Overview of BESIII physics

Beijiang Liu Institute of High Energy Physics, CAS

11th Workshop on Hadron physics in China and Opportunities Worldwide Nankai, 2019

Beijing Electron Positron Collider (BEPC)

Upgrade of BEPC (started 2004, first collisions July 2008) Beam energy 1 GeV to 2.3 GeV Optimum energy 1.89 GeV Single beam current 0.91 A Crossing angle ±11 mrad

BESIII detector

CsI(TI) calorimeter, 2.5% @ 1 GeV

full operation since 2008 all subdetectors are in good status

BESIII collaboration

15 countries, 72 institutes, ~500 members

10 years of data taking at BESIII

5

Rich physics program

- Light hadron spectroscopy
 - Full spectra: conventional/exotic hadrons QCD
 - How quarks form a hadron? non-pQCD
- Charm physics
 - − CKM matrix elements → SM and beyond
 - DDbar mixing and CPV
 SM and beyond
- Charmonium physics

hep-ex/0809.1869 IJMP A V24, No 1 (2009) supp

- Spectroscopy and transitions → pQCD & non-pQCD
- pQCD: " $\rho\pi$ puzzle" \rightarrow a probe to non-pQCD or pQCD?
- Tau physics and QCD
 - Precision measurement of the tau mass and R values
- Search for rare and forbidden decay modes

Selected topics

- XYZ particles: X(3872), Y(4260), Zc(3900)
- Light hadrons: glueballs & more
- Charm(meson) physics
- Baryons: form factors & polarization [See Haibo's talk]

Hadron spectroscopy

- Testing QCD in the confinement regime
- Revealing the fundamental degrees of freedom

QCD exotics **Conventional hadrons** $1/\psi$ Proton π Meson Baryon Non-standard hadrons QCD predicts new forms of hadrons Hadro-quarkonium Molecule Tetraquark Hybrid Glueball Pentaguark From Nature Rev.Phys. 1 (2019) no.8, 480

critical for the quantitative understanding of confinement

Charmonium and exotics at BESIII

Discovery of the $Z_c(3900)$

- Mass = (3899.0±3.6±4.9) MeV
- Width = (46±10±20) MeV
- > Fraction = $(21.5 \pm 3.3 \pm 7.5)\%$

In e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}J/\psi$ events at 4.26 GeV, a particle decays into $\pi^{\pm}J/\psi$ is observed!

- Couples to \overline{cc}
- Has electric charge
- At least 4 quarks
- A tetraquark state?
- A DD* molecule?

PRL110, 252001 (2013)

Properties of the $Z_c(3900)$

- I^G=1+
- J^{PC}=1⁺⁻
- Decay modes
 - ✓ πJ/ψ
 - ✓ DD*
 - ✓ ρη_c (4.2σ)
 - ✓ πh_c (2.1σ)
 - ✓ Not seen in light hadrons
- Partner state: Z_c(4020)
 - ✓ I^G=1+; J^{PC}=?^{?-}
 - ✓ Couples to πh_c and \overline{D}^*D^*
 - ✓ Couples possibly to $\pi \psi$ '
 - ✓ M=4022.9±2.8 MeV
 - ✓ Γ=7.9±3.7 MeV

- PRL 119, 072001 (2017)
 - PWA of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
 - JP=1+
 - Asymmetric line shape
 - Significant f₀(980) contribution
 - π⁺π⁻ D-wave fraction increases as E_{cm} increases

Evidence for $Z_c \rightarrow \rho \eta_c$

- $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta_c$
- $\eta_c \rightarrow 9$ hadronic decays

Decay mode	BR
$\eta_c \rightarrow p\overline{p}$	~0.13%
$\eta_c \rightarrow 2(K^+K^-)$	~0.15%
$\eta_c \to \pi^+\pi^- K^+ K^-$	~1.50%
$\eta_c \to K^+ K^- \pi^0$	~1.20%
$\eta_{ m c} ightarrow oldsymbol{p} \overline{oldsymbol{p}} \pi^0$	~0.18%
$\eta_c \to K_S K \pi$	~1.80%
$\eta_c \rightarrow \pi^+ \pi^- \eta$	~1.60%
$\eta_c \rightarrow K^+ K^- \eta$	~0.57%
$\eta_c \rightarrow \pi^+ \pi^- \pi^0 \pi^0$	~2.40%

