

苑长征、沈肖雁、高原宁

2018. 11. 22, IHEP

1

• 研究进展

▪ 未来规划

下午安排了3个专门的报告:

- 1. 朱 凯(IHEP) : BESIII
- 2. 钱文斌(UCAS): LHCb
- 3. 王小龙(FDU) : Belle & Belle II

有效组织国内粒子物理领域的人才队伍,以研究物质深层次结构及其相互 作用为根本目标,通过20-30年努力,在中微子物理、强子物理、高能量 前沿等领域取得一批重大成果,成为国际领先的粒子物理研究中心。

理解夸克禁闭机制

强子由夸克通过强作用组成,夸克怎样组成强子,组成什么类型的强子,是粒 子物理的根本问题之一。常规强子由2个夸克(介子)或3个夸克(重子)组成 理论预期存在胶子球、混杂态、分子态、多夸克态等<mark>奇特强子态</mark>。

BESIII, Belle II, LHCb, GlueX 等实验为寻找奇特强子创造了条件:

- ✓ BESIII :能量 = 2.0-4.9 GeV,L=1x10³³/cm²s,2008-202x
- ✓ Belle II:能量 = 9.5-11 GeV, L=8x10³⁵/cm²s, 2018-203x
- ✓ LHCb :能量 = 7-13 TeV, ∫Ldt=9 300 fb⁻¹, 2008-203x

重点研究内容:

- > 测量常规强子性质,寻找奇特强子态,深入研究其能谱、产生和衰变性质
- 与理论研究相结合,理解强作用的夸克禁闭机制

我们不仅在做强子物理

- 强子物理(QCD)
 - 介子谱、重子谱、奇特强子态
 - 形状因子、碎裂函数、产生机制、衰变机制
- •味物理(EW & QCD)
 - 粲物理、B物理、τ物理
 - CKM & CPV
- 新物理(超出标准模型)
 - 轻子味破坏
 - 暗光子、暗物质
 - 对称性破坏

We know quark pair makes mesons three quarks makes baryons

M. Gell-Mann

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $u^{\frac{2}{3}}$, $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks q. Baryons can now be constructed from quarks by using the combinations $(q q q), (q q q q \bar{q}), etc., while mesons are made out$ of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. It is assuming that the lowest baryon configuration (q q q) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q \bar{q})$ similarly gives just 1 and 8.

Published in Physics Letters 8, 214 (1964); Similar idea by G. Zweig, CERN-TH-401 (1964).

What did we observe?

Meson Summary Table

See also the table of suggested $q\bar{q}$ quark-model assignments in the Quark Model section. • Indicates particles that appear in the preceding Meson Summary Table. We do not regard the other entries as being established.

