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Hadron Physics. General Motivation.

_ The QCD Holy Grail: the understanding of
High  hadrons in terms of its elementary excitations;
namely, quarks and gluons!
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Hadron Physics. General Motivation.

_ The QCD Holy Grail: the understanding of
High  hadrons in terms of its elementary excitations;
namely, quarks and gluons!
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Hadron spectrum
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Emergent phenomena playing a dominant role in the real world
3q-core+MB-cloud s inated by the IR dynamics of QCD.



Antecedents:

GPD definition:

HE{Xﬂ&ﬂ —

1 [dzm , pt+,- Al _r z\ 4 (2 A

3] 57 (mrrgla(D) G mP-3)..
z| =0

with t = A% and £ = —AT/(2P1).

Muller et al., Fortchr. Phys. 42, 101 (1994)
Radyushkin, Phys. Lett. B380, 417 (1996)
Ji, Phys. Rev. Lett. 78, 610 (1997)

m From isospin symmetry, all the information about pion
GPD is encoded in H!, and HiJr.
m Further constraint from charge conjugation:

HY, (x, &, t) = —H?, (—x, &, 1).



Antecedents:

GPDs in the Schwinger-Dyson and
Bethe-Salpeter approach

m Compute Mellin moments
of the pion GPD H.
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Antecedents:

GPDs in the Schwinger-Dyson and
Bethe-Salpeter approach
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m Compute Mellin moments
of the pion GPD H.

m Iriangle diagram approx.
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Antecedents:

GPDs in the Schwinger-Dyson and
Bethe-Salpeter approach
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m Compute Mellin moments
of the pion GPD H.

m [riangle diagram approx.

m Resum infinitely many
contributions.

4+ a
5

Bethe - Salpeter equation

D-D

T

[




Antecedents:

GPD asymptotic algebraic model:

m Expressions for vertices and propagators:

S(p) = [~iv- p+ MAMP)
1
&M(S) = 5_|_ MZ
: M 21 & 2 v
m —1

p(z2) = R,(1—=2)

with R, a normalization factor and ki, =k — p(1 — z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
m Only two parameters:

m Dimensionful parameter M.
m Dimensionless parameter . Fixed to 1 to recover
asymptotic pion DA.



Antecedents:

GPD asymptotic algebraic model:

m Analytic expression in the DGLAP region.
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Antecedents:

GPD asymptotic algebraic model (completion):

The tull model:
{ o r*.;«.;;\\i\
d*k A A
2P )™M= e [ ook n) iy (e-prra-m(x-3).p-3)
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Antecedents:

GPD asymptotic algebraic model (completion):




Antecedents:

GPD asymptotic algebraic model (completion):
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Antecedents:

GPD overlap approach: The pion light front wave function
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Antecedents:

GPD overlap approach: The pion light front wave function

dk
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m Expressions for vertices and propagators: _—

_

~— Keeping so contact with the

Sp) = [—iy p+ MlAﬁ(Eé/) previous “covariant” approach”
X 1 based on DSE and BSE.
M (5) /_///5/_/|:/ M2
( Txlk,p) )= is—M" dzp,(z) |Am(ks,
\\\/)/ / fﬁ 1 ( ) { ( + )]
Py Z) - Rr_;(]. - Zz)y

with R, a normalization factor and ki, = k— p(1 — z) /2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
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Antecedents:

GPD overlap approach:
o . ) e (x k) = _F{U‘|‘ L) Mzu-l-'-f.]."ﬂu V(1
Helicity-0 two-body pion LCWF: (RARERS" rov+2 2 +M2]u+l'

— x)")

GPD in the overlap approach:
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=> Vi "7 "X X4 / In DGLAP kinematics: t<x<1
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Antecedents:
Fiv+ 1) M»tlgvg,

GPD overlap approach:
Helicity-0 two-body pion LCWF: | ¥ti(x. K1) = == (K2 + ME]““"'“{I

el lJ""lJ‘{l _E}H

GPD in the overlap approach:
2
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Encoding the
correlations of
kinematical variables



Antecedents:

GPD overlap approach:

Helicity-0 two-body pion LCWF:

GPD in the overlap approach:
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PDF: +

H(x,0,0)=q(x)=30x*(1—x)

Compares numerically
very well with the results

Forward limit
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obtained from the Triangle 93t /

diagram!!!
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Consistent descriptions
from both
approaches!!!
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Pion (kaon maybe) realistic picture:

» The pseudoscalar LFWF can be written:

frvg(a, k) = trep / S(n -k —zn- Pi)ysy - nx (% Py) .