- Strong evidence of e⁺e⁻→ πZ_c, Z_c → ρη_c at √s = 4.23, statistical significance is 4.2σ. (3.9σ including systematics)
- $e^+e^- \rightarrow \pi Z_c', Z_c' \rightarrow \rho \eta_c$ not seen

 $e^+e^- \rightarrow \pi Z_c$, $Z_c \rightarrow \rho \eta_c @ 4.23 \text{ GeV}$

Evidence for $Z_c \rightarrow \rho \eta_c$

• Measure Born cross section at 4.23 GeV: $\sigma^{B}(e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}\eta_{c}) = (46^{+12}_{-11} \pm 10) \text{ pb}$ $\sigma^{B}(e^{+}e^{-} \rightarrow \pi Z_{c}, Z_{c} \rightarrow \rho \eta_{c}) = (48 \pm 11 \pm 11) \text{ pb}$

	<u> </u>					
,	$\sqrt{s} = 4.226 \mathrm{GeV}$	$\sqrt{s} = 4.258 \mathrm{GeV}$	$\sqrt{s} = 4.358 \mathrm{GeV}$	Type-I	Type-II	Molecule
$R_{Z_{c}(3900)}$	2.2 ± 0.9	< 5.6	•••	230^{+330}_{-140}	$0.27^{+0.40}_{-0.17}$	$0.046^{+0.025}_{-0.017}$
$R_{Z_{c}(4020)}$	< 1.6	< 0.9	< 1.4	6.6	$+56.8 \\ -5.8$	$0.010^{+0.006}_{-0.004}$

A.Esposito, A.L.Guerrieri, A.Pilloni, Phys. Lett. B 746, 194 (2015)

Z_c states have both tetraquark and molecule components?

Refined calculations needed!

$\sigma(e^+e^- \to \pi^+\pi^- J/\psi): \Upsilon(4260) \twoheadrightarrow \Upsilon(4220)$

- Most precise cross section measurment to date from BESIII
- Y(4220): M = 4222.0±3.1±1.4 MeV, Γ = 44.1±4.3±2.0 MeV (lower) (narrower)
- Y(4320): M = 4320.0 \pm 10.4 \pm 7.0 MeV, Γ =101.4^{+25.3}_{-19.7} \pm 10.2 MeV

Y(4260) → Y(4220): more modes

Y(4220) appears in $\omega \chi_{c0}$, $\pi^+ \pi^- J/\psi$, $\pi^+ \pi^- \psi'$, $\pi^+ \pi^- h_c$, $D^0 D^{*-} \pi^+$ Mass~4220 MeV, width~ 60 MeV

 $e^+e^- \rightarrow \pi^+\pi^-\psi(3770)$ PRD 100 032005

- Study the intermediate states of $e^+e^- \rightarrow \pi^+\pi^- D^0\overline{D}^0$, $e^+e^- \rightarrow \pi^+\pi^- D^+ D^-\overline{D}^0$
 - $D^0 \to K^- \pi^+, K^- \pi^+ \pi^0, K^- \pi^+ \pi^+ \pi^- \text{ and } K^- \pi^+ \pi^+ \pi^- \pi^0$
 - $D^+ \to K^- \pi^+ \pi^+, K^- \pi^+ \pi^0, K^0_S \pi^+, K^0_S \pi^+ \pi^0$, and $K^0_S \pi^+ \pi^+ \pi^-$

• $e^+e^- \rightarrow \pi^+\pi^-\psi(3770)$ is observed for the first time, no evidence for $\psi(1^3D_3)$

