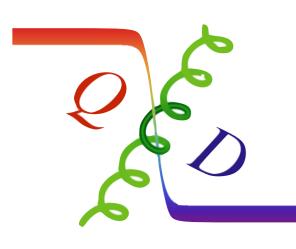
11th Workshop on Hadron physics in China and Opportunities Worldwide

Proton mass from Lattice QCD

Yi-Bo Yang

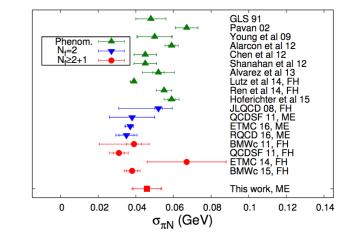
Tianjin, Nankai

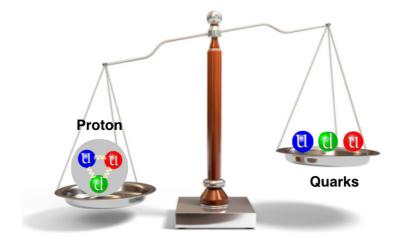
Aug. 25th, 2019



Outline

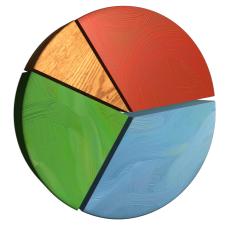
Quark mass and proton mass

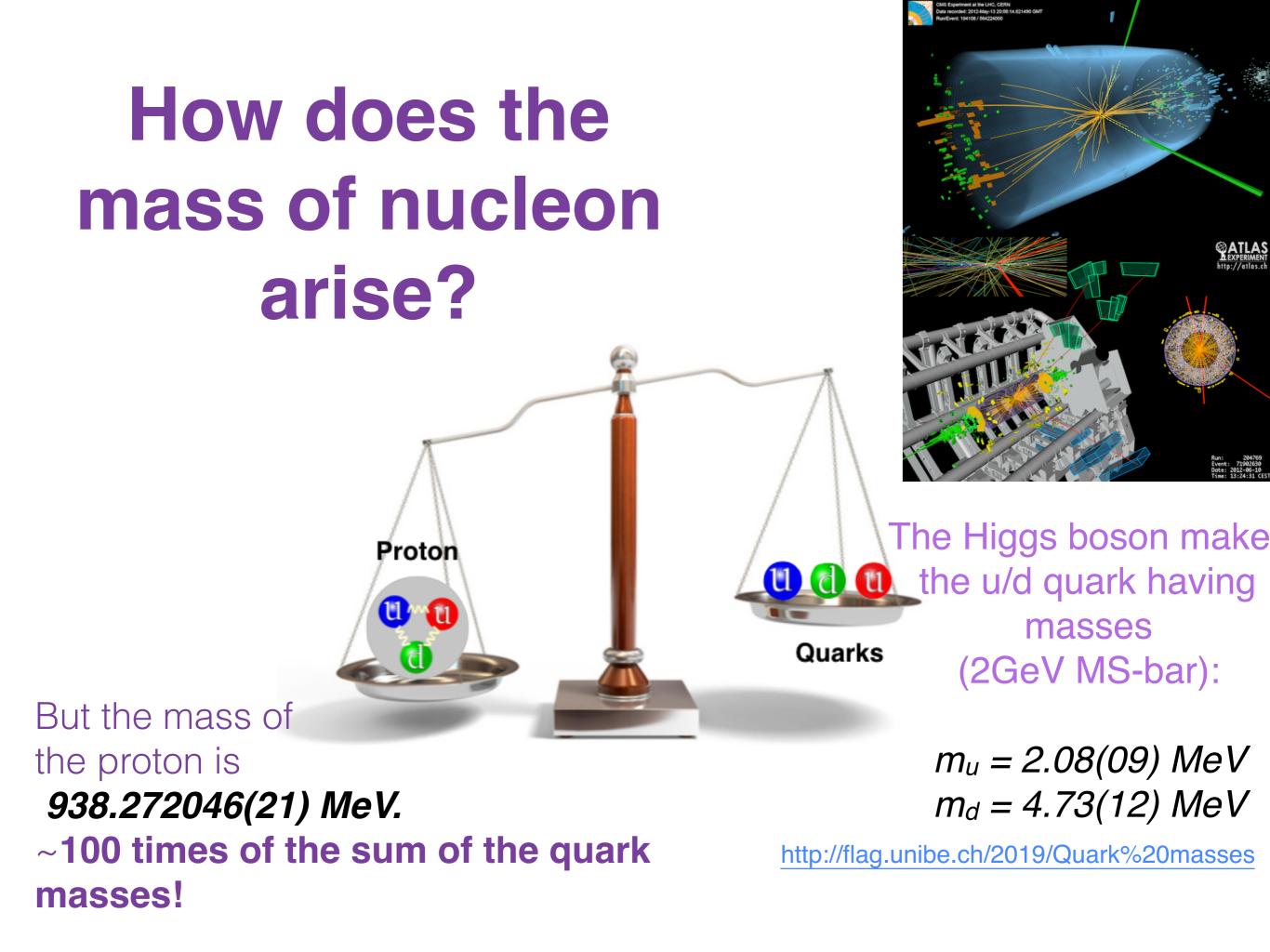




The decompositions of proton mass

Results and further challenges

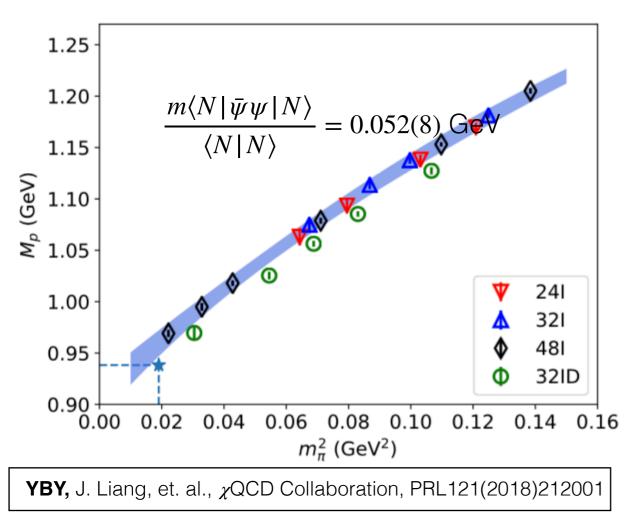


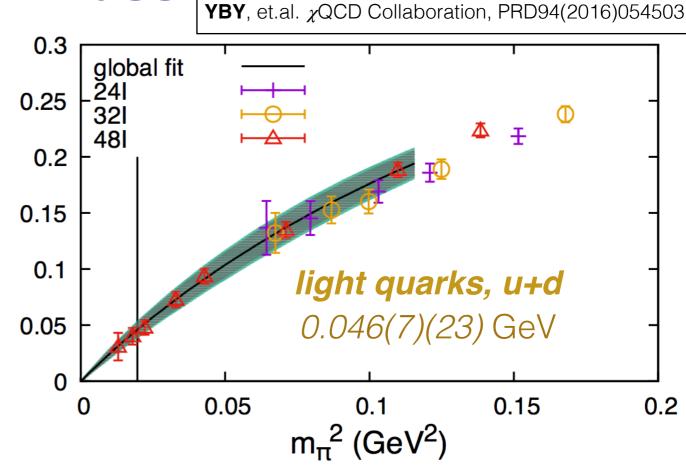