LIGHT UNFLAVORED			STRANGE		CHARMED, STRANGE		cc		
	(S = C -	-B = 0)		(S = _1, C ·	-B = 0	(C - 5 -	±1)		$I^{G}(J^{PC})$
	$I^G(J^{PC})$		$I^{G}(J^{PC})$		$l(J^{\circ})$		$I(J^{\wp})$	 η_c(15) 	0+(0 -)
• π	1 (0)	 ρ₃(1690) 	1+(3)	• K ¹	1/2(0)	• D ₈	0(0)	• $J/\psi(1S)$	0-(1)
• π ⁰	1 (0 +)	 ρ(1700) 	$1^+(1^{})$	• K ^c	1/2(0)	• D	0(??)	• $\chi_{c0}(1P)$	0+(0++)
• 11	$0^+(0^{-+})$	a2(1700)	$1^{-}(2^{+})$	• K ^C 5	1/2(0)	• D [*] ₂ (2317)=	$0(0^{+})$	• $\chi_{c1}(1P)$	$0^+(1^{-i})$
 𝑘(500) 	$0^+(0^{+-})$	 f₀(1710) 	0 (0 1 1)	• KŸ	1/2(0)	• $D_{c1}(2460)^+$	$0(1^{+})$	• $b_c(1P)$? [?] (1 ⁺ ⁻)
 ρ(770) 	$1^+(1^{})$	$\eta(1760)$	0+(0 -)	K. (800)	$1/2(0^+)$	♦ D _{e1} (2536) ¹	0(1 1)	• $\chi_{c2}(1P)$	$0^+(2^{++})$
• J(782)	0 (1)	 π(1800) 	$1^{-}(0^{-+})$	 K[×](892) 	$1/2(1^{-1})$	• Dep(2573)	$0(2^+)$	• $\eta_c(2S)$	0+(0)
 η'(958) 	0-1 (0 -1)	£(1810)	0'(2+')	• $K_1(1270)$	$1/2(1^+)$	• D*, (2700)-	0(1)	 ψ(25) 	0 (1)
 f₀(980) 	$0^+(0^+)$	X(1835)	??(0)	• K1(1400)	$1/2(1^{-1})$	D ¹ (2860)	0(1)	 ψ(3770) 	0(1)
 ■ a₀(980) 	$1^{-}(0^{+})$	X(1840)	7 [?] (? ^{??})	• K (1410)	1/2(1)	$D^{*}(2860) -$	0(3)	 	??(2)
 φ(1020) 	0 (1)	a ₁ (1420)	$1^{-}(1^{++})$	 K: (1430) 	$1/2(0^+)$	$D_{31}(2000) =$	0(2?)	 ▲ X(3872) 	$0^+(1^{++})$
• h ₁ (1170)	$0 (1^+)$	 \$\phi_3(1850)\$ 	0-(3)	• Ka(1430)	1/2(2+1)	B ₂)(0010)	v (.)	• X(3900)	$1^{+}(1^{+})$
• $b_1(1235)$	$1^+(1^+)$	$\eta_2(1870)$	0+(2 -)	K(1460)	1/2(0)	BOTTO	M	• X(3915)	0+(0/2 - ")
• a ₁ (1260)	$1^{-}(1^{+-})$	 π₂(1880) 	1 (2)	K ₂ (1580)	1/2(2)	(B = _	1)	$\bullet \chi_{c2}(2P)$	0 ⁴ (2 ⁺ⁱ⁻⁴)
 f₂(1270) 	$0^+(2^{+-})$	$\rho(1900)$	1+(1)	K(1630)	1/2(77)	• B-	1/2(0)	X(3940)	-? [?] (? ^{??})
 f₁(1285) 	$0^{+}(1^{+-})$	5(1910)	$0^+(2^{++})$	$K_1(1650)$	$\frac{1}{2(1^{+})}$	• B ⁰	$1/2(0^{-})$	• X(4020)	1(??)
 η(1295) 	$0^{-1}(0^{1})$	a ₀ (1950)	1 (0 ; ;)	 K¹(1680) 	$\frac{1}{2}(1)$	 B[±]/B⁰ ADM 	IXTURE	 	0 (1)
 π(1300) 	1 (0 +)	 f₂(1950) 	$0^{+}(2^{++})$	 K₀(1770) 	$1/2(2^{-1})$	 B[−]/B⁰/B⁰_e/J 	5-baryon	$X(4050)^+$	$7(?^{7})$
• a ₂ (1320)	$1^{-}(2^{+})$	$\rho_3(1990)$	14 (3)	• K:(1780)	$\frac{1}{2(3)}$	ADMIXTUR		$X(4055)^{\perp}$?(??)
 f₀(1370) 	01 (0 1 1)	 f₂(2010) 	$0^+(2^{++})$	• K ₂ (1820)	$\frac{1}{2}(2)$	V_{ab} and V_{ab}	СКМ Ма-	 ★ X(4140) 	0+(??+)
h1(1380)	$?^{-}(1^{+-})$	$f_0(2020)$	$0^{+}(0^{++})$	K(1830)	$1/2(0^{-1})$	 B" 	1/2(1-)	 	$0^{-}(1^{-})$
 π₁(1400) 	$1(1^{+})$	• 34(2040)	$1^{-}(4^{+}-)$	K:(1950)	$1/2(0^{+})$	• B ₁ (5721) ¹	1/2(1)	X(4160)	??(???)
 η(1405) 	$0^+(0^{-+})$	 f₄(2050) 	0'(4 ' ')	K*(1980)	1/2(2+)	• B ₁ (5721) ⁰	$1/2(1^+)$	$X(4200)^{\pm}$?(1+)