= The moments of the distribution are given by:

1 m
]_ .n' " ;ﬂ 2) fl’f
<a" > oa= dex™ T (z, k2 sy (KX Py
wl_ A‘ o ( ) }(h M . P n;_r]I.” n . P 3] ‘(h ( I )

1
f doao™ [;—23/3 (o Jz)} , Vi(a:o?) = [M,(1 —a)+ MalX(a;0%) .
]

K
o 12
Uniqueness of Mellin moments — U}{ (I k ) — _yﬁ(x JJ_)
K
1-2a
Xi(e;0?) = [/ dw/ dv —l—/ dw/ ] pc() A}; . -
J =1 +— 1-2a = N 0
Y
The spectral density p«(z) can be 1 )
modelled... | = Uy (z,k7) ~ /dw e pre(w) -
...Or taken with BSE solutions as :

an input!
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Pion realistic picture:

= Spectral density is chosen as:
1 5 [w—wf o [wHuw§
Unpa(w) = ﬁ [sech ( 200 ) -+ sech 200

Phenomelogical model: b;=0.1,b7=0.73; —

Asymptotic case: p(w; V) ~

(1 —w?)” .
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Pion realistic picture:

GPD overlap representation:

dikJ_ T —& l—x A T+ & 1—r A
] 4 ! — *— — T k —_— e
ar (@, 8. 1) fm;rrﬂlp“f(1—§’h+1—g 2 )lp“f(uf’ S )

Phenomenological model
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Pion realistic picture: PDF as benchmark

GPD overlap representation: forward limit
q ko_ r—/f 1—1‘44 r—l—gﬂ l—ré‘!J_
= [ (e =g v (- 5T

Phenomenological model

13



Pion realistic picture: PDF as benchmark a

The pion PDF can be computed as the lightfront projection of the hadronic matrix element of
a bilocal operator that, in the overlap representation at low Fock states, can be expressed in
terms of 2-body LFWFs at a given hadronic scale

1

7 wn) = 5 [ e (Pl -0 v |P)

Ak
e / L@;? (z,k.) ¥, 7(z.k.)
z+t=0,z, =0 .




Pion realistic picture: PDF as benchmark -

The pion PDF can be computed as the lightfront projection of the hadronic matrix element of
a bilocal operator and, in the overlap representation at low Fock states, can be expressed in
terms of 2-body LFWFs at a given hadronic scale
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- LFWF leading to

/ asymptotic PDAs
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— q(x, ) DB o N The mdre realistic
== q(x,{y) GPD ’ S .

150 == qinAsy  / Y pion 2-pbody LFWF




Pion realistic picture: PDF as benchmark -

The pion PDF can be computed as the lightfront projection of the hadronic matrix element of
a bilocal operator and, in the overlap representation at low Fock states, can be expressed in
terms of 2-body LFWFs at a given hadronic scale

7 @36 = 5 [ e (P[P e [P) |

—/dgkw (2.k,) T = (2, K,)

FESTRE AN I T s i A

o LFWF leading to
/ asymptotic PDAs

/| ge(z) = 302°(1 — z)?

’,.ﬁ-—"-"u.‘\ ’/ - . .
o - . A morefrealistic pion
-— iy /
1.5f == qCximAsy % 2-body{LFWF

Direct computation of
Mellin moments:
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Pion realistic picture: PDF as benchmark -

The pion PDF can be computed as the lightfront projection of the hadronic matrix element of
a bilocal operator and, in the overlap representation at low Fock states, can be expressed in
terms of 2-body LFWFs at a given hadronic scale
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[Ty ok k
+=u,z_=u__/ 768 v\ ki) ¥z (e, ki)
LFWF leading to
/ asymptotic PDAs

/ |ae(z) = 30 (1 — z)°

= q(x, {) DB s S Y A morefjrealistic pion

| = GocEey 1 2-body]LFWF

Direct computation of
Mellin moments: ool
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Pion realistic picture: PDF as benchmark -

The pion PDF can be computed as the lightfront projection of the hadronic matrix element of
a bilocal operator and, in the overlap representation at low Fock states, can be expressed in
terms of 2-body LFWFs at a given hadronic scale

= L if 827 ppe - , d’k
q¢" (2:Cn) = 5'/ e P+ <P‘ P (—2)7 (=) ’P> L :'/ %'«Ifuf (2, k1) ¥ = (2,k,)

1673
LFWF leading to
asymptotic PDAs

ger(z) =2 30 :.::El[l - :a:]l2

A morelrealistic pion
2-body|LFWF

ql:xv gH] DB ,’
q(x, ¢{w) GPD ’
q(x, {y) Asy 4
E615 Drell-Yan nlN ’;

Direct computation of
Mellin moments: ool

1 . : 1
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Pion realistic picture: PDF as benchmark -

The pion PDF can be computed as the lightfront projection of the hadronic matrix element of
bilocal operator and, in the overlap representation at low Fock states, can be expressed in

terms of 2-body LFWFs at a given hadronic scale

1 dz~ i P2 —q , koJ_
m(p: (y) = = iwPra” [ Pl (—2)ytpi(2) | P - o k k
@G =3 [ Gt (T @) | - [ ) v k)
LFWF leading to
: \ asymptotic PDAs
c.f. Craig Roberts' talk!
J Cy C2 5.2 GeV ger(z) = 302%(1 — x)*
= q(x, {) DB ,"' \\ A morelrealistic pion
g 2-body]L FWF

- q{xv élH:l Asy
e E615 Drell-Yan 7N

Direct computation of
Mellin moments: -
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Pion realistic picture: DGLAP evolution

Mn(t)ZJ1~ dx x"q(x,t)

)

t=In(

oN

Moments' evolution (1-loop):
d __oc(t) n
oM (1) = ==y M, ()4
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Pion realistic picture: DGLAP evolution

