 \ell, \geq 2 j \ni \{1 b\}$
- Selection 3: Exactly one lepton and more than two jets in the final state, where one of the jet is b-tagged, the missing transverse energy $E_T^{\text{miss}} > 80 \text{ GeV}$.

	VV	DY	W+jet	$t\bar{t}$	$t \to c \mu \tau$	$t \to c \tau \tau$	$t \to c \nu \nu$
Selection 1	9559	108095	-	1189719	28	19	0.3
Selection 2	5433	54047	-	839651	39	5	0.0
Selection 3	296814	594522	16530371	64764862	140	94	102

- simple cuts give signal/BG ~ 10^{-5}
- advanced techniques needed, e.g. multivariate analysis

 $@ 3 ab^{-1} LHC-13$ one leptonic top

Summary

- Anomalies in rare B decays have stimulated active discussions.
- LQ S_1, U_1 interpretations of $R_{D^{(*)}}$ naturally imply top FCNC
 - tree-level: ~10⁻⁶ $S_1: Br(t \to c\tau^- \ell_l^+)$ $U_1: Br(t \to c\nu_\tau \bar{\nu}_l)$
 - loop-level: $\sim 10^{-10}$

$$S_1: Br(t \to c\gamma)$$

- Collider searches
 - simple analyses of $t\overline{t}$ are challenging
 - advanced/alternative methods needed

Thank you for listening

Back up

WC of 1-loop $t \rightarrow cV$ via S_1

 $f_{TL}^Z = g_{1L}^{33} g_{1R}^{23*} \frac{1}{96\pi^2} \frac{e}{c_W s_W} m_\tau$ For both $m_t \neq 0$ and $m_z \neq 0$, loop function reductions are tediously long. Thus we do not proceed with further expansion. $\times \Big(3(s_W^2 - c_W^2)C_1(m_c^2, m_Z^2, m_t^2, M_{S_1}^2, m_\tau^2, m_\tau^2)\Big)$ $+2s_W^2 \left(3C_2(m_c^2, m_Z^2, m_t^2, M_{S_1}^2, m_\tau^2, m_\tau^2) + C_2(m_Z^2, m_t^2, m_c^2, M_{S_1}^2, M_{S_1}^2, m_\tau^2)\right)\right)$ $f_{VL}^{Z} = g_{1L}^{33} g_{1R}^{23*} \frac{1}{96\pi^2} \frac{e}{c_W s_W} \frac{m_\tau m_c}{m^2 - m^2}$ $\times \Big((3c_W^2 - s_W^2) \Big(B_0(m_t^2, m_\tau^2, M_{S_1}^2) - B_0(m_c^2, m_\tau^2, M_{S_1}^2) \Big)$ $+2s_W^2(m_c^2-m_t^2)(3C_0(m_c^2,m_Z^2,m_t^2,M_{S_1}^2,m_{\tau}^2,m_{\tau}^2)+3C_1(m_c^2,m_Z^2,m_t^2,M_{S_1}^2,m_{\tau}^2,m_{\tau}^2))$ $+3C_2(m_c^2, m_Z^2, m_t^2, M_{S_1}^2, m_\tau^2, m_\tau^2) + C_2(m_Z^2, m_t^2, m_c^2, M_{S_1}^2, M_{S_1}^2, m_\tau^2)))$ $f_{VR}^{Z} = g_{1L}^{33} g_{1R}^{23*} \frac{1}{96\pi^2} \frac{e}{c_{WSW}} \frac{m_{\tau} m_{t}}{m_{\tau}^2 - m_{t}^2}$ $\times \Big(4s_W^2 \big(B_0(m_c^2, m_\tau^2, M_{S_1}^2) - B_0(m_t^2, m_\tau^2, M_{S_1}^2)\big)$ $+(m_c^2-m_t^2)\Big(2s_W^2C_2(m_Z^2,m_t^2,m_c^2,M_{S_1}^2,M_{S_1}^2,m_{\tau}^2)-3(c_W^2-s_W^2)\Big(C_0(m_c^2,m_Z^2,m_t^2,M_{S_1}^2,m_{\tau}^2,m_{\tau}^2)\Big)\Big)\Big(2s_W^2C_2(m_Z^2,m_t^2,m_t^2,m_{\tau}^2,m_{\tau}^2,m_{\tau}^2)-3(c_W^2-s_W^2)\Big)\Big)\Big)\Big)\Big)\Big)\Big)\Big)\Big)\Big)\Big)$ $+C_1(m_c^2, m_Z^2, m_t^2, M_{S_1}^2, m_\tau^2, m_\tau^2) + C_2(m_c^2, m_Z^2, m_t^2, M_{S_1}^2, m_\tau^2, m_\tau^2))))$ 24