- Hints of Z_c in M($\pi^{\pm}\psi(3770)$) at 4.04 and 4.13 GeV in \sqrt{s} = 4.42 GeV data ¹⁷
- Clear structure in line-shape of $\pi^+\pi^-\psi(3770)$

 $e^+e^- \rightarrow D_1(2420)D$

PRD 100 032005

- Three different decay channels (D⁰π⁺π⁻, D^{*+}π⁻, and D⁺π⁺π⁻) are used to search for D₁(2420)
- Clear structure in the line-shape of $e^+e^- \rightarrow D_1(2420)\overline{D}$
- No D₁(2420) D
 near threshold enhancement → Y(4260) not a D₁(2420) D
 molecule?

Observation of $e^+e^- \rightarrow \gamma X(3872)$

 $X(3872) \rightarrow \pi^+\pi^- J/\psi$

4.0 fb⁻¹, 20±5 evts

11.6 fb⁻¹, 79±9 evts

Observation of X(3872) $\rightarrow \omega J/\psi_{PRL122, 232002}$

There were only evidence at Belle (4.3 σ) and BaBar (4 σ)

• Signal process: $e^+e^- \rightarrow \gamma X \rightarrow \gamma \omega J/\psi$, with $\omega \rightarrow \pi^+\pi^-\pi^0$, $J/\psi \rightarrow l^+l^-$

Signal PDF:

 ✓ 3 resonances: (X(3872), X(3915) and X(3960))

 $N_{sig}(X(3872)) = 45 \pm 9 \pm 3$

✓ Two resonances: (X(3872), X(3915))

$N_{sig}(\Lambda(3072)) = 40 \pm 0 \pm 2$	N _{sig}	<i>(X</i>	(387	72))	=	40	\pm	8	±	2
---	------------------	-----------	------	------	---	----	-------	---	---	---

	Mass	Width
X(3872)	$3873.3 \pm 1.1 \; (3872.8 \pm 1.2)$	1.2(1.2)
X(3915)	$3926.4 \pm 2.2 \; (3932.6 \pm 8.7)$	$3.8 \pm 7.5 \ (59.7 \pm 15.5)$
X(3960)	3963.7 ± 5.5	33.3 ± 34.2

two hypotheses different by only 2.5σ

 $\sigma(e^+e^- \rightarrow \gamma X(3872))$

PRL122, 232002

A simultaneous fit to

the $X(3872) \rightarrow \omega J/\psi$ and $\pi^+\pi^- J/\psi$ cross section gives $M(Y(4200)) = 4200.6^{+7.9}_{-13.3} \pm 3.0 \text{ MeV}/c^2$ $\Gamma(Y(4200)) = 115^{+38}_{-26} \pm 12 \text{ MeV}$

 $\mathcal{R} \equiv \frac{\mathcal{B}(X(3872) \to \omega J/\psi)}{\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)} = 1.6^{+0.4}_{-0.3} \pm 0.2,$

previous measurement: 0.8 ± 0.3 from BaBar

Observation of $X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$ PRL 122, 202001

- Clear signal of X(3872) in Y(4260) region, $N_{X(3872)} = 16.9^{+5.2}_{-4.9}$
- No X(3872) events outside of Y(4260)
- Clear cluster of $\chi_{c1}(1P)$ events in X(3872) mass window
- First observation of $X(3872) \rightarrow \pi^0 \chi_{c1}(1P)$ with significance $>5\sigma$

Measurements of X(3872) $\rightarrow \gamma J/\psi, \gamma \psi$ (3686) FESIM preliminary

Simultaneous fit; NO evident signal!