Scale independent quark mass contribution ^{0.3} global fit

$$m \to \frac{m\langle N | \bar{\psi}\psi | N \rangle}{\langle N | N \rangle}$$

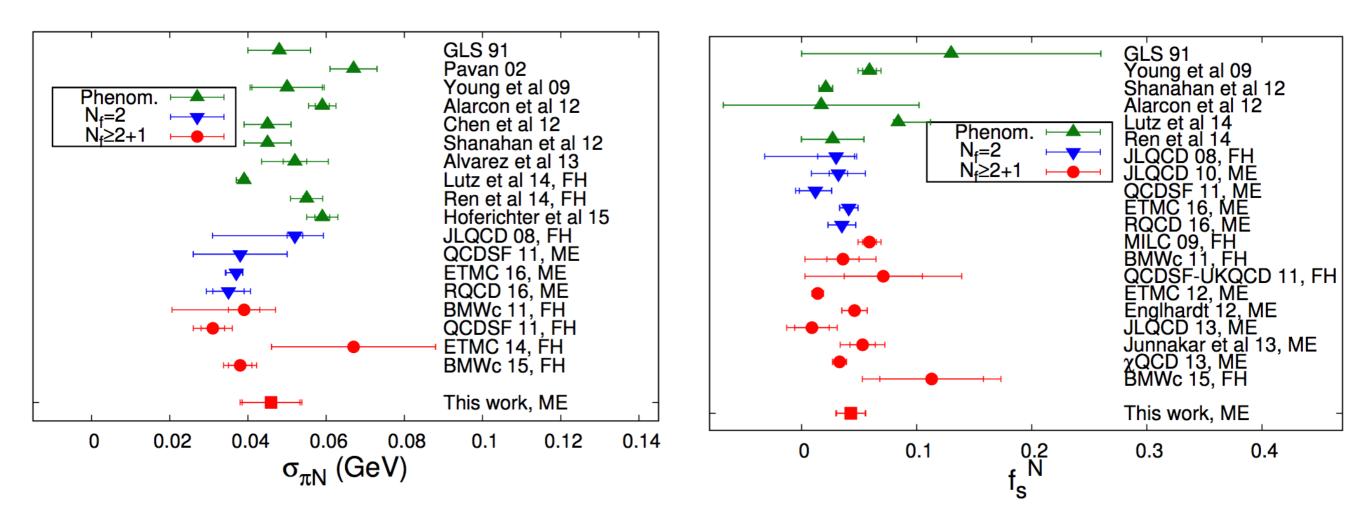
$$= m \frac{\partial m_N}{\partial m} \simeq \frac{m_\pi}{2} \frac{\partial m_N}{\partial m_\pi}$$





- Such a quantity can be obtain by either the direct matrix element calculation, or the derivative of the nucleon mass on the quark mass;
- Or extracted from the πN scattering experiments with χPT .
- But it is just ~50 MeV for three light quarks.

