

Overview of Dark Matter Direct Detection Experiments

粒子物理前沿卓越创新中心第六次全体会议 2018-11-22

Outline

- Dark Matter Direct Searches
- WIMP-Nucleon SI Interaction
- WIMP-Nucleon SD Interaction
- WIMP-Electron Interaction
- DAMA/LIBRA Anomaly
- Directional Direct Search
- Summary

Dark Matter Searches

- Direct detection
- Indirection detection
- Collider search

thermal freeze-out (early Univ.) indirect detection (now)

direct detection

Dark Matter Direct Detection

- Nuclear recoil (NR) vs Electron recoil (ER)
- Light & Charge & Heat

World-Wide Efforts

Current Constraints

• Towards lower threshold & lower background

周宁, CCEPP 2018 全体大会

- Spin Independent WIMP-Nucleon Interaction
- High Mass **WIMP** -Electron -Proton -Neutron

Noble Liquid Experiment

- Dense and homogenous target, self-shielding
- High light and charge yields
- Dual-phase: scintillation light and ionization electron
- Single-phase: scintillation light

S2

S1

Particle

E

Drift time indicates depth

S1

Xenon Detectors

100cm

LUX Sensitive volume 250 kg Completed in 2016

PandaX-II

Sensitive volume 580 kg 54 ton-day, ongoing XENON1T Sensitive volume 2000 kg 1 ton-year, ongoing

周宁, CCEPP 2018 全体大会

Xenon Detectors: LUX, PandaX-II, XENON1T

- Strongest constraints on the high mass WIMP
- XENON1T sets 4.1x10⁻⁴⁷ cm² at 30 GeV WIMP

Phys. Rev. Lett. 121, 111302 (2018)

XENON1T Latest Results

- Exposure 1 ton-year
- Fiducial volume

Mass

ER.

 $(cS1, cS2_b)$

1.3 t

Full

 627 ± 18

1.3 t

Reference

 1.62 ± 0.30

0.9 t

Reference

 1.12 ± 0.21

0.65 t

40

Reference

 0.60 ± 0.13

Future Xenon Detectors

Experiment	Sensitive Volume	Fiducial Volume	Expected exposure	Expected Sensitivity	Status
PandaX-4T	4 ton	2.8 ton	5 ton-year	10 ⁻⁴⁷ cm ²	Commissioning 2020
XENONnT	6 ton	5 ton	20 ton-year	2x10 ⁻⁴⁸ cm ²	Commissioning 2019
LZ	7 ton	5.6 ton	20 ton-year	2x10 ⁻⁴⁸ cm ²	operations start April 2020
Darwin	40 ton	30 ton	200+ ton-year	Neutrino floor	CDR in 2-3 years

PandaX-4T

XENONnT

LZ

Argon Detectors

- Pulse shape of prompt scintillation signal
 - Singlet (6ns) and triplet $(1.5\mu s)$
- Dual-phase: Ionized electron vs prompt scintillation light

Current Running Argon Detectors

Phys. Rev. D 98, 102006 (2018)

Future Argon Detector: GADMC

- Global Argon Dark Matter Collaboration
- DarkSide-20k (2021)
 - dual-phase, low radioactivity Ar
 - 50 tonne total mass, 30 tonnes fiducial mass
 - > 20 m² of SiPM coverage
- 300 tons fiducial mass detector (2026)

Eur. Phys. J. Plus (2018) 133: 131

- Spin-Independent WIMP-Nucleon Interaction
- Low Mass

Noble Liquid: S2-only Signature

- Dual-phase noble liquid detector
- Usual signal region
 - PandaX: S1 [3PE, 45PE], S2 [100PE, 10000PE], Threshold ~ 1 keVee

0.45

0.35

0.3 0.25

0.2

Fiducialization ····· × Trigger efficiency

- Low mass signal region @ DarkSide-50
 - S2-only, no ER/NR discrimination
 - Threshold N_ρ=7 ~ 0.1 keVee
 - ~10⁻⁴¹ cm² at **2 GeV**

Germanium Detectors: CDEX

CDEX-10 @ CJPL

0.8

0.6

0.4

0.2

0.05

Efficiency

35

30

25

20

15

10

Counts (kg⁻¹keVee⁻¹day⁻¹)