 $\frac{B[X(3872) \to \gamma \psi(3686)]}{B[X(3872) \to \gamma J/\psi]} < 0.59 \text{ at } 90\% \text{ C.L.}$ PDG average: 2.6

Measurements of X(3872) $\rightarrow D^0 \overline{D}^{*0}, \gamma D^+ D^-$ **ESI**

preliminary

 $X(3872) \rightarrow D^0 \overline{D}^{*0} + c.c.$

 $D^{*0} \rightarrow \gamma D^0, \pi^0 D^0$

 $D^0 \to K\pi, K\pi\pi, K\pi\pi\pi$

 $X(3872) \to \gamma D^+ D^-$

 $D^{\pm} \rightarrow K\pi\pi, K\pi\pi\pi$

Simultaneous fit on $D^{*0} \rightarrow \gamma D^0$ and $\pi^0 D^0$ Significance > 7.4 σ

No evident signal for γD^+D^-

Relative branching ratio compared with $X(3872) \rightarrow \pi^+\pi^- J/\psi$

mode $D^{*0}\overline{D^0} + c.c.$	$\gamma J/\psi$	$\gamma \psi'$	$\gamma D^+ D^-$	$\omega J/\psi$	$\pi^0 \chi_{c1}$
ratio 14.81 ± 3.80	0.79 ± 0.28	< 0.42	< 0.99	$1.7^{+0.4}_{-0.3} \pm 0.2$ [27]	$0.88^{+0.33}_{-0.27} \pm 0.10$ [37]

X(3872) decay BRs

mode	$D^{*0}\bar{D^0} + c.c.$	$\gamma J/\psi$	$\gamma\psi'$	$\gamma D^+ D^-$	$\omega J/\psi$	$\pi^0\chi_{c1}$
ratio	14.81 ± 3.80	0.79 ± 0.28	< 0.42	< 0.99	$1.7^{+0.4}_{-0.3} \pm 0.2$ [27]	$0.88^{+0.33}_{-0.27} \pm 0.10$ [37]

With recent $B(X(3872) \rightarrow \pi^+\pi^- J/\psi) = (4.1\pm1.3)\%$ from BaBar, one gets

B(known)=(1+14.81+0.79+1.7+0.88)*4.1% = 19.2x4.1% ~ (79±32)%!

Find more decay modes, and/or improve the precisions

Emerging connections between XYZ

GlueX@JLab BESIII

Light hadron physics

Glueball

What role do gluonic excitations play in the spectroscopy of light mesons, and can they help explain confinement?

	$m_{\pi} (MeV)$	$m_{0^{++}}$ (MeV)	$m_{2^{++}} (MeV)$	$m_{0^{-+}}$ (MeV)
$N_f = 2$	938	1417(30)	2363(39)	2573(55)
	650	1498(58)	2384(67)	2585(65)
$N_f = 2 + 1$ [22]	360	1795(60)	2620(50)	_
quenched [13]	_	1710(50)(80)	2390(30)(120)	2560(35)(120)
quenched [14]	—	1730(50)(80)	2400(25)(120)	2590(40)(130)

Low lying glueballs with ordinary quantum number →mixing with qqbar mesons

Systematic studies needed

PRD60, 034509; PRD73, 014516; PRD82, 034501; CPC 42 093103

Systematic study of glueball at BESIII

Charmonium decays provides an ideal hunting ground for light glueballs

- "Gluon-rich" process
- ◆ Clean high statistics data samples from e⁺e⁻ production
- ◆ I(J^{PC}) filter in strong decays of charmonium

Overpopulated scalar mesons

Which one has more gluonic component?

Amplitude analysis of $J/\psi \rightarrow \gamma \eta \eta / K_S^0 K_S^0$

Resonance	Mass (MeV/ c^2)	Width (MeV/ c^2)	$\mathcal{D}(J/\psi \to \gamma X \to \gamma \eta M)$	Significance
$f_0(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2σ
$f_0(1710)$	$1759 \pm 6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0σ
$f_0(2100)$	$2081 \pm 13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13_{-0.10-0.28}^{+0.00+0.04}) \times 10^{-4}$	13.9σ
$f'_2(1525)$	$1513 \pm 5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	11.0σ
$f_2(1810)$	1822^{+29+66}_{-24-57}	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4σ
$f_2(2340)$	$2362^{+31+140}_{-30-63}$	$334_{-54-100}^{+62+165}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$	7.6σ