 f₁(1420) 	$0^{+}(1^{++})$	$\pi_2(2100)$	1 (2 +)	- K ² (1900)	1/2(4 +)	B*(5732)	7(22)	X(4230)	$?^{?}(1)$
• \(\circ)(1420)	0 (1)	$f_0(2100)$	$0^+(0^{++})$		1/2(4)	= P*(5747)+	1/0(0 -1)	X(4240) ⁺	??(0-)
$f_2(1430)$	0 ⁻¹ (2 ^{-1, -1})	£(2150)	0'(2'')	K_{2230}	1/2(2)	• D ₂ (5747)0	1/2(2)	$X(4250)^{+}$?(??)
• a ₀ (1450)	1 (0 + -)	$\rho(2150)$	1+(1)	N3(2320)	1/2(5)	• D ₂ (3P47)	1/2(2)	• X(4260)	??(1)
 <i>ρ</i>(1450) 	$1^+(1^{})$	 	0 (1)	∧ ₅ (2360) K (2500)	1/2(5)	D (5040)	1/2(2)	X(4350)	0 ⁺ (? ⁷)
 η(1475) 	0-1 (0 1)	f ₀ (2200)	$0^+(0^{++})$	K(2300)	$\frac{1}{2}(2??)$	DJ(5040)*	1/2(?)	 ★ X(4360) 	??(1)
 f₀(1500) 	0+(0 + -)	$f_{f}(2220)$	0 ⁺ (2 ⁺⁺	v(2100)	1.(1)	• B (5970)	1/2(2)	 	0-(1)
$f_1(1510)$	0+(1 + -)		or 1 ^{-i +})	CHARM	1ED	• 0)(0710)	1/2()	 ★X(4430)[⊥] 	?(1.)
 <i>f</i>[']₂(1525) 	0 ⁺ (2 ⁺ ⁻)	$\eta(2225)$	0 ⁺ (0 ⁻)	(C = 1	1)	BOTTOM, S	TRANGE	• X(4660)	? ¹ (1)
$f_2(1565)$	$0^{+}(2^{+-})$	$\rho_3(2250)$	1+(3)	• D	1/2(0)	(B = -1, S)	= +1)		7
$\rho(1570)$	14(1)	 ▶(2300) 	$0^+(2^{++})$	 D⁰ 	1/2(0)	• B ⁰ _s	0(0)	b	D
$h_1(1595)$	0 (1 +)	f ₄ (2300)	0 (4 ! !)	 D*(2007)⁰ 	$1/2(1^{-1})$	• B [×]	$0(1^{-})$	 η_b(15) 	0+(0)
 π₁(1600) 	$1^{-}(1^{-+})$	f ₀ (2330)	$0^+(0^{++})$	 D⁺(2010) 	1/2(1)	 B_{≤1} (5830)⁰ 	$0(1^{+})$	• $T(15)$	0 (1)
a ₁ (1640)	$1^{-}(1^{+-})$	 f₂(2340) 	0+ (2 + +)	• $D_0^*(2400)^0$	$1/2(0^+)$	 B ≥ (5840)^C 	$0(2^+)$	• $\chi_{\pm 0}(1P)$	0+(0-+)
$f_2(1640)$	$0^{+}(2^{++})$	$\rho_5(2350)$	1+(5)	$D_0^{+}(2400)^{=}$	$1/2(0^+)$	B. (5850)	2(2?)	• $\chi_{b1}(1P)$	$0^+(1^+^+)$
 η₂(1645) 	0+(2 +)	$a_6(2450)$	$1^{-}(6^{+-})$	 D₁(2420)⁶ 	$1/2(1^+)$	- 35 (7	· (· · /	• $h_b(1P)$?*(1 + -)
 <i>ω</i>(1650) 	0-(1)	£(2510)	0+(6++)	$D_1(2420)^{\perp}$	$1/2(?^{?})$	BOTTOM, CI	ARMED	• $\chi_{b2}(1P)$	$0^+(2^+^+)$
• ⇔ ₃ (1670)	0-(3)			$D_1(2430)^0$	$1/2(1^+)$	$\{B = C =$	11)	$\eta_b(25)$	0 (0)
 π₂(1670) 	$1^{-}(2^{-+})$	Cinthe Ct		 D[*]₂(2460)⁰ 	$1/2(2^+)$	$\bullet B_c^+$	0(0)	• T(2S)	$0^{-}(1^{-})$
 	0 (1)	Further St	ates	• $D_{5}^{+}(2460)^{-}$	$1/2(2^+)$	$B_{c}(2S)$	0(0)	• T(1D)	0 (2)
				$D(2550)^{0}$	1/2(??)			• χ _{b0} (2P)	
				D*(2600)	$1/2(7^7)$			• X _{b1} (2P)	$0^{-}(1^{-})^{-})$
				$D^{+}(2640)$	$1/2(?^{?})$			$n_b(2P)$	- <u> </u>
				D(2740) ⁰	$1/2(?^{?})$			• λ.b2(2P)	$0^{-}(2^{+})$
				D(2750)	1/2(3)			• 1 (33)	0 (1) = 0 + (1 + + 1)
				D(3000) ⁰	$1/2(?^{7})$			• $\chi_{51}(SP)$ • $\mathcal{T}(AS)$	0 (1)
				, ,	,			• 1 (40) • 1 (10410)+	$\begin{bmatrix} v & (1) \\ v + (1+) \end{bmatrix}$
								- X(10610)	$\frac{1+(1+)}{1+(1+)}$
								* (100E0)*	$\frac{1}{2+(1+)}$
								• T(10860)	0 (1)
								• 7(11020)	
		1		1		1		- 1 (11020)	v (1)