Scale independent quark mass contribution



 $\sigma_{\pi N} = \langle H_m(u) + H_m(d) \rangle = 45.9(7.4)(2.8) \text{ MeV}$

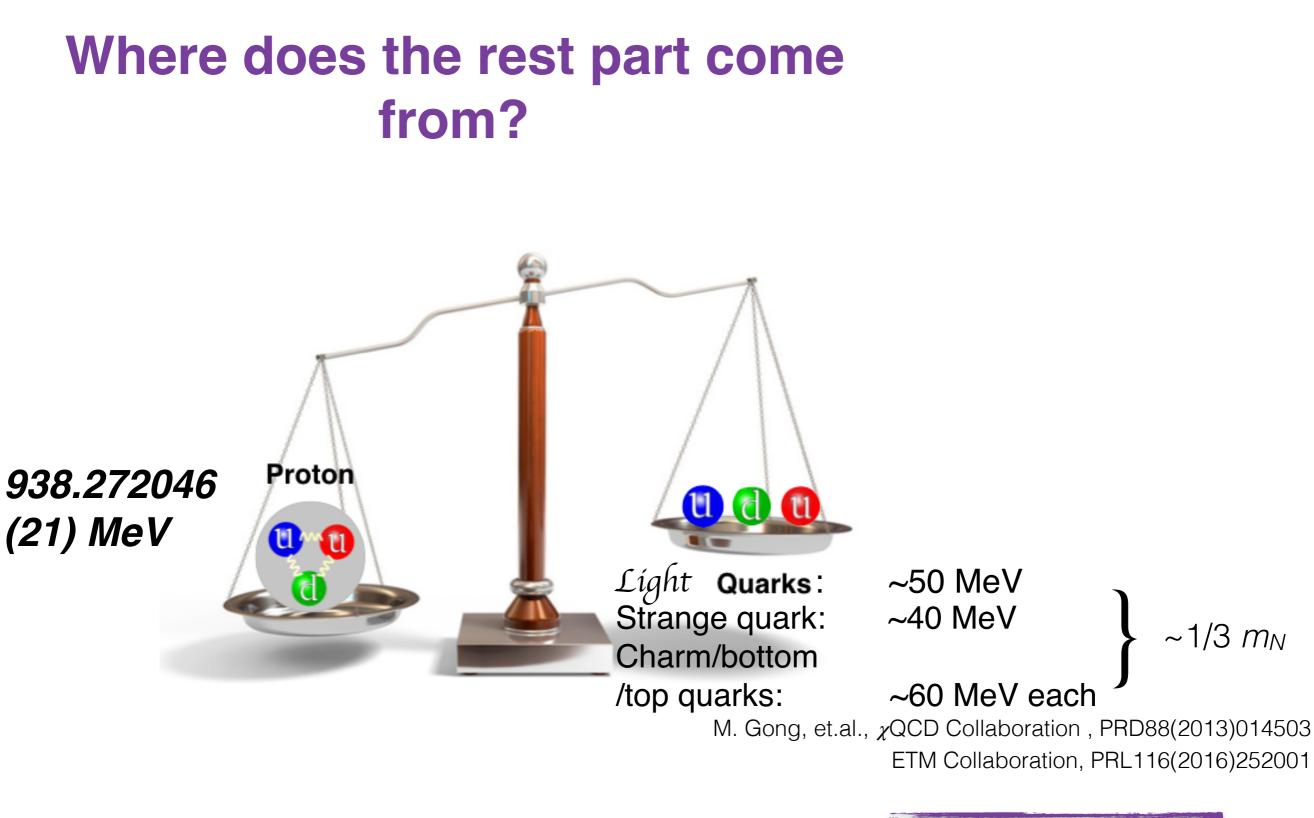
 $f_{s^N}M_N = \langle H_m(s) \rangle = 40.2(11.7)(3.5) MeV$

YBY, et.al. ¿QCD Collaboration, PRD94(2016)054503

 $m_{u/d} (2 \text{ GeV}) = 3.36(4) \text{ MeV}$

 $m_s(2 \text{ GeV}) = 92(1) \text{ MeV}$

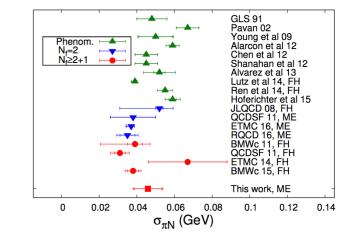
http://flag.unibe.ch/2019/Quark%20masses

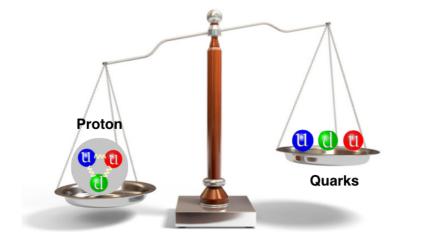


 $\beta(g)$ $m_N = \langle -T_{\mu\mu} \rangle = \langle m\bar{\psi}\psi + \gamma_m m\bar{\psi}\psi + \frac{r}{r} \rangle$ 2g

Outline

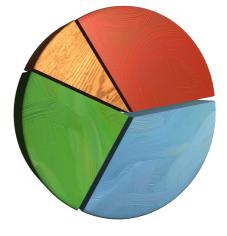
Quark mass and proton mass





The decompositions of proton mass

Results and further challenges



QCD Energy momentum Tensor

The gauge-invariant, symmetric QCD energy momentum tensor (EMT) in the Euclidean space is given by:

$$T_{\mu\nu} = \frac{1}{4} \bar{\psi} \gamma_{(\mu} \overleftrightarrow{D}_{\nu)} \psi + F_{\mu\rho} F^{\rho}_{\ \nu} - \frac{1}{4} g_{\mu\nu} F^{2}_{D_{\mu} = \partial_{\mu} + igA_{\mu}, A_{(\mu}B_{\nu)} = A_{\mu}B_{\nu} + A_{\nu}B_{\mu}, \overleftrightarrow{D}_{\mu} = D_{\mu} - \overleftarrow{D}_{\mu}}$$

For the nucleon with momentum p, its matrix element of QCD EMT satisfies:

$$\langle T_{\mu\nu} \rangle = \begin{pmatrix} -E & ip_i \\ ip_i & \frac{p_i p_j}{E} \end{pmatrix}_{\overline{p_i \to 0}}^{\overline{p_i \to 0} \begin{pmatrix} -m_N & 0 \\ 0 & 0 \end{pmatrix} }$$
 The rest frame

$$\begin{pmatrix} -E & ip_i \\ p_i p_j \end{pmatrix}_{\overline{p_z \to \infty}}^{\overline{p_i \to 0} \begin{pmatrix} -p_z & ip_z \\ ip_z & p_z \end{pmatrix}$$
 The infinite momentum frame

Trace anomaly in Dim. Reg.

Under the dimensional regularization, the QCD EMT can be decomposed into the trace part and the traceless part:

$$\begin{split} T_{\mu\nu} &= \frac{1}{4} \bar{\psi} \gamma_{(\mu} \overleftrightarrow{D}_{\nu)} \psi + F_{\mu\rho} F_{\nu}{}^{\rho} - \frac{1}{4} g_{\mu\nu} F^2 \\ &= \left(T_{\mu\nu} - \frac{g_{\mu\nu}}{d} T^{\alpha}_{\alpha} \right) + \frac{g_{\mu\nu}}{d} T^{\alpha}_{\alpha} \equiv \bar{T}_{\mu\nu} + \hat{T}_{\mu\nu}, \end{split}$$

where $T^{\alpha}_{\alpha} = m\bar{\psi}\psi - 2\epsilon \frac{F^2}{4} + \mathcal{O}(\epsilon^2)$. See Y. Hatta, et.al., JHEP12(2018)008 as an example

After the renormalization,

$$m\bar{\psi}\psi = \left(m\bar{\psi}\psi\right)_R, \ F^2 = -\frac{1}{\epsilon}\left(\frac{\beta_R}{g_R}F_R^2 + 2\gamma_m^R \left(m\bar{\psi}\psi\right)_R\right) + \mathcal{O}(\epsilon^0),$$

And then,

$$T^{\alpha}_{\alpha} = (1 + \gamma^R_m) \left(m \bar{\psi} \psi \right)_R + \frac{\beta_R}{2g_R} F^2_R.$$

Trace anomaly in Dim. Reg.