Br of $f_0(1710)$ and $f_0(2100) \sim 10x$ larger than $f_0(1500)$

Resonance	$M ({\rm MeV}/c^2)$	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma ({\rm MeV}/c^2)$	$\Gamma_{\rm PDG}~({\rm MeV}/c^2)$	Branching fraction	Significance
K*(892)	896	895.81 ± 0.19	48	47.4 ± 0.6	$(6.28^{+0.16+0.59}_{-0.17-0.52}) \times 10^{-6}$	35σ
$K_1(1270)$	1272	1272 ± 7	90	90 ± 20	$(8.54^{+1.07+2.35}_{-1.20-2.13}) \times 10^{-7}$	16σ
$f_0(1370)$	$1350\pm9^{+12}_{-2}$	1200 to 1500	$231 \pm 21^{+28}_{-48}$	200 to 500	$(1.07 \pm 0.08 \pm 0.36) \times 10^{-5}$	25σ
$f_0(1500)$	1505	1504 ± 6	109	109 ± 7	$(1.59^{+0.16+0.18}_{-0.16-0.56}) \times 10^{-5}$	23σ
$f_0(1710)$	$1765 \pm 2^{+1}_{-1}$	1723^{+6}_{-5}	$146 \pm 3^{+7}_{-1}$	139 ± 8	$(2.00^{+0.03+0.31}_{-0.02-0.10}) \times 10^{-4}$	$\gg 35\sigma$
$f_0(1790)$	$1870\pm7^{+2}_{-3}$		$146 \pm 14^{+7}_{-15}$		$(1.11_{-0.06-0.32}^{+0.10}) \times 10^{-5}$	24σ
$f_0(2200)$	$2184 \pm 5^{+4}_{-2}$	2189 ± 13	$364 \pm 9^{+4}_{-7}$	238 ± 50	$(2.72^{+0.08+0.17}_{-0.06-0.47}) \times 10^{-4}$	$\gg 35\sigma$
$f_0(2330)$	$2411\pm10\pm7$		$349 \pm 18^{+23}_{-1}$		$(4.95^{+0.21+0.66}_{-0.21-0.72}) \times 10^{-5}$	35σ
$f_2(1270)$	1275	1275.5 ± 0.8	185	$186.7^{+2.2}_{-2.5}$	$(2.58^{+0.08+0.59}_{-0.09-0.20}) \times 10^{-5}$	330
$f'_2(1525)$	1516 ± 1	1525 ± 5	$75\pm1\pm1$	73+6	$(7.99^{+0.03+0.69}_{-0.04-0.50}) \times 10^{-5}$	$\gg 35\sigma$
$f_2(2340)$	$2233 \pm 34^{+9}_{-25}$	2345^{+50}_{-40}	$507\pm 37^{+18}_{-21}$	322^{+70}_{-60}	$(5.54^{+0.34+3.82}_{-0.40-1.49}) \times 10^{-5}$	26σ
0 ⁺⁺ PHSP					$(1.85^{+0.05+0.68}_{-0.05-0.26}) \times 10^{-5}$	26σ
2 ⁺⁺ PHSP					$(5.73^{+0.99+4.18}_{-1.00-3.74}) \times 10^{-5}$	13σ

Scalar glueball candidate?

Flavor-blindness of glueball decays

$$egin{aligned} &\Gamma(J/\psi o \gamma G_{0^+}) = rac{4}{27} lpha rac{|p|}{M_{J/\psi}^2} |E_1(0)|^2 = 0.35(8) keV \ &\Gamma/\Gamma_{tot} = 0.33(7)/93.2 = 3.8(9) imes 10^{-3} \end{aligned}$$

CLQCD, Phys. Rev. Lett. 110, 021601 (2013)

Experimental results

- $\geq \mathrm{B}(\mathrm{J}/\psi \rightarrow \gamma \mathrm{f}_{0}(1710) \rightarrow \gamma K \overline{K}) = (8.5^{+1.2}_{-0.9}) \times 10^{-4}$
- >B(J/ $\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \pi \pi) = (4.0 \pm 1.0) \times 10^{-4}$
- $\succ \mathrm{B}(\mathrm{J}/\psi \rightarrow \gamma \mathrm{f}_{0}(1710) \rightarrow \gamma \omega \omega) = (3.1 \pm 1.0) \times 10^{-4}$