1
Mn(t)=f dx x"q(x,t)
A master equation for the (1-loop) moments' evolution: 0

ZZ
d — Ot(t) ( dy X tzln(g)
dtQ(X,t)— e { y q(y,t)P(y)+,,,
4 1
Moments'+ evolution (1-loop): > J(:dXP<X) = Yo
d __alt) ,
dt Mn(t) - 4 1t y0]\4n<t)+~--
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Pion realistic picture: DGLAP evolution

Mn(t)Zjdxx”q(x,t)
A master equation for the (1-loop) moments' evolution: 0
d Ot(t) 1 dy % t:1n(2—2)
ECI(X,I): ~ - _[ y q(y,t)P(;)+
4 i
Moments'+ evolution (1-loop): > {g()() — Yo
d aft)
_M ()= ——— M t “oe 2
dt n( ) 4 7t Yo n( )+ P(X)=§ 1+z éé(x—l)
3 |(1=x),
\
_ 4 2 B n+1l
V=3 e)(nea) Y4 i)
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Pion realistic picture: DGLAP evolution

Mn(t)ZJ1~ dx x"q(x,t)

)

A master equation for the (1-loop) moments' evolution:
Lo, = -2 f D iy 0p(X)s..
de * 4w vy ’

f x y

Moments'+ evolution (1-loop):

t=In(

oN

1
> | dxP(x)=y;
0

d oc(t) n
—M =— vy M )
dt n(t) 4 11 Yo n(t)'l‘ P(X):% (111-?() éé(x—l)
i _—az(t> +1
dta(t) B 4m o ygz—% 3+(n+2)2(n+3)_4;%)
F 4mx
t) = +
)= gty
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Pion realistic picture: DGLAP evolution

1
t):f dx x"q(x,t)
A master equation for the (1-loop) moments' evolution:

iQ(X’;) = _O;(;)j: dyyq(y,t)P(%)a..

Moments‘+ evolution (1-loop):

LL
. ©

t=In(

1
> | dxP(x)=vy;
0

d _alt)
— M, —v. M >
d _ ot
dt <t) - o y0=—% 3+(n+2) n+3 _4; l)




Pion realistic picture: DGLAP evolution

Which value of Lambda?

I ¥\ _ 4n
a(t) = +...= + ...

[30<t_tA) (Qz
Boln @)
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Pion realistic picture: DGLAP evolution

Which value of Lambda? It depends on the scheme... Indeed, at the one-loop level, its

value defines by itself the scheme!!!

47

a(t) = = — +
Pl (S a(t)=
1H(A—2) — 4 1 . 1 + — @4
A’ Py Oc(t) G(t) Bo
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Pion realistic picture: DGLAP evolution

Which value of Lambda? It depends on the scheme... Indeed, at the one-loop level, its
value defines by itself the scheme!!!

O(.(t) — 47 — 41 +
Bolt—ta) 2
ot poln (-5) a(t)=a(t) 1+ ¢ a(t)+..
A 4| 1 1 4dmc
In(2) = _ —
H<K2) Bo Oc(t) G(t) Bo
d Ot(t) The evolution will thus depend on
EMn(t> — _Hngn(t)"' :?L?nig?iirr?e via the perturbative
d a’(t)
dta(t)_ 47 ot

15



Pion realistic picture: DGLAP evolution

Which value of Lambda? It depends on the scheme... Indeed, at the one-loop level, its
value defines by itself the scheme!!!

47 47
a(t) = ) = = + .
0 A
ﬁoln(P) alt)=a(t)1+c a(t)+...)
° 4
1n(/_\_2)_4:rc 1 __1 _4mnc
A Bo la(t) alt) Bo
_ The evolution will thus depend on
i M (t) — _M i (t)+ the scheme via the perturbative
dt " 411 YoMn truncation and the usual prejudice
9 IS that truncation errors are
iﬁ(t) — _ o (t> B+ optimally small in MS scheme.
dt 4x 7
AP =210+ 14) Mev, (9.24b)
PDG2018: @
[PRD98(2018)030001] —, Azrg = (292+16) MeV, (9.24c)
ﬁ% = (332 £ 17) MeV, (9.24d)
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Pion realistic picture: DGLAP evolution

16

Then, one can evolve the pion PDF, e.g. the one obtained by direct computation of Mellin

moments, by using DGLAP evolution from one unknown hadronic scale up to the relevant
one for the E615 experiment:

1
(™), :fu dxz™ q" (x;

TTL
n - ky

n-P

th/
n'f)r dik

Optimal best-fitting
parameters:

Ca)

'fr(kmp) ( n}n Sk [Ff(km P}‘E(’Iﬂ )]

Cy —>§2 5.2 GeV

Aoep=0.234 GeV ;

C,=0.349GeV .

