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ConfinementConfinement

DCSBDCSB

Colored bound states 
have never been seen 

to exist as particles 
in nature 

Chiral symmetry
appears dynamically 

violated in the 
Hadron spectrum

Emergent phenomena playing a dominant role in the real world 
dominated by the IR dynamics of QCD.
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Antecedents:

GPD definition:
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Antecedents:

GPD asymptotic algebraic model (completion):

t

x

PDF forward limit
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N-partons LCWF for the hadron H

Let's consider the two-body pion LCWF:

BS wave function

Antecedents:

GPD overlap approach: The pion light front wave function
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BS wave function

Keeping so contact with the 
previous “covariant” approach” 
based on DSE and BSE.

Antecedents:

GPD overlap approach: The pion light front wave function
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Helicity-0 two-body pion LCWF:

GPD in the overlap approach:

ζ⩽x⩽1In DGLAP kinematics:

Helicity-1 component

In the pion 2-body case
x+ζ
1+ζx−ζ

1−ζ

Antecedents:

GPD overlap approach: 
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Helicity-0 two-body pion LCWF:

GPD in the overlap approach:

ξ⩽x⩽1

x+ξ
1+ξ

x−ξ
1−ξ

Encoding the 
correlations of 
kinematical variables

Antecedents:

GPD overlap approach: 
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Helicity-0 two-body pion LCWF:

GPD in the overlap approach:

0⩽x⩽1

Encoding the 
correlations of 
kinematical variables

1

Forward limit

H (x ,0,0) = q(x ) = 30 x2(1−x )2

0

Compares numerically 
very well with the results 
obtained from the Triangle 
diagram!!! 

PDF:

Antecedents:

GPD overlap approach:

Consistent descriptions 
from both 
approaches!!!
(tested with a simple 
model) 
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Pion (kaon maybe) realistic picture:

The spectral density           can be 
modelled... 
...Or taken with BSE solutions as 
an input!  

ρK (z)
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Pion realistic picture:

Asymptotic case:

Phenomelogical model: b0
π=0.1,b0

π=0.73 ;
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Pion realistic picture:

Phenomenological model

GPD overlap representation:
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Pion realistic picture: PDF as benchmark

GPD overlap representation: forward limit
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Phenomenological model



The pion PDF can be computed as the lightfront projection of the hadronic matrix element of 
a bilocal operator that, in the overlap representation at low Fock states, can be expressed in 
terms of 2-body LFWFs at a given hadronic scale  

Pion realistic picture: PDF as benchmark
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ζH → ζ2=5.2 GeV
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d
dt

α(t) =−
α2(t )
4π

β0+ …

The evolution will thus depend on 
the scheme via the perturbative 
truncation and the usual prejudice 
is that truncation errors are 
optimally small in MS scheme.

PDG2018:
[PRD98(2018)030001]

Pion realistic picture: DGLAP evolution
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Then, one can evolve the pion PDF, e.g. the one obtained by direct computation of Mellin 
moments, by using DGLAP evolution from one unknown hadronic scale up to the relevant 
one for the E615 experiment: 

ζH → ζ2=5.2GeV

ΛQCD=0.234 ;
ζH=0.349 .

GeV
GeV

Optimal best-fitting 
parameters: 
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Then, one can evolve the pion PDF, e.g. the one obtained by direct computation of Mellin 
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one for the E615 experiment: 

ΛQCD=0.234 ;
ζH=0.349 .
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Matching the three first moments obtained from lQCD
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overlap of realistic pion 2-body 
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and after integration of the 
DGLAP master equation 

Pion realistic picture: DGLAP evolution
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Pion (more) realistic picture: PDF as benchmark

The pion PDF can be computed as the lightfront projection of the hadronic matrix element of 
a bilocal operator and, in the overlap representation at low Fock states, can be expressed in 
terms of 2-body LFWFs at a given hadronic scale  

LFWF leading to 
asymptotic PDAs 

A more realistic pion 
2-body LFWF 

Direct computation of 
Mellin moments: 

DCSB-induced hardening

19



The pion PDF can be computed as the lightfront projection of the hadronic matrix element of 
a bilocal operator and, in the overlap representation at low Fock states, can be expressed in 
terms of 2-body LFWFs at a given hadronic scale  

LFWF leading to 
asymptotic PDAs 

A more realistic pion 
2-body LFWF 

Direct computation of 
Mellin moments: 

10

DCSB-induced hardening

Pion (more) realistic picture: PDF as benchmark
19



  

Asymptotic case:

Phenomelogical model:
Realistic case: 

b0
π=0.1,w0

π=0.73 ;
b0

π=0.275,b0
π=1.23 ;

Pion (more) realistic picture: PDF as benchmark
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The pion PDF can be computed as the lightfront projection of the hadronic matrix element of 
a bilocal operator and, in the overlap representation at low Fock states, can be expressed in 
terms of 2-body LFWFs at a given hadronic scale  

Direct computation of 
Mellin moments: 
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ζH≡mα →ζ2=5.2 GeV

Pion (more) realistic picture: PDF as benchmark
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Phenomenological model

Realistic case

Pion (more) realistic picture: GPD
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Pion (more) realistic picture: DGLAP evolution 

ζ0=ζH=0.3 →ζ2=1.0GeVGeV
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Pion (more) realistic picture: Elect. Form Factor 
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LFWF evolution:

PDA and LFWF evolution
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Standard PDA evolution:

PDA and LFWF evolution
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LFWF evolution:

PDA and LFWF evolution
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Testing the factorization ansatz:

PDA and LFWF evolution
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PDA and LFWF evolution
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How ERBL and DGLAP evolutions make contact:

PDA and LFWF evolution
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How ERBL and DGLAP evolutions make contact:

Sea-quark and gluon content incorporated to 
the parton distribution by DGLAP are obviously 
not present in the valence-quark PDF from 
LFWFs!!!  

PDA and LFWF evolution

29



Conclusions

Owing to a sensible parametrisation of the BSA grounded 
on the so-called Nakanishi representation, one is left with 
a flexible algebraic model for the LFWF in terms of a 
spectral density. 
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