At 1-loop level, the explicit form of the EMT trace part is,

$$T^{\alpha}_{\alpha} = (1 + \gamma_m) m \bar{\psi} \psi + \frac{\beta}{2g} F^2 = (1 + \frac{2}{\pi} \alpha_s) m \bar{\psi} \psi + (-\frac{11}{8\pi} + \frac{n_f}{12\pi}) \alpha_s F^2 + \mathcal{O}(\alpha_s^2)$$

Since we also have the following relation for the heavy quarks:

$$m_Q \bar{\psi}_Q \psi_Q = -\frac{1}{12\pi} \alpha_s F^2 + \mathcal{O}(\alpha_s^2) + \mathcal{O}(\frac{1}{m_Q}),$$

the ME of F^2 is independent to the number of heavy flavors, and the mass contribution from a heavy quark mass term can be directly estimated by:

$$m_Q \bar{\psi}_Q \psi_Q = \frac{1}{12\pi} \frac{m_N - \langle H_m^{u,d,s} \rangle}{\frac{11}{8\pi} - \frac{3}{12\pi}} + \mathcal{O}(\alpha_s^2) + \mathcal{O}(\frac{1}{m_Q}) \simeq 0.063 \text{ GeV}$$

The trace less part of EMT

Let us go back to the ME of the traceless EMT:

$$\frac{\langle P \mid \bar{T}^{q,g}_{\mu\nu} \mid P \rangle}{\langle P \mid P \rangle} = A^{q,g} \frac{P_{\mu}P_{\nu} + \frac{1}{d}g_{\mu\nu}m_{N}^{2}}{P_{0}},$$

where $\bar{T}^{q}_{\mu\nu} = \frac{1}{4}\bar{\psi}\gamma_{(\mu}\overleftrightarrow{D}_{\nu)}\psi - \frac{1}{d}g_{\mu\nu}m\bar{\psi}\psi, \ \bar{T}^{g}_{\mu\nu} = F_{\mu\rho}F_{\nu}^{\ \rho} - \frac{1}{d}g_{\mu\nu}$

The Lorentz quark/gluon momentum fraction A can be obtained in any frame, likes the rest frame:

$$\frac{\langle P \,|\, \bar{T}^{q,g}_{\mu\nu} \,|\, P \rangle}{\langle P \,|\, P \rangle}_{P_{x,y,z}=0,} = \frac{d-1}{d} A^{q,g} m_N,$$

or on the light-cone as:

$$\frac{\langle P | \bar{T}^{q,g}_{++} | P \rangle}{\langle P | P \rangle} = A^{q,g}P_{+}, \quad \text{where} \quad \bar{T}^{q}_{++} = \frac{1}{2}\bar{\psi}\gamma_{+}\overleftrightarrow{D}_{+}\psi, \quad \bar{T}^{g}_{++} = F_{+\rho}F_{+}^{\rho}.$$

The trace terms are omitted as $P_+ >> m_N$

Momentum fractions

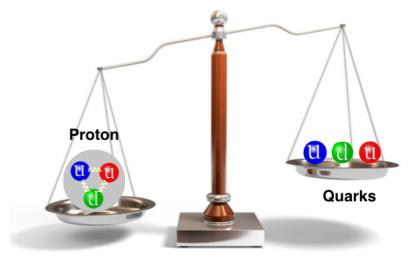
as the moments of PDF

NNPDF Collaboration, NPB887(2014)276 On the light-cone, the quark and gluon unpolarized parton distribution function (PDF) are defined by: g 5 $q(x) = \int \frac{d\xi^{-}}{4\pi} e^{-ix\xi^{-}P^{+}} \langle P | \bar{\psi}(\xi^{-})\gamma_{+} U(\xi^{-}, 0)\psi(0) | P \rangle,$ $f_{\bar{q}}(x) \equiv -f_q(-x)$ σ $g(x) = \left[\frac{\mathrm{d}\xi^{-}}{2x\pi}e^{-ix\xi^{-}P^{+}}\langle P | \operatorname{Tr}\left[F_{+\rho}(\xi^{-})U(\xi^{-},0)F_{+}^{\rho}(0)U(0,\xi^{-})\right] | P \rangle,\right]$ d u С S -5 NNPDF3.1(NLO) µ=2 GeV and it is easy to obtain that, -10-0.2 0.0 0.2 0.4 0.6 Х $\int_{-1}^{1} xq(x) dx = \frac{\langle P | \bar{T}_{++}^{q} | P \rangle}{P_{+} \langle P | P \rangle} = A^{q}, \quad \int_{-1}^{1} xg(x) dx = \frac{\langle P | \bar{T}_{++}^{g} | P \rangle}{P_{+} \langle P | P \rangle} = A^{g},$

with
$$\bar{T}_{++}^q = \frac{1}{2} \bar{\psi} \gamma_+ \overleftrightarrow{D}_+ \psi, \ \bar{T}_{++}^g = F_{+\rho} F_+^{\ \rho}.$$

Thus the momentum fractions we obtained in the rest frame is directly the moments of the unpolarized PDF.