X q(x)

1.0F

'\g (x CH)— 213.322%(1 — )*
x [1—2.9342+/z(1 — z) + 2.2911 z(1 — z)]

0.8f o

q(x, {n) DB
q(x, {n) GPD

q(x, {y) Asy

E615 Drell-Yan aN
q(x,{2) GPD

——hﬁ

0.4

0.6 0.8 1.0
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Pion realistic picture: DGLAP evolution

Then, one can evolve the pion PDF, e.g. the one obtained by direct computation of Mellin
moments, by using DGLAP evolution from one unknown hadronic scale up to the relevant
one for the E615 experiment:

PR s
[t 0, Fti P % 8- 2o+ 221 )

@) = [ doa™ g (@ica)
N,
n-Ptr/dk
T, C,=52GeV
Optimal best-fitting ol T T T T T T

parameters: = q(x, {y) DB / \
= q(x, &) GPD /

AQCD — 0234 Gev 3 0.8¢ -: %g'sggjr:ﬁs—y‘ran aN 4
C,=0.349GeV q0u2) GFD
H — ° °

n - ky
n-P

~ 0.6
X
o
>
0.4}
0.2}
G2 (@)a e (@)
Ref. [33] |0.24(2) 0.09(3)  0.053(15)
Ref. [34] |0.27(1) 0.13(1)  0.074(10) 0'06'0 55 57 55 55 T
Ref. [35] |0.21(1) 0.16(3) ' '
average | 0.24(2) 0.13(4) 0.064(18) . _ X i _
Herein |0.24(2) 0.098(10) 0.049(07) Comparison with the three first moments obtained from IQCD
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Pion realistic picture: DGLAP evolution

Then, one can evolve the pion PDF, e.g. the one obtained by direct computation of Mellin
moments, by using DGLAP evolution from one unknown hadronic scale up to the relevant
one for the E615 experiment:

1
(™)E = f dz 2™ ¢ (2 Cir)

v<f(‘“ﬁﬂ): 213.322°(1 — z)°

Zf}tf/dk E}?] T (kn, P) S(ky) - 8, [Dr(ky, —P)S(k,)] x [1—2.9342\/z(1 — z) + 2.2911 z(1 — z)]
Optimal best-fitting P
parameters: = q(x, {y) DB I 4 .

AQCD:O‘234 Gev , 0.8; -: %glﬁggjr:;ﬁy‘(an aN :;
c.=0.349GeV .

Aoep=0.234GeV;
£,=0374GeV . °4

— q(x, {4) GPD /

== q(x,42) GPD -4
= g(x,2) GPDL 4

0.6}

X q(x)

0.2}

0.0 0.2 0.4 0.6 0.8 1.0

C2 ()i (=) {z°)%

Ref. [33] |0.24(2) 0.09(3)  0.053(15) _
Ref. [34] | 0.27(1) 0.13(1)  0.074(10) O.OL
Ref. [35] | 0.21(1) 0.16(3)

average | 0.24(2) 0.13(4 0.064(18

Matching the three first moments obtained from IQCD



Pion realistic picture: DGLAP evolution

Which value of Lambda? It depends on the scheme... Indeed, at the one-loop level, its
value defines by itself the scheme!!!

O(.(t) — 47 — 41 +
Bolt—ta) 2
ot poln (-5) a(t)=a(t) 1+ ¢ a(t)+..
A 4| 1 1 4c
In(2) = _ —
H<K2) Py Oc(t) G(t) Bo
d Ot(t) The evolution will thus depend on
EM”<I> — _Hngn(t)_l_ :?L?nig?iirr?e via the perturbative
d a’(t)
dta(t)_ 47 ot

The use of A=0.234 GeV can be thus interpreted as the choice of particular scheme,
differing from MS.
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Pion realistic picture: DGLAP evolution

Which value of Lambda? It depends on the scheme... Indeed, at the one-loop level, its
value defines by itself the scheme!!!

Ot(t) B 5 (t—t ) - §2 +
A
’ ﬁoln(P) alt)=a(t)1+c a(t)+...)
A 4| 1 1 4dmc

In(2) = _ —
H<K2) Bo Oc(t) G(t) Bo

d a (t) The evolution will thus depend on

EMn(t> — _Hngn(t) :?L?nig?iirr?e via the perturbative

The use of A=0.234 GeV can be thus interpreted as the choice of particular scheme,
differing from MS. Beyond this, the scheme can be defined in such a way that one-
loop DGLAP is exact at all orders (Grunberg's effective charge).
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Pion realistic picture: DGLAP evolution

47 47t
alt) = m>+ Coexp(t) i m.+ k°
B,In . [0\2 ) Boln GAZ
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Pion realistic picture: DGLAP evolution

1.0} . A Hall A/CLAS |
47 47 -l > JLab CLAS (2008)-
Oc(t) = > > = [ | v JLab CLAS (2014)]
+ + 0.8H | < DESY HERMES |
8. In my+ Gy exp(t) B,1n Mg+ kK’ _ | v CERN COMPASS |
0 2 A2 < CERN SMC
h 1
. 0.6 :
— — ) '
OL(O) _ aPI(O) > m,=0.300 GeV F . ,1& CERN OPAL
041 & SLAC E142/E143
_ | < SLAC E154/E155
c.f. Craig Roberts' talk! ol 2o
| — 2. (BU) o
0.0l* =" 8. (BO) =+ Gy,
0 0.050.1 1 10
k [GeV] Kk’
t=In(—)
So
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Pion realistic picture: DGLAP evolution