>B(J/ $\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \eta \eta$)=(2.35^{+0.13+1.24}_{-0.11-0.74})× 10⁻⁴

 \Rightarrow B(J/ $\psi \rightarrow \gamma f_0(1710)$) > 1.7× 10⁻³

 $f_0(1710)$ largely overlapped with scalar glueball?

$$\frac{1}{P.S.}\Gamma(G \to \pi\pi: K\overline{K}: \eta\eta: \eta\eta': \eta'\eta') = 3:4:1:0:1$$

*with chiral suppression PRL 98 149103

$$\Gamma(G \to \pi\pi)/\Gamma(G \to K\bar{K}) \approx \frac{f_{\pi}^{4}}{f_{K}^{4}} \approx 0.48$$
$$\frac{1}{P.S.}\Gamma(G \to \pi\pi: K\bar{K}:\eta\eta) \approx 1.3:3.16:1$$

Tensor glueball candidate?

 $\Gamma(J/\psi
ightarrow \gamma G_{2^+}) = 1.01(22) keV$

 $\Gamma(J/\psi
ightarrow \gamma G_{2^+})/\Gamma_{tot} = 1.1 imes 10^{-2}$

CLQCD, Phys. Rev. Lett. 111, 091601 (2013)

Experimental results

Br(J/ $\psi \rightarrow \gamma f_2(2340) \rightarrow \gamma \eta \eta$) = (3.8^{+0.62+2.37}_{-0.65-2.07})×10⁻⁵ Phys.Rev. D87, 092009 (2013)

Br(J/ ψ → f₂(2340) → $\gamma \phi \phi$) = (1.91±0.14^{+0.72}_{-0.73})×10⁻⁴ Phys.Rev. D93, 112011 (2016)

Br(J/ $\psi \rightarrow \gamma f_2(2340) \rightarrow \gamma K_S K_S) = (5.54^{+0.34^{+3.82}}_{-0.40^{-1.49}}) \times 10^{-5}$ Phys.Rev. D98, 072003 (2018)

 $f_2(2010)$, $f_2(2300)$ and $f_2(2340)$ stated in π -p reactions are observed with a strong production of $f_2(2340)$

It is desirable to search for more decay modes

Light meson decays

- To study light meson decays with unprecedented precision
 BESIII: 10¹⁰ J/ψ→ ~10⁷ η , ~5× 10⁷ η', ~10⁷ ω
- Unique place to test fundamental symmetries in QCD at low energy region
- Probe physics beyond the Standard Model (SM),

E.g.

$$\eta/\eta' \rightarrow 2\gamma$$
 chiral anomaly
 $\eta/\eta' \rightarrow \pi^{+}\pi^{-}\pi^{0}$ quark masses
 $\eta' \rightarrow \gamma\pi^{+}\pi^{-}$ box anomaly
 $\eta/\eta' \rightarrow \pi\pi$ CP violation
 $\eta/\eta' \rightarrow \mu^{+}\mu^{-}\pi^{0}$, e⁺e⁻\pi^{0} C violation
 $\eta/\eta' \rightarrow \mu$ e LF violation

Precision measurement of the branching fractions of η' decays

First direct measurement of absolute BF of \mathfrak{P}'

$\eta' \rightarrow \gamma \pi^+ \pi^-$ decay dynamics

- high term of WZW ChPT \rightarrow box anomaly
- studied by many experiments (CB, L3 ...)
- no consistent picture due to limited statistics
 - ρ mass shift or not ?
 - box anomaly or not ?