- 10 kg Ge in liquid N_2
- Analysis threshold 160 eVee
- 102.8 kg-days exposure

周宁. CCEPP 2018 全体大会

Germanium Detectors: SuperCDMS

- SuperCDMS @Soudan
- Standard iZIP mode: phonon and ionization, ER/NR discrimination
- CDMSlite HV mode: phonon only
 - Ionization electrons generate a large number of NTL phonons
 - => Low threshold 56 eVee

Crystal Detector: CRESST

- **CRESST-III** experiment
- CaWO₄ crystal, 24g, @ ~15mK
 - Phonon signal: precise measurement of deposited energy
 - Scintillation light: particle-type dependent
- Nuclear recoil threshold 30.1 eV => subGeV WIMP

F. Reindl, IDM2018

Nuc. Instr. Meth. A 845 (2017) 414-417

Spin-Dependent WIMP-Nucleon Interaction

Spin-Dependent WIMP-Neutron Interaction

- Xenon odd-A isotope with unpaired **neutron => High Mass**
 - Xe129 (26.4%) Spin 1/2
 - Xe131 (21.2%) Spin 3/2
- Germanium odd-A with unpaired neutron => Low Mass
 - Ge73 (7.73%) Spin 9/2

Spin-Dependent WIMP-Proton Interaction

- **PICO-60** experiment with C₃F₈ as the target
 - F19, unpaired proton, spin 1/2
 - Bubble chamber with superheated liquid
 - 3.4 x10⁻⁴¹ cm² at **30 GeV/c²**
- PICO 40L, starting ~ December 2018

WIMP-Electron Interaction

Argon Detector: DarkSide-50

- **S2-only** signal region
 - no ER/NR discrimination
- Threshold N_e=3 ~ 0.05 keVee

 $F_{\rm DM}(q) = \frac{{m_{A'}}^2 + \alpha^2 m_e^2}{{m_{A'}}^2 + q^2} \simeq \begin{cases} 1, & m_{A'} \gg \alpha m_e \\ \frac{\alpha^2 m_e^2}{q^2}, & m_{A'} \ll \alpha m_e , \end{cases}$

25

Silicon Detector: SuperCDMS HVeV

• Single-charge sensitive detector

Charge resolution: 0.1 electron-hole pairs

- 0.93 g Si crystal (1 x 1 x 0.4 cm3) @ 33-36mK
- 0.49 gram-days

CCD Detector: SENSEI

- A single Skipper-CCD @130K
 - 1.086cmx1.872cm, 0.0947g Si
 - Charge is sampled multiple times
 - Resolution 1e-

 10^{-26}

- Above ground: sensitive to DM that strongly interacts with SM
- 0.019 g day commissioning data
- Probe DM mass down to 500keV

周宁, CCEPP 2018 全体大会

DAMA/LIBRA Anomaly

DAMA/LIBRA

DAMA/LIBRA-phase2

arXiv:1805.10486

- NaI (TI) 250 kg, 6 annual cycles, 1.13 ton-year, light collection
- The only experiment claiming signal with > 5 sigma
 - 50 GeV with $7x10^{-6}$ pb or 6-16 GeV with $2x10^{-4}$ pb
- Not confirmed by experiments with other targets

WIMP-Electron Annual Modulation

- 4-year exposure in **XENON100**
- Weak modulation signature at a period of 431 days in low energy SS events
- Not compatible with DAMA modulation

Other Nal Experiments

- SABRE, COSINE, DM-ICE, KIMS and ANAIS, etc
- Stay tuned!

Directional Direct Search

Directional Direct Search

- Directionality:
 - Cygnus direction
 - Can help with neutrino floor!
 - 30deg angular resolution necessary to distinguish Cygnus from Sun
- To reconstruct the recoil track
- R&D work in progress

4.0 Number of events

MIMAC Micromegas

DMTPC CCD

NEWAGE Micro pixel

周宁, CCEPP 2018 全体大会

Summary

- World-wide efforts in the dark matter direct detection
- A large variety of techniques and targets
- No compelling positive results are obtained yet. DAMA's anomaly is under further cross-check
- Within ~10 years, we may be able to reach the neutrino floor
- Stay tuned!

THANK YOU!

Backup