Baryon Summary Table

This short table gives the name, the quantum numbers (where known), and the status of baryons in the Review. Only the baryons with 3- or 4-star status are included in the Baryon Summary Table. Due to insufficient data or uncertain interpretation, the other entries in the table are not established baryons. The names with masses are of baryons that decay strongly. The spin-parity J^P (when known) is given with each particle. For the strongly decaying particles, the J^P values are considered to be part of the names.

			1			1			1					
p	$1/2^{+}$	****	$\Delta(1232)$	$3/2^{+}$	****	Σ^+	$1/2^{+}$	****	<u>=</u> 0	$1/2^{+}$	****	A_{c}^{+}	$1/2^{+}$	****
n	1/21	****	$\Delta(1600)$	3/21	***	Σ^{G}	1/21	****	Ξ	1/21	****	A. (2595)*	1/2	***
N(1440)	$1/2^+$	****	∆ (1620)	1/2	****	Σ^{-}	1/2+	****	$\Xi(1530)$	3/2+	****	$A_{1}(2625)^{+}$	3/2-	***
N(1520)	3/2-	****	∆ (1700)	$3/2^{-}$	****	Σ(1385)	$3/2^{+}$	****	$\Xi(1620)$		*	A. (2765)		*
N(1535)	1/2	****	$\Delta(1750)$	$1/2^{-1}$	*	Σ (1480)		*	Ξ(1690)		***	A.(2880)	5/2	***
N(1650)	$1/2^{-}$	****	⊿(1900)	$1/2^{-}$	**	Σ(1560)		**	$\Xi(1820)$	3/2-	***	Ac(2940)		***
N(1675)	5/2-	****	$\Delta(1905)$	5/27	****	Σ(1580)	3/2-	*	Ξ(1950)		***	$\Sigma_{c}(2455)$	$1/2^{-1}$	****
N(1680)	$5/2^{-1}$	****	$\Delta(1910)$	1/2	****	$\Sigma(1620)$	1/2	*	$\Xi(2030)$	$> \frac{5}{2}$	***	Σ. (2520)	$3/2^{+}$	***
N(1700)	3/2	***	∆ (1920)	3/2 1	***	Σ(1660)	1/2	***	Ξ(2120)	-	*	Σ.(2800)		***
N(1710)	$1/2^{+}$	****	$\Delta(1930)$	5/2	***	Σ(1670)	3/2	****	E(2250)		**	E	$1/2^{+}$	***
N(1720)	$3/2^{+}$	****	⊿(1940)	3/2-	**	Σ(1690)		**	$\Xi(2370)$		**	Ξů	1/2-	***
N(1860)	$-5/2^{+}$	**	$\Delta(1950)$	$7/2^+$	****	Σ(1730)	$3/2^{+}$	*	$\Xi(2500)$		*	=':	1/2	***
N(1875)	3/2	***	$\Delta(2000)$	5/2	**	Σ(1750)	1/2	***				=/C	$1/2^{-1}$	***
N(1880)	$1/2^{+}$	**	∆ (2150)	$1/2^{-}$	*	Σ(1770)	$1/2^{+}$	*	Ω	$3/2^{+}$	****	E.(2645)	3/21	***
N(1895)	1/2	**	$\Delta(2200)$	7/2	*	Σ(1775)	5/2	****	$\Omega(2250)^{-}$		***	E-(2790)	1/2	***
N(1900)	3/2+	***	∆ (2300)	9/2 ⁺	**	Σ(1840)	3/2+	*	$\Omega(2380)$		**	$\Xi_{c}(2815)$	3/2	***
N(1990)	$7/2^{+}$	**	$\Delta(2350)$	$5/2^{-}$	*	Σ(1880)	$1/2^{+}$	**	$\Omega(2470)^{-}$		**	E.(2930)	.,	*
N(2000)	5/2-	**	$\Delta(2390)$	7/2 +	*	Σ(1900)	1/2	*				E.(2970)		***
N(2040)	$3/2^{+}$	*	∆ (2400)	9/2-	**	Σ(1915)	$5/2^{+}$	****				<i>Ξ.</i> (3055)		***
N(2060)	5/2	**	$\Delta(2420)$	$-11/2^+$	****	Σ(1940)	3/2 ⊢	¥				E. (3080)		***
N(2100)	$1/2^{+}$	*	∆ (2750)	13/2	**	Σ(1940)	3/2	***				E_(3123)		*
N(2120)	3/2	**	$\Delta(2950)$	15/2+	**	Σ(2000)	1/2	*				Ω^0	$1/2^{-1}$	***
N(2190)	7/2-	****				Σ(2030)	7/2+	****				Ω. (2770) ⁰	$3/2^{+}$	***
N(2220)	$9/2^{+}$	****	A	$1/2^{+}$	****	Σ(2070)	$5/2^{+}$	*						
N(2250)	9/2	****	A(1405)	1/2	****	Σ(2080)	3/2 -	**				<u>=</u> 1		*
N(2300)	$1/2^{+}$	**	A(1520)	3/2	****	Σ(2100)	7/2-	*						
N(2570)	5/2	**	A(1600)	1/2	***	Σ(2250)		***				Λ_5^0	$1/2^{-L}$	***
N(2600)	11/2	***	A(1670)	1/2-	****	Σ(2455)		**				$A_{b}(5912)^{0}$	1/2	***
N(2700)	13/27	**	A(1690)	3/2-	** **	Σ(2620)		**				$\Lambda_{b}(5920)^{0}$	3/2	***
			A(1710)	1/2	*	Σ(3000)		*				Σp	1/2	***
			7(1800)	1/2	48 4	Σ(3170)		*				Σ_{b}^{*}	$3/2^{+}$	***
			/(1810)	1/2	***							$= \Xi_b^0, \Xi_b$	$1/2^{+}$	***
			/(1820)	5/2	****							$\Xi_{b}^{\prime}(5935)^{-}$	$1/2^{\perp}$	***
			7(1830)	5/2	****							$\Xi_{5}(5945)^{0}$	3/2	***
			/1(1890)	3/2 1	****							Ξ;(5955)	3/2 1	***
			7(2000)	7.10	*							Ω_{ν}	1/2	***
			7(2020)	1/2	*							[°]		
			7(2050)	3/2	*							$P_{c}(4380)^{+}$		*
			7(2100)	1/2=	****							P. (4450)+		*
			/(2110) /(2005)	5/2	***									
			/(2325)	5/2	*									
			/1(2350)	9/2 1	***									
1			1 71[2565]		-r -r	1			1			1		

