

Multiple parton scattering in eA and pA collisions

Hongxi Xing 邢宏喜

The 11th workshop on hadron physics in China and opportunities worldwide

Outline

Introduction

Nuclear parton distribution functions

➢ J/psi production as a probe of nuclear PDFs at EIC

Wang, HX, arXiv:1909.xxxxx

Multiple parton interaction in cold nuclear matter

Parton energy loss at EIC
Chang, Deng, Wang, HX, arXiv:1909.xxxxx

- Incoherent multiple scattering in pA Kang, Vitev, HX, 2019
- Jet transport coefficient for cold nuclear matter

Ru, Kang, Wang, **HX**, Zhang, arXiv:1907.11808

Summary

Key questions at EIC, EicC

How quarks and gluons distribute their momentum and spin inside the nucleon?

Nuclear structure Image: Nuclear structure Im

Quarks and gluons inside nuclei

- Question: cross section involving identified hadron(s) is not infrared safe Hadronic scale ~ 1/fm is non-perturbative, the cross section is not perturbative calculable.
- Solution from theory advances: QCD factorization theorem

QCD factorization theorem is the corner stone of high energy physics!

Nuclear effect - nuclear PDFs

□ Current state of the art of nuclear PDFs – large uncertainty

J/psi production in electron ion collisions

NRQCD factorization formalism

$$\sigma = \sum_{i} \sum_{n} \int d\xi f_{i/A}(\xi, \mu^2) \hat{\sigma}_{e+i \to e+c\bar{c}[n]+X} \langle \mathcal{O}_{[n]}^{J/\psi} \rangle$$

Leading order

Purely from gluon channel, very sensitive to initial state gluon distribution

Nonperturbative

LDMEs

J/psi production in electron ion collisions

Next-to-leading order

Xiang-Peng Wang, Hongxi Xing, 2019

gluon channel - real correction

gluon channel - virtual correction

quark channel - real correction

J/psi production in electron ion collisions

□ J/psi production at next-to-leading order

- Huge difference from four different parametrizations of LDMEs
- EIC and EicC will provide good opportunity to constrain LDMEs in NRQCD
- Next-to-leading order is important for precise prediction.

J/psi as a probe of nPDFs at EIC

Nuclear modification factor at NLO

- According to the designed high luminosity, the estimated statistical error is tiny for future EIC.
- The uncertainty due to nonperturbative LDMEs cancels in the ratio.

J/psi as a probe of nPDFs at EicC

j/psi production can be served as a good channel to constrain nuclear gluon distribution function.

Multiple scattering in nuclear medium

Multiple scattering in dilute and dense region

Parton density increases

Looking forward and backward

PHENIX Collaboration arXiv:1906.09928

Looking forward

Coherent multiple scattering in small-x

I. Vitev, J. Qiu, PLB, 2006

Probing length:

$$\frac{1}{Q} \sim \frac{1}{x_b P_b} \gg 2R\left(\frac{m}{p}\right)$$

In forward rapidity region, x_b is small, the probe interacts with the whole nucleus coherently.

Coherent multiple scattering – twist resummation

Nuclear dynamic shadowing - structure function in DIS

$$\begin{split} \xi^2 &= \frac{3\pi\alpha_s(Q^2)}{8\,r_0^2} \langle p | \, \hat{F}^2(\lambda_i) \, | p \rangle \\ &= 0.09 - 0.12 \, \, \text{GeV}^2 \end{split}$$

Only one free parameter, related to ghat.

Opportunities to explore coherent multiple scattering (small x) in EIC and EicC?

14

Looking backward

Incoherent multiple scattering in p+A collisions

In backward rapidity region, x_b is large. The probe interacts with the nucleus **incoherently**, we need to calculate multiple scattering contributions order by order, the leading contribution comes from double scattering.

multiple scattering expansion

$$d\sigma_{pA \to hX} = d\sigma_{pA \to hX}^{(S)} + d\sigma_{pA \to hX}^{(D)} + \cdots$$

$$E_{h}\frac{d\sigma^{(S)}}{d^{3}P_{h}} = \frac{\alpha_{s}^{2}}{S}\sum_{a,b,c}\int\frac{dz}{z^{2}}D_{c\to h}(z)\int\frac{dx'}{x'}f_{a/p}(x')\int\frac{dx}{x}f_{b/A}(x)H_{ab\to cd}^{U}(\hat{s},\hat{t},\hat{u})\delta(\hat{s}+\hat{t}+\hat{u})$$

Double scattering Feynman diagrams

(qq'
ightarrow qq' as an example)

Double scattering cross section (twist-4 contribution) Kang, Vitev, HX, PRD 2013

$$E_{h}\frac{d\sigma^{(D)}}{d^{3}P_{h}} = \left(\frac{8\pi^{2}\alpha_{s}}{N_{c}^{2}-1}\right)\frac{\alpha_{s}^{2}}{S}\sum_{a,b,c}\int\frac{dz}{z^{2}}D_{c\to h}(z)\int\frac{dx'}{x'}f_{a/p}(x')\int\frac{dx}{x}\delta(\hat{s}+\hat{t}+\hat{u})dx'$$
$$\times\sum_{i=I,F}\left[x^{2}\frac{\partial^{2}T_{b/A}^{(i)}(x)}{\partial x^{2}}-x\frac{\partial T_{b/A}^{(i)}(x)}{\partial x}+T_{b/A}^{(i)}(x)\right]c^{i}H_{ab\to cd}^{i}(\hat{s},\hat{t},\hat{u})$$

Looking backward in PHENIX

Kang, Vitev, **HX**, 2019 PHENIX, arXiv: 1906.09928

Explore incoherent multiple scattering (large x) in EicC?