The decompositions of the QCD EMT



Thus one can have the following Ji's decomposition of the nucleon mass (the energy in the rest frame) :

$$\begin{split} m_{N} &= \langle T_{44} \rangle_{P_{x,y,z}=0, d \to 4} = \langle \bar{T}_{44}^{q} \rangle + \langle \bar{T}_{44}^{g} \rangle + \frac{1}{4} (1 + \gamma_{m}) \langle H_{m} \rangle + \frac{\beta}{8g} \langle F^{2} \rangle \\ &= \langle \bar{\psi} \gamma_{4} \overrightarrow{D}_{4} \psi \rangle + \langle \bar{T}_{44}^{g} \rangle + \frac{1}{4} \gamma_{m} \langle H_{m} \rangle + \frac{\beta}{8g} \langle F^{2} \rangle \\ &= \langle \sum_{i} \bar{\psi} \gamma_{i} \overrightarrow{D}_{i} \psi \rangle + \langle \bar{T}_{44}^{g} \rangle + \langle H_{m} \rangle + \frac{1}{4} \gamma_{m} \langle H_{m} \rangle + \frac{\beta}{8g} \langle F^{2} \rangle \end{split}$$

Xiangdong Ji, PRL 74(1995)1071

Or the following decomposition of EMT following the structure of perfect fluid,

$$\langle P | T_{i,\mu,\nu} | P \rangle = \frac{\langle P | P \rangle}{2E} \left(2P_{\mu}P_{\nu}\langle x \rangle_{i} - 2m_{N}g_{\mu\nu}\bar{p}_{i} \right), \ \bar{p}_{i} = (-\langle x \rangle_{i} + \langle H_{m,i} \rangle)/4.$$

C. Lorce, EPJC78(2018)120

Ji's decomposition of proton mass (the proton energy in the rest frame) Proton 11 (1) (1 0 0 $M = -\langle T_{44} \rangle = \langle H_E \rangle + \langle H_m \rangle + \langle H_g \rangle + \frac{1}{4} \langle H_a \rangle,$ Quarks $M = -\langle \hat{T}_{44} \rangle = \langle H_m \rangle + \langle H_a \rangle$ Xiangdong Ji, PRL 74(1995)1071 With $\langle H_m(u,d,s) \rangle / M_N = 9(2)\%$ The quark $H_m = \sum_{u,d,s\cdots} \int d^3x \, m \, \overline{\psi} \psi,$ **YBY**, et.al. *x*QCD Collaboration, mass PRD94(2016)054503 The QCD anomaly The total energy Gauge Invariant and scale independent $H_a = H_a^a + H_m^\gamma,$ The glue combinations. $H_E = \sum_{u,d,s...} \int d^3x \ \overline{\psi} (\vec{D} \cdot \vec{\gamma}) \psi,$ The quark energy anomaly $H_{g}^{a} \;=\; \int d^{3}x\; rac{-eta(g)}{g}(E^{2}+B^{2}),$ $H_m^{\gamma} = \sum \int d^3x \gamma_m m \overline{\psi} \psi.$ $H_g = \int d^3x \ \frac{1}{2} (B^2 - E^2),$ The glue field energy The quark mass anomaly

YBY, et. al., χ QCD collaboration, Phys. Rev. D 91(2015)074516

Proton mass decomposition The QCD anomaly

Then we have

$$\begin{split} M &= -\langle T_{44} \rangle = \langle H_q \rangle + \langle H_g \rangle + \langle H_a^a \rangle + \langle H_m^\gamma \rangle \\ &= \langle H_E \rangle + \langle H_m \rangle + \langle H_g \rangle + \frac{1}{4} \langle H_a \rangle, \end{split}$$

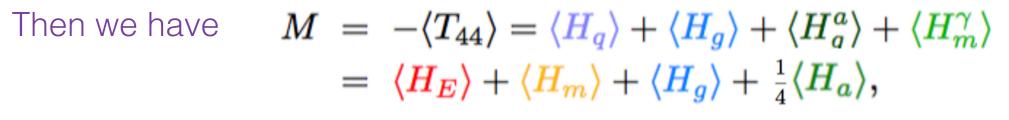
 $M = -\langle \hat{T}_{44} \rangle = \langle H_m \rangle + \langle H_a \rangle,$

The QCD anomaly $H_a = H_g^a + H_m^\gamma$, The glue anomaly $H_g^a = \int d^3x \, \frac{-\beta(g)}{g} (E^2 + B^2),$ $H_m^\gamma = \sum_{\substack{u,d,s \cdots \\ \mathbf{L} \mathbf{h} \mathbf{h}} \int d^3x \, \gamma_m m \, \overline{\psi} \psi.$

- The joint contribution of the QCD anomaly can be deduced from the quark mass term, with the sum rule above.
- The total QCD anomaly is renormalization scheme/scale independent.
- · $H_a/4M_N = 23(1)\%$

Proton mass decomposition

The quark/gluon energy



$$M = -\langle \hat{T}_{44}
angle = \langle H_m
angle + \langle H_a
angle,$$

• The quark/glue energy can be deduced from the momentum fraction,

$$\begin{array}{ll} \left\langle \boldsymbol{H_E} \right\rangle \ = \ \frac{3}{4} \langle x \rangle_q M - \frac{3}{4} \left\langle \boldsymbol{H_m} \right\rangle \\ \left\langle \boldsymbol{H_g} \right\rangle \ = \ \frac{3}{4} \langle x \rangle_q M + \frac{1}{4} \left\langle \boldsymbol{H_m} \right\rangle \end{array} \quad \left\langle \boldsymbol{H_g} \right\rangle \ = \ \frac{3}{4} \langle x \rangle_g M.$$

- The renormalization of the quark momentum fraction is much more trivial, which is just mixed with the glue one.
- It is more straightforward to obtain the quark/ glue momentum fraction first, and convert it to the quark/glue energy.