**** Existence is certain, and properties are at least fairly well explored.

*** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.

** Evidence of existence is only fair.

* Evidence of existence is poor.

We can put (all of) them in a simple picture!

X(1835), X(2340),

 $\Xi_{c, \Omega_{c}}, \Xi_{cc}, \dots$

J=3/2

J = 1/2

最小组分为四个夸克的态

- Z_c(3900) = c c u d 含一对可湮灭的粲夸克对
- 新型四夸克态: Tcs (cs u d、cs u u 等)
- 新型四夸克态: Tcc (cc u d、cc u s 等)

Tcs产生阈为4.73 GeV; Tcc产生阈为7.74 GeV 不能在BESIII实验产生;可以在Belle II, LHCb实验寻找

T. Hyodo, Y. R. Liu, et al., Physics Letters B 721, 56 (2013)

Estia J. Eichten & Chris Quigg, PRL 119, 202002 (2017)

- **TCC**: Marek Karliner & Jonathan L. Rosner, PRL 119, 202001 (2017)
 - 质量: M(DD)~M(DD*)+100 MeV
 - 截面: O(10fb) @ Belle II
 - 衰变模式:
 - γ**DD**
 - DD*
- **Tcs**: Fu-Sheng Yu, <u>arXiv:1709.02571</u>
 - 质量: 2.3-2.6 GeV
 - 截面: >Tcc @ Belle II
 - 衰变模式:
 - K⁺K⁺π⁻π⁻
 - D+K-

Tcs ?