47 47
a(t) = —— = _
m.,+ Coexp(t) m.+ k° 0.8
Boln 5 [30 -
A’ £ 0.6}
a(0) = ap (0) > m,=0.300GeV =
0.4

17

' & CERN OPAL
[ > SLAC E142/E143
- < SLAC E154/E155

AgqAdqygp

Hall A/CLAS ]
JLab CLAS (2008)1
JLab CLAS (2014)]
DESY HERMES |
CERN COMPASS 1
CERN SMC

d alt) oaf § fln s
—M t — M t i _5‘[}]11] al
dt I’l( ) 4 7T 0 Tl( ) D.D-_I'-'I ﬁl,;lggg'% I'"I' a””. o
0 0.050.1 1 10
Numerical integration with the effective k [GeV] 12
charge t=In(—)
0
1
n t n
Yo Mn(t)=fdxx q(x,t)
M (t)= M (t,)exp|—— fdza(z 0
43-[: : 4 2 n+1 1
= ——|3+ — ol
Yo 3|7 (n+2)(n+3) & i
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Pion realistic picture: DGLAP evolution

17

Hall A/CLAS

A i
41 47 ""% B JLab CLAS (2008)-
oc(t) = > > = b v JLab CLAS (2014)]
[ {4 | <« DESY HERMES -
B,1n M+ GoeXP (t) B,In mq+ k- - ™| v CERN COMPASS
0 2 0 A2 [ L1 (< CERN SMC '
< 06 M,
a(0)=o,(0) > m,=0.300GeV = I T — i
041 5 SLAC E142/E143
- < SLAC E154/E155
[ & JLab RSS
d M ( ) . a(t) nM ( ) 0.2] P F‘n:mil:lh ik,
i e LG = - B -
t 4 0.0F *=* @ (BO) *** Gy
S _ _ _ 0 0.050.1 1 10
Numerical integration with the effective k [GeV] 12
charge t=In(—)
0
o (0)=] dexlx,0
Yo M (t)=| dxx"q(x,t
M (t)=M (t,)exp|—— | dza(z) 0
43-[: n+1
tO yn — _i 3+ 2 _ l
’ 3 (n+2)(n+3) & i

If one identifies: m ,=C,, , all the scales (and the evolution between them)
appear thus fixed, apart from A, (fixed by the scheme).
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Pion realistic picture: DGLAP evolution

Then, one can evolve the pion PDF, e.g. the one obtained by direct computation of Mellin
moments, by using DGLAP evolution from one unknown hadronic scale up to the relevant
one for the E615 experiment:

Aocn=0.234 GeV; Cy=m, > §,=5.2 GeV

1.0} TN

[ - Q[X.-{H) DB 4 A

I — q‘[xr {H) GPD ’
== q(X, {y) Asy 4
0.8 e EB&15 Drell-Yan zN f
[ == g(x,{2) GPD /

0.6}

X q(x)

0.4]

0.2}

0.0 0.2 0.4 0.6 0.8 1.0

If one identifies: m,=C,, , all the scales (and the evolution between them)
appear thus fixed, apart from Aycp (fixed by the scheme). And the
agreement with E615 data is perfect!!!
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Pion realistic picture: DGLAP evolution

Then, one can evolve the pion PDF, e.g. the one obtained by direct computation of Mellin

moments, by using DGLAP evolution from one unknown hadronic scale up to the relevant
one for the E615 experiment:

The same is obtained from the

Aoep=0.234 GeV; Cy=m, > C,=5.2 GeV
overlap of realistic pion 2-body Qeb _ oo e = .
LFWFs - 0.4 _ } + o E615Drell-YanaN |

: v, == q(x,{)GPD (Mom.) |
== g(x, {>) GPD (Dir.) ;
03 == g(x, ) GPD (Comb.)

and after integration of the
DGLAP master equation

0.1}
%Q(“):_%ldyyq(w)P(%H...

0.0} | . . . . ]
0.0 0.2 0.4 0.6 0.8 1.0

If one identifies: m,=C,, , all the scales (and the evolution between them)

appear thus fixed, apart from Aycp (fixed by the scheme). And the
agreement with E615 data is perfect!!!



Pion realistic picture: PDF as benchmark ”

The pion PDF can be computed as the lightfront projection of the hadronic matrix element of
a bilocal operator and, in the overlap representation at low Fock states, can be expressed in
terms of 2-body LFWFs at a given hadronic scale

7 @36 = 5 [ e (P[P e [P) |

—/dgkw (2.k,) T = (2, K,)

FESTRE AN I T s i A

o LFWF leading to
/ asymptotic PDAs

/| ge(z) = 302°(1 — z)?