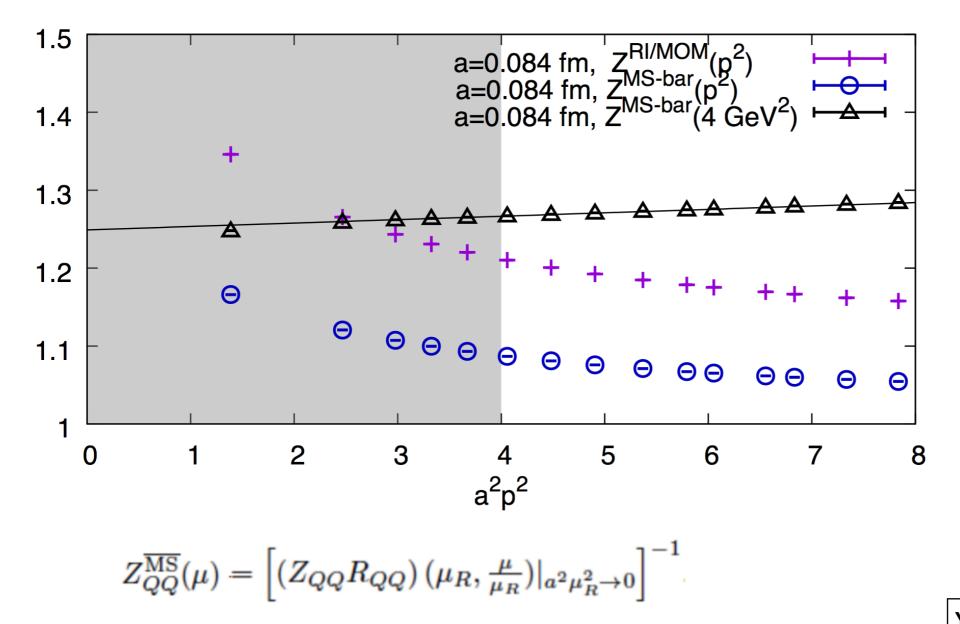
The total energy $H_E = \sum_{u,d,s...} \int d^3x \ \overline{\psi}(\vec{D} \cdot \vec{\gamma})\psi,$ The quark energy

$$H_g = \int d^3x \ \frac{1}{2} (B^2 - E^2),$$

The glue field energy

Renormalization

of the **quark** momentum fractions



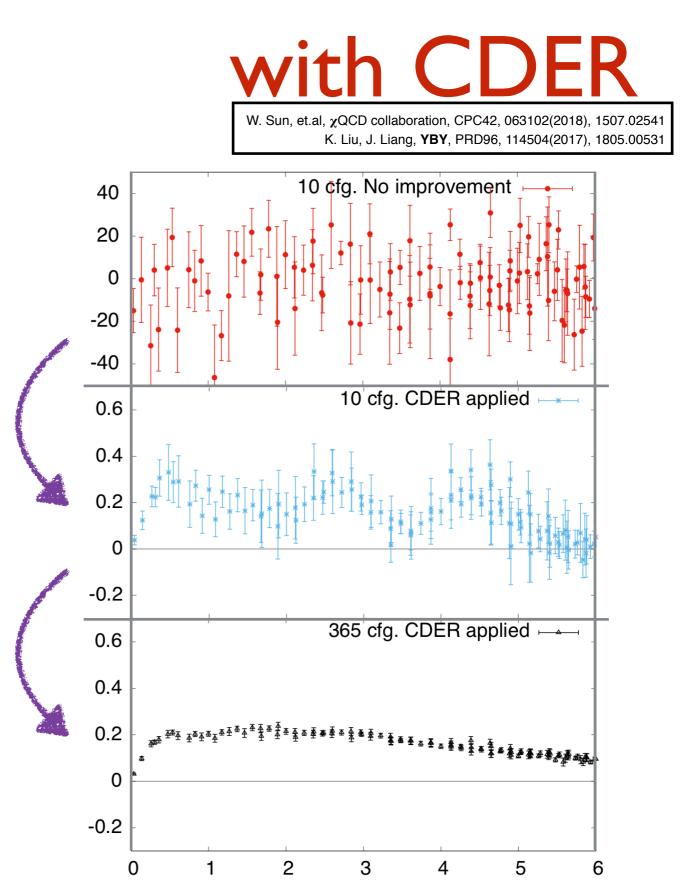
- Strong scale $\mu_R^2 = p^2$ dependence in the RI/MOM renormalization constant Z_{QQ} and converting ratio R_{QQ}
- But only the discretization error a²p² left in final MSbar renormalization constant at a fixed scale.

YBY, J. Liang, et. al., XQCD Collaboration, PRL121(2018)212001, ViewPoint and Editor's suggestion

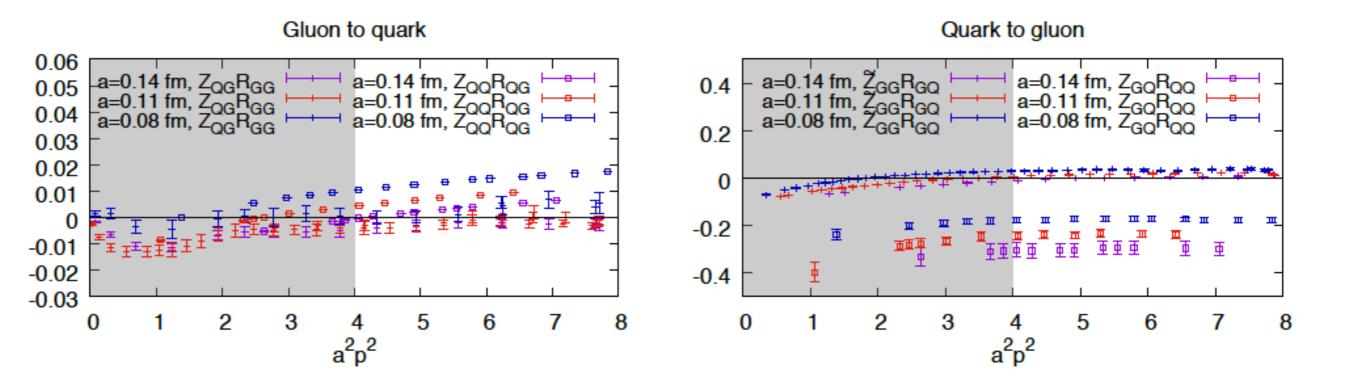
Gluon renormalization

- Calculate the renormalization factor of the glue EMT non-perturbatively on a ~5 fm box will require ~30,000,000 configurations to make the uncertainty to be ~0.01;
- Taking the localization of the correlations between the glue fields/ operators into account, the uncertainty can be reduced by a factor ~200;
- Use reasonable computer resource (~1M CPU hours) to increase the statistics, the ~0.01 uncertainty goal can be obtained with 365 configurations.