• M>DK质量阈,主要衰变为D⁺K⁻或D⁰K_S末态

数据中看到清晰的带电和中性D 介子,压低非D本底和组合本底 是分析的关键。

• Pc(4380)、Pc(4450)是很好的5夸 克态候选者

- 寻找其他五夸克态?
 - 五夸克态 Pcc(uccdd、 uccds等)
 - 五夸克态 Θc(cuudd、 cuuds等)

0

理论预期 对称性、模型、LQCD ddccs udecs uuccs ۲ •ddccū \odot uuccd) 15 decsū ۲ usccd (ssccū ssccd uddcs uudcš • \bigcirc \odot ddscū 15+6 uuscđ 🗯 d≴scū usscā

15

胶球的系统研究

- · 胶球→体现胶子自由度的奇特 强子态→胶子场→夸克禁闭
- 较轻的胶球具有常规量子数, 与普通介子可能发生混合,无 法直接区分
- 找到一个胶球
- 需要从多个产生/衰变过程,系
 统研究介子谱,寻找超出夸克
 模型的行为
- *J*/ψ 辐射衰变是丰胶子过程, 理论预期胶球有较大产额

Systematic study of glueball at BESIII

500

2.2

PRD 93, 112011

2.4

2.6

 $M(\phi\phi)$ (GeV/c²)

- $J/\psi \rightarrow \gamma \eta' \eta(')$ is a missing piece to the puzzle
 - A key to reveal the flavor structure of $f_0(2100)$ and $f_2(2340)$
- $J/\psi \rightarrow \phi/\omega + PP$
- **Coupled channel analysis**
 - assignment

Glueball program at BESIII in a nutshell

	0+	2+	0-
Ϳ/ψ→γΡΡ			
J/ψ→γVV			
Ϳ/ψ→γΡΡΡ			

J/ψ→γωφ/φφ/<mark>ωω</mark>

- 0⁺, 2⁺ : Coupled channel analyses
 - $J/\psi \rightarrow \gamma PP$
 - $J/\psi \rightarrow \omega/\phi + X$
- 0⁻ : trajectory, X(2370)
 - $J/\psi \rightarrow \gamma PPP$
 - $J/\psi \rightarrow \gamma \gamma V$
 - PWA published
 - Published, PWA undone
 - Ongoing

J/ψ→γ η'ππ /η'KK/ηππ/KKπ/ηKK/<u>ππ</u>

Flavor Filters:

 $J/\psi \rightarrow \gamma X \rightarrow \gamma V$

 $J/\psi \rightarrow \omega/\phi + X$ $\int_{\bar{c}}^{c} \int_{n\bar{n}}^{\omega} \int_{\bar{c}}^{c} \int_{s\bar{s}}^{\phi}$

Lattice QCD on Glueball spectrum

W. Sun, Y. Chen et al., (CLQCD Collaboration), arXiv:1702.08174

W. Sun, Y. Chen et al., arXiv:1711.00711

	m_π (MeV)	$m_{0^{++}} ~({ m MeV})$	$m^{}_{2++}$ (MeV)	$m_{0^{-+}}^{}$ (MeV)
$N_f = 2$	938	1397(25)	2367(35)	2559(50)
[this work]	650	1480(52)	2380(61)	2605(52)
$N_f = 2 + 1$	360	1795(60)	2620(50)	_
[Ĕ. Gregory]				
quenched [C. Morningstar]	_	1710(50)(80)	2390(30)(120)	2560(35)(120)
quenched [Y. Chen]		1730(50)(80)	2400(25)(120)	2590(40)(130)

- Tensor and pseudoscalar glueball masses at $N_f = 2$ are compatible with those in the quenched approximation.
- The pseudoscalar glueball mass is roughly 2.6 GeV. We suggest BESIII to search for the pseudoscalar glueball in this mass region.
- The study on the possible mixing between glueball states and conventional meson states is in progress.