’,.ﬁ-—"-"u.‘\ ’/ - . .
o - . A morefrealistic pion
-— iy /
1.5f == qCximAsy % 2-body{LFWF

Direct computation of
Mellin moments:

1 AN " . 5]
{mm}-}cr“ :/U d.'l’.‘ﬁﬂ‘mgﬁ(ﬁ?-,CH) 0.0 0.2 0.4 06/ 1.0

/C @: 213. 323:2(1 z)?

x [1—2.93424/z(1 — z) + 2.2911 z(1 — z)]

N, ¢
= r
n-P dk

n-k,1™
| Talhr, ) S(s0) -, [y, ~P)SCy)




Pion (more) realistic picture: PDF as benchmark ”

The pion PDF can be computed as the lightfront projection of the hadronic matrix element of
a bilocal operator and, in the overlap representation at low Fock states, can be expressed in
terms of 2-body LFWFs at a given hadronic scale

i) = 5 [ Gee T (Pl =) P - [ T @) v k)

2] or 0.2, 20 167w3  »f .
- LFWF leading to
/ asymptotic PDAs
7/ | as(x) = 302%(1 — )
r"----ﬁ‘\ ’/ . .
= q(x, {4) DB P Y A moreyealistic pion
= g(x, i) GPD y .
1.5l == g(x, {u) Asy g N Z-bOdy | FWF
= q(x,{n)Rea g )
= 1.0}
o
>
0.5} \
\\
Direct computation of “ \
Mellin moments: o0.0l.4 _ _ _ _ 4
(@™)E, = / de 2™ ¢ (z;Car) 0.0 0.2 0.4 0.6~ 08 1.0
N fmopm " @x@: 213.322%(1 — 2)?
= - Ptr el ;} F'Ir(k'ﬁ‘-‘P) S(kﬁ)n ’ akn [Fw(km _P}S(kn)] /V 7)( [1 — 92.9342 'f:l:(l — :C} + 2'29111:(1 _ :t:}]
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Pion (more) realistic picture: PDF as benchmark

= Spectral density is chosen as: « X

1 o fw—wf w4 w N
Uspa(w) = o [s.ech2 ( o L ) + sech? ( 20 0 )] "x.;ifa

Phenomelogical model: b7=0.1,w!=0.73; /'

Realistic case: bi=0.275,b7=1.23; %

(1 —w?

Asymptotic case: p(w;v) ~

25:— /f\“'\

20F

20
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Pion (more) realistic picture: PDF as benchmark 1

The pion PDF can be computed as the lightfront projection of the hadronic matrix element of
a bilocal operator and, in the overlap representation at low Fock states, can be expressed in
terms of 2-body LFWFs at a given hadronic scale

i) = 5 [ Gee T (Pl =) P - [ Tow @) v, k)

2] 2m 02120 1673 7
C,=m,C,=52 GeV
B P Semmmenemee
[ - q{xr ‘:H:' DB "” \\\
— q({x,gH]EPD ’
t mm qg(x,{y) As ’
0.8f o %ﬁﬁggrell—y‘(anﬂN /7
| == q(x,{2) GPD
_ 0.6}
Ei L
o L
- L
0.4}
02} |
Direct computation of [
Mellin moments: 0ol !
(@™)E, = / de 2™ ¢ (z;Car) 0.0 0.2 0.4 0.6 0.8 1.0
0 X ™ 2 2
m - 213.3222(1 — z)
Ve [ [nk (i) =
= n'Ptrfdk an} F'Ir(k'ﬁ‘-‘P) S(kﬁ)n'akn [Fw(km _P}S(kn)] /V % [1 —92.9349 'f:l:(l — :C} + 2'29111:(1 _ :t:}]
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Pion (more) realistic picture: GPD

A (@ 6Lt :]

1673 v

Realistic case




Pion (more) realistic picture: DGLAP evolution

d?k | r—§& l—zA r+ £ 1—xA
Hi (z.6t)= | —= V¢ , — | V5 ki — —
w60 jlﬁﬁ@“""(l—é T ) D”f(HE KL= T

)

T CTTTr— 00
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Pion (more) realistic picture: Elect. Form Factor

Fu(A?) = e, FY{A?) + e, FL(A?) |, FL(—t = A?) = /
"\ -

Electric charges

Blue: Computed from GPD
Green: Computed from HS formula
Red: ‘Evolved’ form factor

1
dr Hi,(z,€,t)

1.0
08

‘o 0.6}
l.L_L: 04}
0.2}

T ™ 0.68 fm
N




PDA and LFWF evolution k k k
L FWF evolution: 1 ﬁ(ﬁ

0z) = 7 / dk ™ (a, kD)

= We look for a way to evolve the LFWF.

= First, let's assume that the LFWF admits a similar Gegenbauer
expansion. That is:

W, k) = 6z(1 — ) [Z b (k* ;) CO% (22 — 1}} .
n=>0

a,(¢) = / d%k | b,(k%;¢) (for n > 1) / A2k, by(k2:¢) =1

1673 T 16w

» 1-loop ERBL evolution of a,, (&) implies:

.
d*k, ——b,(k%:()

1 d / ~dlngz "
0,(C) = L 4In¢ |

/ A’k b, (k2;0)

a,(C)dInC? "
23



PDA and LFWE evolution k k k
Standard PDA evolution: ﬁ(ﬁ

= We project PDA onto a 3/2-Gegenbauer polynomial basis. Such
that it evolves, from an initial scale ¢, to a final scale C,
according to the corresponding ERBL equations:

d(x;¢) = 6x(1 — x) [1 + Z an(C)C (22 — 1}} .

n=1

- a()] 4 2 1
Q) =06l (ca)] 6="3 [“(nw(nw} > E] |

k=1

* Thus, any PDA at hadronic scale evolves logarithmically towards
its conformal distribution, ¢(x)=6x(1-x).