Parton energy loss in eA

Cold nuclear matter

Parton energy loss in cold nuclear matter

Medium induced gluon radiation – twist 4 contribution

Guo, Wang, 2002 Zhang, Wang, Wang, 2004 Du, Wang, HX, Zong, 2018

...

Medium modified fragmentation functions

$$\frac{\partial \tilde{D}_{q}^{h}(z_{h},Q^{2})}{\partial \ln Q^{2}} = \frac{\alpha_{s}(Q^{2})}{2\pi} \int_{z_{h}}^{1} \frac{dz}{z} \left[\tilde{\gamma}_{q \to qg}(z,Q^{2}) \tilde{D}_{q}^{h}(\frac{z_{h}}{z},Q^{2}) + \tilde{\gamma}_{q \to gq}(z,Q^{2}) \tilde{D}_{g}^{h}(\frac{z_{h}}{z},Q^{2}) \right], \quad (1)$$

$$\frac{\partial \tilde{D}_{g}^{h}(z_{h},Q^{2})}{\partial \ln Q^{2}} = \frac{\alpha_{s}(Q^{2})}{2\pi} \int_{z_{h}}^{1} \frac{dz}{z} \left[\tilde{\gamma}_{g \to gg}(z,Q^{2}) \tilde{D}_{g}^{h}(\frac{z_{h}}{z},Q^{2}) + \sum_{q=1}^{2n_{f}} \tilde{\gamma}_{g \to q\bar{q}}(z,Q^{2}) \tilde{D}_{q}^{h}(\frac{z_{h}}{z},Q^{2}) \right], \quad (2)$$

Nuclear modification factor

$$R_A^h(\nu, Q^2, z) = \left[\frac{N^h(\nu, Q^2, z)}{N^e(\nu, Q^2)}\right]_A / \left[\frac{N^h(\nu, Q^2, z)}{N^e(\nu, Q^2)}\right]_D$$

ep baseline at NLO Chang, Deng, Wang, HX, 1909.xxxxx

Medium effect in HERMES

Chang, Deng, Wang, HX, 1909.xxxxx

NLO ep baseline + parton energy loss

Predictions for EicC

□ Searching for Eloss and flavor conversion

Medium induced flavor conversion leads to enhancement of K⁻ production yield.

Transverse momentum broadening in eA and pA

Transverse momentum broadening in CNM

Transverse momentum broadening in eA and pA collisions

SIDIS (LO, NLO) Kang, Wang, Wang, Xing 2014

Heavy quarkonium Initial state multiple scattering (CEM, NRQCD)

Drell-Yan (LO, NLO) Kang, Qiu, Wang, Xing 2016

Heavy quarkonium Final state multiple scattering (CEM, NRQCD)

Kang, Qiu, 2008,2012

Parametrization of jet transport coefficient

$$\Delta \langle p_T^2 \rangle = \langle p_T^2 \rangle_{eA} - \langle p_T^2 \rangle_{ep} \sim T_{qg/gg}(x, 0, 0)$$

Considering a large and loosely bound nucleus

$$T_{qg}(x,0,0,\mu^2) \approx \frac{N_c}{4\pi^2 \alpha_s} f_{q/A}(x,\mu^2) \hat{q}(x,\mu)$$

Kinematic and scale dependence of qhat

$$\hat{q}(x,\mu^2) = \hat{q}_0 \, \alpha_s(\mu^2) \, x^{\alpha} (1-x)^{\beta} \ln^{\gamma}(\mu^2/\mu_0^2)$$
normalization Small-x saturation Scale dependence

Large-x power correction

Global analysis of world data

Ru, Kang, Wang, **HX**, Zhang, arXiv: 1907.11808

□ Kinematic coverage and fitted qhat

Ru, Kang, Wang, HX, Zhang, arXiv: 1907.11808

 $\hat{q}_0 = 0.02 GeV^2/fm, \ \alpha = -0.17, \ \beta = -2.79, \ \gamma = 0.25$

Transverse momentum broadening in EicC

Summary

Thanks for your attention!

Inuclear PDFs

✤ j/psi production as a probe to nuclear PDFs in future EIC

multiple parton interaction in cold nuclear matter

- Incoherent multiple scattering at RHIC and LHC
- Medium induced gluon radiation leads to parton eloss in eA
- Medium induced flavor conversion leads to k⁻ enhancement in large xb and z region

Given and a set of a

- Global analysis on qhat from world data (SIDIS, DIS, DY, heavy quarkonium)
- First time quantitative evidence of the universality of cold nuclear medium property