YBY, et. al., χ QCD collaboration, PRD98(2018) 074506



Mixing between the **quark** and **glue** momentum fractions

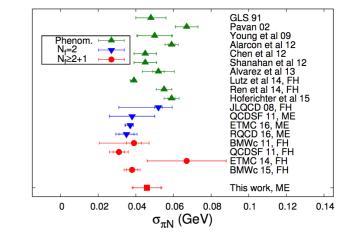


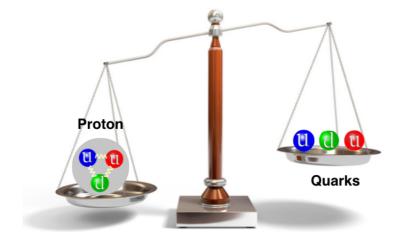
- The mixing from glue to quark is at 1% level;
- But that from quark to glue is significant.

YBY, J. Liang, et. al., *X*QCD Collaboration, PRL121(2018)212001, ViewPoint and Editor's suggestion

Outline

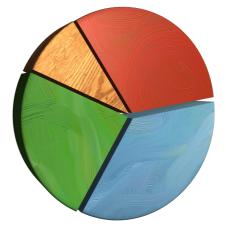
Quark mass and proton mass





The decompositions of proton mass

Results and further challenges

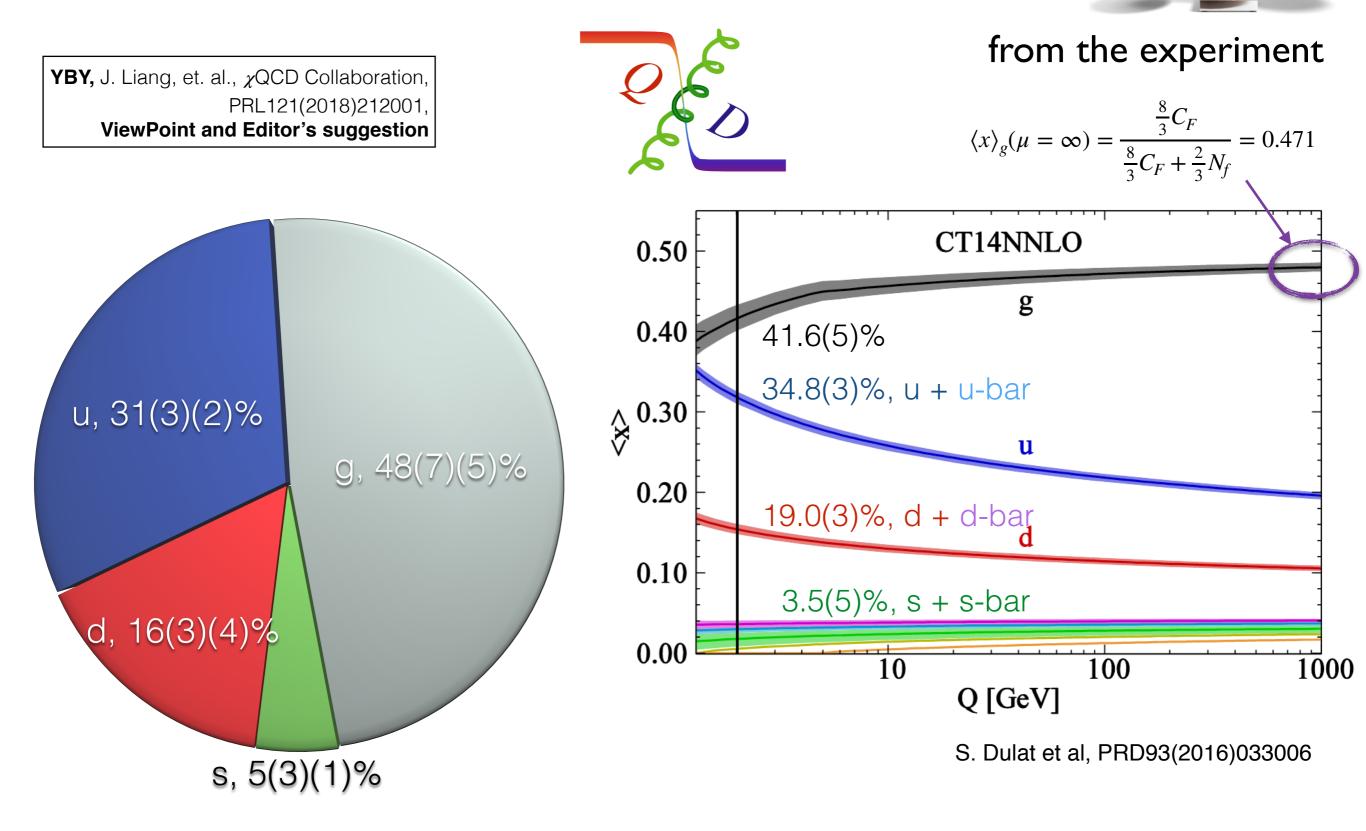


Proton mass decomposition

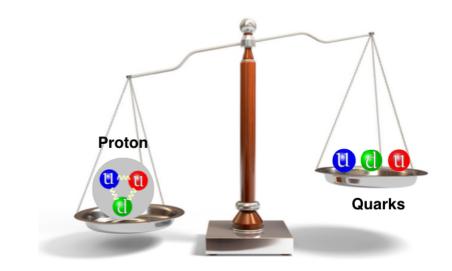
Comparing the momentum fractions

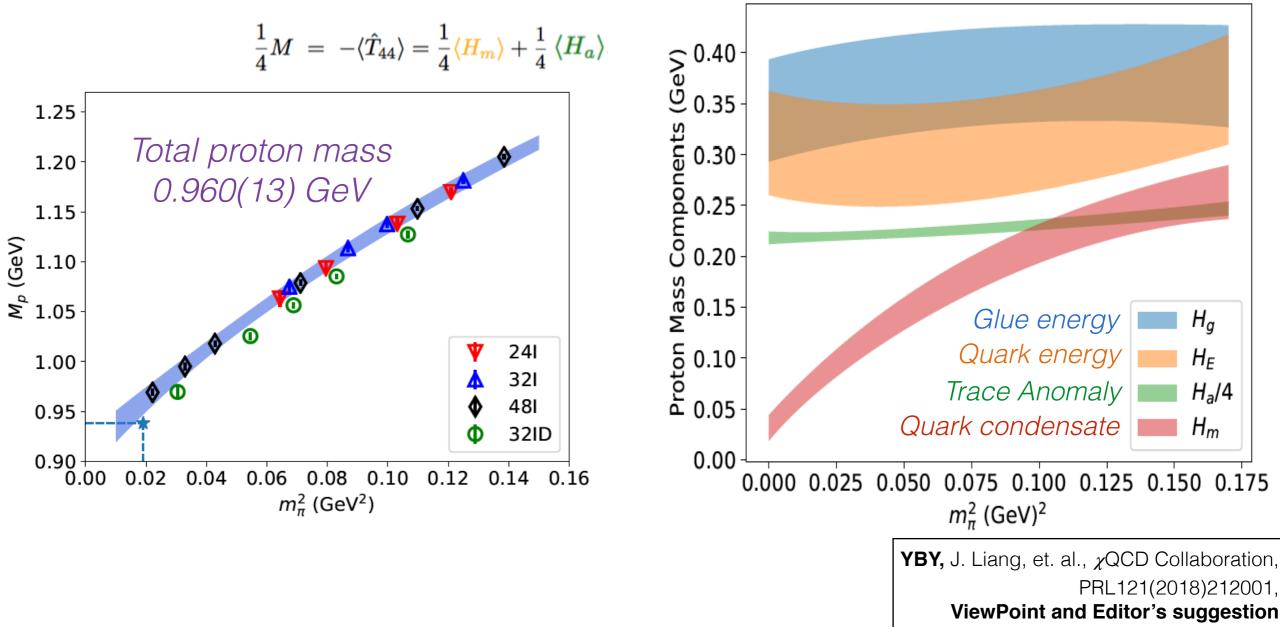
Protor

Quarks



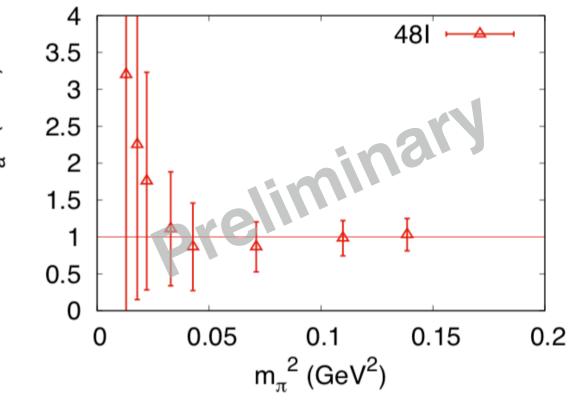
- Direct calculation of the quark/glue momentum fraction with non-perturbative renormalization and normalization.
- Trace anomaly contribution deduced by the direct calculation of the quark scalar condensate in nucleon, based on the sum rule





The next challenge: Trace anomaly under the Lattice Regularizations