钱文斌报告

y combination

➤ Adding all the measurements, we have

	B decay	D decay	Method	Ref.	Dataset [†]	U LHCb Preliminary
	$B^+ \to DK^+$	$D \to h^+ h^-$	GLW	14	Run 1 & 2	
	$B^+ \to DK^+$	$D \to h^+ h^-$	ADS	15	Run 1	$0.6 - 74.0^{+5.0}$
	$B^+ \to DK^+$	$D \to h^+ \pi^- \pi^+ \pi^-$	$\mathrm{GLW}/\mathrm{ADS}$	15	$\operatorname{Run} 1$	-5.8
	$B^+ \to DK^+$	$D \to h^+ h^- \pi^0$	$\mathrm{GLW}/\mathrm{ADS}$	16	Run 1	0.4 - 68.3%
-	$B^+ \to DK^+$	$D \to K^0_{\rm s} h^+ h^-$	GGSZ	17	$\operatorname{Run}1$	
New	$B^+ \to DK^+$	$D \to K^0_{\rm s} h^+ h^-$	GGSZ	18	$\operatorname{Run}2$	95.5%
	$B^+ \to DK^+$	$D \to K^0_{\rm s} K^+ \pi^-$	GLS	19	Run 1	
	$B^+ \to D^* K^+$	$D \to h^+ h^-$	GLW	14	Run 1 & 2	γ [°]
-	$B^+ \to D K^{*+}$	$D \to h^+ h^-$	$\mathrm{GLW}/\mathrm{ADS}$	20	Run 1 & 2	
New	$B^+ ightarrow DK^{*+}$	$D \to h^+ \pi^- \pi^+ \pi^-$	$\mathrm{GLW}/\mathrm{ADS}$	20	${\rm Run}\;1\;\&\;2$	World average: $\gamma = (73.5^{+4.2})^{\circ}$
	$B^+ \to D K^+ \pi^+ \pi^-$	$D \to h^+ h^-$	$\mathrm{GLW}/\mathrm{ADS}$	21	$\operatorname{Run}1$	(1010-5.1)
	$B^0 \to DK^{*0}$	$D \to K^+ \pi^-$	ADS	22	$\operatorname{Run} 1$	HFLAV winter 2018
	$B^0\!\to DK^+\pi^-$	$D \to h^+ h^-$	$\operatorname{GLW-Dalitz}$	23	Run 1	
	$B^0 \to DK^{*0}$	$D\to K^0_{\rm s}\pi^+\pi^-$	GGSZ	24	$\operatorname{Run}1$	> Innuts from RESIII important
-	$B^0_s \to D^\mp_s K^\pm$	$\rightarrow D_s^{\mp} K^{\pm}$ $D_s^+ \rightarrow h^+ h^- \pi^+$ TD			$\operatorname{Run} 1$	applies from DESIII Important,
New	$B^0 \rightarrow D^{\mp} \pi^{\pm}$	$D^+\!\to K^+\pi^-\pi^+$	TD	26	Run 1	combining enorts will nelp

R(D), R(D^{*}) and R(J/ ψ)

Lepton flavor universality test becomes a hot topic after many deviations seen from B-factories and LHCb measurements PRL 115 (2015) 112001

钱文斌报告

PRL 120 (2018) 171802 PRD 97 (2018) 072013

➤ LHCb has performed R(D*) in muonic channel in 2015 and now also in hadronic channel

- $R(X_c) = \frac{\mathcal{B}(B \to X_c \tau^+ \nu_{\tau})}{\mathcal{B}(B \to X_c \mu^+ \nu_{\mu})}, \ X_c = D^* \text{ or } J/\psi$
- > Besides measurements in B_c system have also been measured PRL 120 (2018) 121801
- > Assumes that all the systematic uncertainties scale w.r.t. statistic except those can't or reply on external inputs

朱凯报告 D介子半轻衰变测量及轻子普适性检验

利用BESIII 在 3.773 GeV 获取的2.93 fb⁻¹数据 PRL121, 171803 (2018)

精度明显提升

$$\begin{split} B(D^{0} \to \pi^{-}\mu^{+}\nu_{\mu}) &= \\ (0.272 \pm 0.008_{stat} \pm 0.006_{sys}) \times 10^{-2} \\ \\ \\ \\ \\ B(D^{+} \to \pi^{0}\mu^{+}\nu_{\mu}) &= \\ (0.350 \pm 0.011_{stat} \pm 0.010_{sys}) \times 10^{-2} \\ \end{split}$$

$D_{s}^{+} \rightarrow \mu^{+}v @ 4.18 \text{ GeV} (3.2 \text{ fb}^{-1})$

钱文斌报告

Searches at LHCb

> Sensitivity scaled according to $1/\sqrt{N}$

Searches at **BESIII**

- 上穷碧落下黄泉,
 两处茫茫皆不见。
- ・ 众里寻她千百度,
 蓦然回首,

....

