DLC-uRWELL Detector R&D Progress from USTC

Jianbei Liu

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

The 11th Workshop on Hadron Physics in China and Opportunities Worldwide

> Nankai University, Tianjin, China August 26, 2019

Outline

- Introduction
- DLC coating
- uRWELL with 2d readout
- High-rate uRWELL
- VMM readout
- Summary

Introduction

- GEM is the baseline option of the tracker for the SoLID experiment.
 - High rate capability
 - Good spatial resolution
 - Large area and low mass
- uRWELL as a novel MPGD is a promising alternative to GEM as a detector
 option for the SoLID tracker

uRWELL: Micro-Resistive WELL

- uRWELL = Drift board + uRWELL PCB
 - simple and compact structure
 - low mass and good gain uniformity
 - no gluing, no spacers, no stretching, no rigid frames
 - fast assembling
 - cost effective
- uRWELL PCB = A stack of "readout PCB / insulating pre-preg / resistive DLC / well-type holes"
 - DLC is a critical component

DLC: Diamond-Like Carbon

- DLC: metastable amorphous carbon material containing both diamond-structure and graphitestructure
- A new big star rapidly rising in the MPGD field
 - resistive electrodes by DLC coating

- Stable surface resistivity which can be precisely adjusted
- Robust and stable both chemically and physically
- ✓ Sub-micrometer level coating for fine resistive structures
- Precise pattern can be made by using photolithography
- ✓ Available for large area

DLC with Magnetron Sputtering

Depositing DLC on a substrate with magnetron sputtering technique to form a high-quality resistive electrode

Magnetron sputtering technique

In close collaboration with State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics

DLC Resistive Electrode Samples

- Thickness from tens to hundreds nanometers
- A large range in surface resistivity available: 1MΩ/□ ~ 500MΩ/□, which can be controlled by adjusting target power, deposition time, vacuum degree and doping.
- Good resistivity uniformity achieved

Design of a 2D uRWELL PCB

- 2 layers of readout strips in orthogonal configuration for 2-D position measurement
- An active area of 10cm*10cm into 4 sectors
- Strip pitch: 400um
- Larger strips at bottom to compensate weaker signals induced at bottom strips

Detector Fabrication

- Drift electrode: 50µm
 APICAL foil coated with
 copper
- DLC Electrode resistivity: 40MΩ
- Active area : 10cm × 10cm
- Drift gap: 3 mm
- 4 Hirose connector + 4 Panasonic connector

A 2D uRWELL detector with Chinese DLC !

Special thanks to Antonio Teixeira and Rui De Oliveira for technical help.

Gas Gain and Rate Capability

Gas gain can reach 10⁴, very high for single stage amplification.

- Ar(70)/CO₂(30) gas mixture
- Source: 8keV copper X-rays
- Collimator: 5.5mm-diameter

Gas gain drops about 30% @1MHz/cm²

Efficiency and Spatial Resolution

- Efficiency of top layer: ~95%, bottom layer: ~92%
- Signal induced on top layer ~2 times larger than that on bottom layer, strip layout needs to be optimized
- A position resolution better than 70 um is achieved in both dimensions

DLC+Cu Deposition

- Simplifying manufacturing process of resistive MPGDs and improving the quality.
- Allowing to create precise printed circuits on a DLC resistive electrode hence realizing complex functions
- opening ways for making new MPGD architectures

A critical element in making high-rate uRWELL structures

RD51 Common Project

- DLC based electrodes for future resistive MPGDs
- DLC+Cu is a central subject in this project
- **Title of project:** DLC based electrodes for future resistive MPGDs
- Contact person: name: Yi Zhou address: Jinzhai Road No.96, Hefei, Anhui, P.R.China, 230026 telephone number: +86-551-63607940 e-mail: <u>zhouyi@mail.ustc.edu.cn</u>
- RD51 Institutes: 1. State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, contact person: Yi Zhou e-mail: zhouvi@mail.ustc.edu.cn
 - 2. Kobe University, contact person: Atsuhiko Ochi e-mail: <u>ochi@kobe-u.ac.jp</u>
 - 3. CERN contact person: Rui de Oliveira e-mail: <u>Rui.de.Oliveira@cern.ch</u>
 - 4. Laboratori Nazionali di Frascati dell'INFN contact person: Giovanni Bencivenni e-mail: <u>Giovanni.Bencivenni@lnf.infn.it</u>
- **Ext. Collaborators:** 1. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science contact person: Lunlin Shang e-mail: <u>shangll@licp.cas.cn</u>

USTC is leading this project.

Big Progress on DLC+Cu

- Good adhesion has been achieved between DLC and copper by introducing a Cr transition layer.
- Cu coating thickness can be adjusted from 1-5 um
- Many DLC+Cu samples have been produced for the MPGD community

High-rate uRWELL Concepts

- Approach to high-rate: fast grounding
- Two structures being explored, which are only made possible with DLC+Cu

Double-DLC layer uRWELL with Sequential Build Up (SBU) technology : more promising for large area production

High-Rate uRWELL Prototypes

- Built a 10cm*10cm prototype with DLC+Cu for each of the two high-rate uRWELL schemes
- Observed signals with radioactive sources
- More testing is ongoing

Single-DLC layer uRWELL with fast grounding lines

Double-DLC layer uRWELL with SBU

Going for Large Size

A New sputtering system (Hauzer 850) is ready to make large-area DLC/DLC-Cu samples.

Chamber size: Φ800mm×900mm Best Sample size (up to): 500mm×500mm (Rigid substrate), 500mm × 1900mm (Flexible substrate)

A VMM-based Readout

FEE card

- 4 VMM chips: 256 channels
- 64 4-channel ESDs (SP3004) ulletfor input protection
- HDMI (~340Mbps bandwidth) for output

Feast

Module

DAQ board

- 8 HDMIs (8 × 256 channels), scalable.
- Receive and fan out the clock and trigger signal
- Both auto-trigger and external trigger available.

ESD

Integration and Testing

FEE noise:

Standalone: Vp-p<=4mV, Vrms<=800uV With detector: Vp-p<=20mV, Vrms<=3mV

Timing resolution: RMS = ~0.5ns

Channel tdo Distribution Graph 2

A Micromegas detector

Signals with cosmic rays and X-rays

Testing with cosmic rays and 5.9keV x-rays

cosmic ray signal (anode)

X-ray signal (anode)

Summary

- uRWELL offers a promising alternative detector option for the SoLID tracker.
- A solid uRWELL R&D program in place at USTC
- Significant progress has been made on DLC resistive coating and high-rate uRWELL.
- VMM readout in development for high-rate MPGDs.