- Scheme 1: Define the exact EMT under the lattice regularization and then the trace anomaly can be obtained automatically
- Scheme 2: Renormalize the ME of F²
 in the RI/MOM scheme and convert to the MS-bar scheme, then one can use the MS-bar beta function.
- Scheme 3: Calculate the ME of F² of both the nucleon and pion, then normalize the nucleon case with the pion case

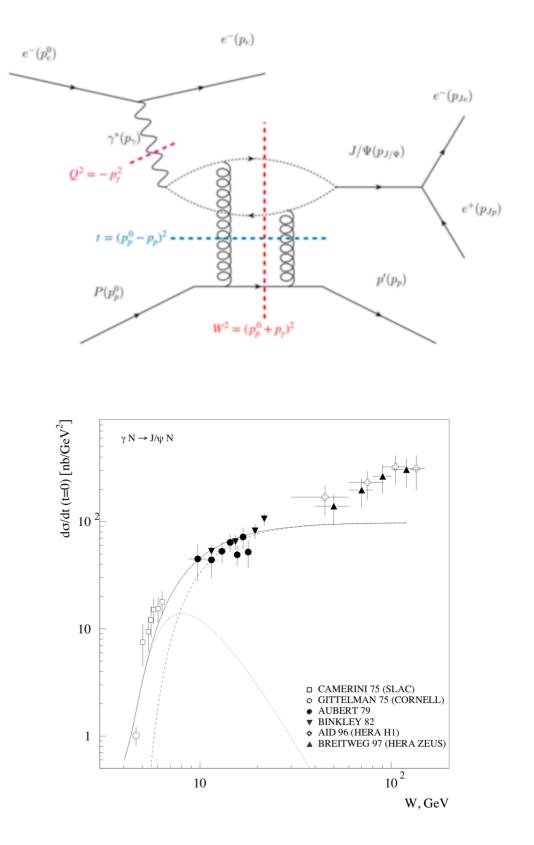


Possible experiments on the anomaly

 The near-threshold γ+N->J/psi+N photo production cross section would be sensitive to the form factor of the trace anomaly...

D. Kharzeev, Proc. Int. Sch. Phys. Fermi 130 (1996), 105

- ...if is Q2 dependence is similar to that of the traceless part of EMT.
 Y. Hatta and D. L. Yang, PRD98(2018)074003
- Such an assumption can be checked with Lattice QCD.



Summary

- Lattice QCD provides a systematic way to investigate the decomposition of the nucleon mass and also QCD EMT;
- It is crucial to investigate the trace anomaly with the regularization other than the dim. reg., especially the Lat. reg.;
- The Lattice result of the trace anomaly will be available in the near future, for both the proton and pion.