Model-(in)dependent fit PRL 120, 242003

fit with ρ (770)-ω-ρ (1450)

A 30000 25000 25000 20000 15000 <u>e</u> 6 (a) (\mathbf{b}) (c) up 25000 un 25000 stup 20000 990 ± 0.0056 20000 Events γ∛ ndf = 1.3 & box 15000 10000 10000 10000 5000 5000 5000 Dull In ۳, 0.7 0.8 0 Μ(π⁺π⁻) (GeV/c²) 0.7 0.8 0. Μ(π*π`)(GeV/c²) M(π*π) (GeV

✓ ρ (770)- ω cannot describe data well

fit with ρ (770)- ω -box anomaly

✓ Extra contribution (maybe ρ (1450) or box-anomaly) is also necessary

Crystal barrel: $a = (1.80 \pm 0.49 \pm 0.04)GeV^{-2}$ $b = (0.04 \pm 0.36 \pm 0.03)GeV^{-4}$ GAMS-2000: $a = (2.7 \pm 1.0)GeV^{-2}$

 $P(s_{\pi\pi}) = 1 + a s_{\pi\pi} + b O(s^2_{\pi\pi}) + d BW_w$

Charm (meson) physics

Leptonic & semileptonic decays

(Semi)leptonic D decays provide an ideal bridge to access quark mixing element |Vcs(d)| and decay constant/form factors, which parameterizing weak and strong effects, respectively

39

$\mathbf{f}_{\mathbf{D}+}|\mathbf{V}_{\mathbf{cd}}|$ from $\mathbf{D}^+ \rightarrow \mathbf{l}^+ \mathbf{v}$

2.93 fb⁻¹ data@ 3.773 GeV

New inputs from PDG2018:

statistical error dominant

$f_{Ds+}|V_{cs}|$ from $D_{s}^{+} \rightarrow l^{+}v$

New inputs from PDG2018:

Comparisons of f_{D+}, f_{Ds+}, and f_{Ds+}: f_{D+}

• LQCD calculated f_{D+} , f_{Ds+} , f_{Ds+} : f_{D+} differ with experimental measurements by +1.5 σ , -1.5 σ , and -2 σ

$f_{+}^{K}(0)|V_{cs}|$ from $D^{0} \rightarrow K^{-}\mu^{+}v$

PRL122, 011804 (2019)

Comparisons of form factors $f_{+}^{K(\pi)}(0)$

Testing lepton universality at % level

Mode	D ⁰ decay BR (%)	D ⁺ decay BR (%)
Kev	3.505±0.035	8.60±0.16
Κμν	3.413±0.040	8.72±0.19
πεν	0.295±0.005	0.363±0.009
πμν	0.272±0.010	0.350±0.015

$$R_0^{\pi} = \frac{\Gamma(D^0 \to \pi^- \mu^+ \nu)}{\Gamma(D^0 \to \pi^- e^+ \nu)} = 0.922 \pm 0.037$$
$$R_+^{\pi} = \frac{\Gamma(D^+ \to \pi^0 \mu^+ \nu)}{\Gamma(D^+ \to \pi^0 e^+ \nu)} = 0.964 \pm 0.045$$

Theoretical expectation:

 $R^{\pi} = 0.985 \pm 0.002$

$$R_0^K = \frac{\Gamma(D^0 \to K^- \mu^+ \nu)}{\Gamma(D^0 \to K^- e^+ \nu)} = 0.974 \pm 0.014$$
$$R_+^K = \frac{\Gamma(D^+ \to \overline{K}^0 \mu^+ \nu)}{\Gamma(D^+ \to \overline{K}^0 e^+ \nu)} = 1.014 \pm 0.017$$

$$R^{K} = 0.975 \pm 0.001$$

Summary

- The data with unprecedented statistical accuracy and clearly defined initial and final state properties brings BESIII great opportunities to investigate QCD exotics and precision measurement of SM
- BEPCII beam energy is upgraded from 2.3 to 2.45 GeV; top-up injection increases luminosity by 30%; peak luminosity upgrade at high energy is under discussion;
- BESIII detector is in good status, inner detector upgrade in progress;
- BESIII will be running for another 5-10 years and contribute more in these fields