BESIII 白皮书

Energy	physics highlight	Current data	Expected final data		
		# of events	# of events		
		or integrated luminosity	or integrated luminosity		
1.8 - 2.0 GeV	R values	N/A	Scan: 3 energy points		
	cross-sections				
2.0 - $3.1~{\rm GeV}$	R values	Scan: 20 energy points	No requirement		
	cross-sections				
J/ψ peak	Light Hadron & Glueball	5.0 billion	10.0 billion		
	Charmonium decay				
$\psi(3686)$ peak	Light hadron& Glueball	0.5 billion	3.0 billion		
	Charmonium decay				
$\psi(3770)$ peak	D^0/D^{\pm} decays	$2.9 { m fb}^{-1}$	$20.0 { m ~fb^{-1}}$		
	Form-factor/CKM				
	decay constant				
3.8 - 4.6 GeV	R value	Scan: 105 energy points	No requirement		
	XYZ/Open charm				
$4.180 { m GeV}$	D_s decay	$3.1 { m ~fb^{-1}}$	$6.0 { m ~fb^{-1}}$		
	XYZ/Open charm				
	XYZ/Open charm		Scan: 30.0 fb^{-1}		
4.0 - $4.6~{\rm GeV}$	Higher charmonia	Scan: 12.0 fb^{-1}	$10 \text{ MeV step}/0.5 \text{ fb}^{-1}/\text{point}$		
	cross-sections		30 energy points		
$4.60 {\rm GeV}$	Λ_c/XYZ	$0.56 { m ~fb^{-1}}$	$1.0 { m ~fb^{-1}}$		
$4.64 {\rm GeV}$	Λ_c/XYZ	N/A	$5.0 { m ~fb^{-1}}$		
$4.65~{\rm GeV}$	Λ_c/XYZ	N/A	$0.2 { m ~fb^{-1}}$		
$4.70 {\rm GeV}$	Λ_c/XYZ	N/A	$0.65 { m ~fb^{-1}}$		
$4.80 {\rm GeV}$	Λ_c/XYZ	N/A	$1.0 { m ~fb^{-1}}$		
$4.90 {\rm GeV}$	Λ_c/XYZ	N/A	$1.3 { m fb^{-1}}$		
$\Sigma_c^+ \bar{\Lambda}_c^-$ 4.74 GeV	Charm Baryons	N/A	$1.0 { m ~fb^{-1}}$		
$\Sigma_c \bar{\Sigma}_c$ 4.91 GeV	Charm Baryons	N/A	$1.0 { m ~fb^{-1}}$		
$\Xi_c \bar{\Xi}_c 4.95 \text{ GeV}$	Charm Baryons	N/A	$1.0 { m ~fb^{-1}}$		

29

Belle II physics book

1808.10567

KEK Preprint 2018-27 BELLE2-PAPER-2018-001 FERMILAB-PUB-18-398-T JLAB-THY-18-2780 INT-PUB-18-047 UWThPh 2018-26

LHCb upgrade physics book

1808.08865

CERN-LHCC-2018-026 LHCB-PUB-2018-009 August 28, 2018

9/fb data for physics now!

Figure 1.1: Timeline of accelerator and experiment operations over the decade 2021 to 2031. The periods of operations of the LHC and HL-LHC are indicated and the long shutdowns (LS). The LHCb operational periods are shown with gaps where the detector consolidation and upgrades discussed in this document occur. The running period of Belle II, the other major international flavour-physics facility, is also shown.

STCF in China

Super Tau-Charm Facility (STCF)

- **D** Peak luminosity 0.5-1×10³⁵ cm⁻²s⁻¹ at 4 GeV
- **\Box** Energy range $E_{cm} = 2-7GeV$
- Polarization available on beam (Phase II)
- **Basic Features of machine :**
 - Symmetric machine with dual-ring, 600-1000meter
 - Large Piwinski angle collision + crabbed waist solution for the IR
 - Siberia snake for polarization

CDR Input

- Physics motivation
- Fast simulation is ready, process simulation
- Accelerator and Detector R&D

Please contact:

Jianping Ma, Qing Luo, Jiangbei Liu, Xingtao Huang and Haiping

彭海平报告

理解夸克禁闭机制

35

理想还是要有的……

Thanks