» Quark mass and flavor become irrelevant. Broad PDA becomes
narrower, skewed PDA becomes symmetric.
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PDA and LFWF evolution k k k
L FWF evolution: 1 ﬁ(ﬁ

olx) =

/ 2k vz, k)

1673

= Now, if we take a factorization assumtion, we arrive at:

bu(k2:Q) _ Bu(Q) _ [a(c%
b (k2500)  5,(G) a(¢h)

".r]:i;t;ﬁ[: . |
] 0 (k150) = ba(Oxa (kL) -

= Suplemented by the condition X.(k1) = x(k?), one gets b,(¢) = a,(C) .

= Such that, the followiong factorised form is obtained:

U(z, k() = d(x: ) x(k?) LFWF Evolves like PDA

= Which is far from being a general result, but an useful
approximation instead.
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PDA and LFWF evolution |
Testing the factorization ansatz: ﬁ (ﬁ k

U(a, kT;¢) = ola; Q) x(k7)

= Afirst validation of the factorized ansatz is addressed in Phys.Rev.
D97 (2018) no.9, 094014

k%*=0, k*=0.2 GeV, k%?=0.8 GeV, k%=3.2 GeV

1.16

o T . | ]
= -

T i /d;r diirax] —1 E =

2 1.05-1! , ! &

3 ! 3
o4 = n oS

= 1041\ vl 1 %

L | IL ; | B

= ’ ¥

0.96 4 :
0 0.2 0.4 0.6 0.8 1
X X

= |[f the factorized ansatz is a good approximation, then the plotted
ratio must be 1. For the pion, it slightly deviates from 1; for the
kaon, the deviation is much larger.
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PDA and LFWF evolution

Testing the factorization ansatz:

"
o iy

0.00

1.0

05 1) Compute LFWF and ERBL running of PDA
o 2) ERBL running of LFWF and compute PDA

Notably, 1) and 2) are equivalent.
Factorization assumption and evolution
seem reasonable.

0.10¥1.0 7



PDA and LFWF evolution Mg
How ERBL and DGLAP evolutions make contact: ﬁ(ﬁ k

-t FUiYy

0.4] ~="7,=0.51 GeV
0.3

0.2

0.1}

~o5 " fo 15 20 25 30 '(CeV
qix)

2.0t

£=1 GeV (DGLAF)

(=051 GeV 1) Obtained from ERBL evolution of LFWF
N\ rieess] 2) Obtained from DGLAP evolution of GPD

1.5

1.0¢

Clearly, 1) and 2) are not equivalent.

0.5

q,(x)=Hg(x,0,0)
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PDA and LFWF evolution
How ERBL and DGLAP evolutions make contact: ﬁ(ﬁ
-t F"(ty

i =1 GeV
0.4-

0.3}

0.2

0.1+

Q%)
2.0t

£=1 GeV (DGLAF)

(=051 GeV 1) Obtained from ERBL evolution of LFWF
2) Obtained from DGLAP evolution of GPD

1.5

1.0¢

Clearly, 1) and 2) are not equivalent.

Sea-quark and gluon content incorporated to

the parton distribution by DGLAP are obviously
000z o& 08 08 19" potpresentin the valence-quark PDF from
LFWFs!!! 29

05
q,(x)=Hg(x,0,0)



Conclusions

Owing to a sensible parametrisation of the BSA grounded
on the so-called Nakanishi representation, one is left with
a flexible algebraic model for the LFWF in terms of a
spectral density.
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Bethe-Salpeter equations' solutions (in the forward
kinematical limit) delivers a benchmark result to identify the
spectral density which corresponds to the realistic LFWF.
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A recently proposed PI effective charge can be used to make the
DGLAP GPD evolve from the hadronic scale (where quasi-particle

DSE's solutions are the correct degrees-of-freedom) up to any
other relevant scale.
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A word about bout gravitational Form Factors

A word about GPD polinomiality first:

m Express Mellin moments of GPDs as matrix elements:

+1
/ dxx"H(x, &, t)

J  —1

1 Al _, o = A
— 2(P+}”7+1 <-’D—|' 3‘ Q{{}}”r (fD+} q[l]') ‘P— ?>

m ldentify the Lorentz structure of the matrix element:
linear combination of (PT)™ I AT)K for 0 < k < m+1

m Remember definition of skewness A™ = —2¢PT,
m Select even powers to implement time reversal.
m Obtain polynomiality condition:

.1 m
/ Axx"H(x, &, t) = Y (28)'ChD)+(28)™ ' Chpia (1)

1

=i

L el i




A word about bout gravitational Form Factors

Definition and evaluation:

= Pion gravitational form factors are defined through®™:  Polinomiality!

1
Jo+(—t, &) = / dx v H+(x,€,1) = Oq(t) — O (1)L

oS—]
= Taking &=0 + isospin symmetric limit, one can readily compute:

1 1
Os(t) = / dr v|H* (x,0,t) + HS. (2,0,1)] = / dr 20H" (x,0.1) .
Jo

J 0

= To obtain ®,(t), we need to take a non zero value of &; hence
requiring the knowledge of the GPD in the ERBL region.

= Nevertheless, one can approximate ®,(t), by estimating the
derivative of J.+(—t, &) with respect to &2 as:

JE+A) = T(E)
206 + A/2)A

D(E +A/2) A0

*Phys.Rev. D78 (2008) 094011.



A word about bout gravitational Form Factors

Definition and evaluation:

= Pion gravitational form factors are defined through®™:  Polynomiality!

1

Jo+(—t, &) = / dx vH+(x,6,1) = Oy(t) — O ()2
oS—]

= Taking &=0 + isospin symmetric limit, one can readily compute:

1 1
Os(t) = / dr v|H* (x,0,t) + HS. (2,0,1)] = / dr 20H" (x,0.1) .
Jo

J 0

= To obtain ®,(t), we need to take a non zero value of &; hence
requiring the knowledge of the GPD in the ERBL region.

= Nevertheless, one can approximate ®,(t), by estimating the
derivative of J.+(—t, &) with respect to &2 as:

= J +ﬂ)—}g’i |
ﬁ'(/é+af = T A/D A0

*Phys.Rev. D78 (2008) 094011. Polinomiality tells us that it is enough to evaluate
In the vicinity of zero!




A word about bout gravitational Form Factors

Definition and evaluation:

= Pion gravitational form factors are defined through®™:  Polynomiality!

1
Jo+(—t, &) = / dx v H+(x,€,1) = Oq(t) — O (1)L

oS—]
= Taking &=0 + isospin symmetric limit, one can readily compute:

1 1
Os(t) = / dr v|H* (x,0,t) + HS. (2,0,1)] = / dr 20H" (x,0.1) .
Jo

J 0

= To obtain ®,(t), we need to take a non zero value of &; hence
requiring the knowledge of the GPD in the ERBL region.

= Nevertheless, one can approximate ®,(t), by estimating the
derivative of J.+(—t, &) with respect to &2 as:

J(A) — J(0)
A2

D(A/2) =

;A — 0

*Phys.Rev. D78 (2008) 094011. Polinomiality tells us that it is enough to evaluate
In the vicinity of zero!



A word about bout gravitational Form Factors

Definition and evaluation:

= To get a clearer picture, let's split j(—t, &) as follows:

1 £ 1
J(—t,£) = / drx 20H (x,&,1) = !/ dx + / d-l?] 20H (x, &, 1)
J— —¢ £

— ._I(—fj E\I _ ]ERBL(_f E} 4 IDGL%P(_]L E} _

= Notice that, because of the polinomiality of the complete GPD:

JPGLAP (4 o) — 0, (t) — €20, (1)) PELAE L 3¢ ()¢
=1

i=1
= Thus, since so far we can only access DGLAP region: (overlap approximation)

JOCLAP (4 ¢) = 0,(t) — €20, (t)POLAL 1 3 ¢ 1)+
=1
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Definition and evaluation:

= To get a clearer picture, let's split j(—t, &) as follows:

1 £ 1
J(—t,£) = / drx 20H (x,&,1) = !/ dx + / d-l?] 20H (x, &, 1)
J— —¢ £

— ._I(—fj E\I _ ]ERBL(_f E} 4 IDGL%P(_]L E} _

= Notice that, because of the polinomiality of the complete GPD:

[

JPGLAP (4 o) — 0, (t) — €20, (1)) PELAE L 3¢ ()¢

? o =1
JERBL(—, ¢) > alt)ert
i=1

= Thus, since so far we can only access DGLAP region: (overlap approximation)

JOCLAP (4 ¢) = 0,(t) — €20, (t)POLAL 1 3 ¢ 1)+
=1




A word about bout gravitational Form Factors

Definition and evaluation:

= The extension to ERBL region is then needed. Taking
advantage of the soft-pion theorem, one can conect PDA with
J(—t, &)ERBL and thus with ®, (t)ERBL,

= Nonetheless, polinomiality of GPD is not fulfilled without the ERBL region.
Such extension is necessary to provide a more reliable computation of ©;.

1.0 : .
— 8 ({8 (0) - Laltice 0.5t —  Bhik &) - Latlice

= 63 -GPD —- 8 (t: ;) - GPD
0.8} |

0.6}

0.4f

. m. ~ 0.45 GeV

0.0

0 i 2 3 2 5
—VIGeV] —[GeV]
Lattice: (2007) Brommel's dissertation. ©2(0)/2 =<z >= 0.261(5)
GPD + Ding et al. O9(0)/2 =< & >= 0.242(20)

Latt.: D. Brommel, Ph.D. thesis, University of Regensburg, Regensburg,
Germany (2007), DESY-THESIS-2007-023



A word about bout gravitational Form Factors

Definition and evaluation:

= The extension to ERBL region is then needed. Taking
advantage of the soft-pion theorem, one can conect PDA with
J(—t, &)ERBL and thus with ®, (t)ERBL,

= Nonetheless, polinomiality of GPD is not fulfilled without the ERBL region.
Such extension is necessary to provide a more reliable computation of ©;.
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