

Belle/Belle II的研究进展

王小龙

复旦大学

中国科学院粒子物理前沿卓越创新中心第六次全体会议 中科院高能所,2018年11月22日

I. Belle 研究进展

- $\Xi_c(2930)^0$ in $B^+ \to K^+ \Lambda_c^+ \bar{\Lambda}_c^-$; evidence of charged $\Xi_c(2930)$ in $B^0 \to K^0 \Lambda_c^+ \bar{\Lambda}_c^-$.
- Measurements of absolute $\mathcal{B}s$ of Ξ_c^0 .
- $e^+e^- \rightarrow \gamma + \chi_{cJ}/\eta_c$, observation of χ_{c1} .

$\Xi_c(2930)$ in $B \to K + \Lambda_c^+ \bar{\Lambda}_c^-$ at Belle

- Ξ_c(2930)⁰ = csd: the first charmed-strange baryon established in B decays; clear confirmation (5.1σ) for BaBar claim.
 Y.B. Li, C.P. Shen, et al, EPJC78, 252(2018)
- First evidence of charged Ξ_c(2930) (4.1σ): M = 2942.3 ± 4.4 ± 1.6 MeV/c², Γ = 14.8 ± 8.8 ± 7.1 MeV/c². Y.B. Li, C.P. Shen, et al, EPJC78, 928(2018)

X.L. Wang (Fudan)

Search for Y(4660) and its spin part in $B^+ \to K^+ \Lambda_c^+ \bar{\Lambda}_c^-$ at Belle

- No Y(4660) and its spin partner Y_{η} were observed. in the $\Lambda_c^+ \overline{\Lambda}_c^-$ invariant mass distribution
- 90% C.L. upper limits of $B^+ \to K^+ Y(4660) \to K^+ \Lambda_c^+ \overline{\Lambda_c^-}$ and $B^+ \to K^+ Y_\eta \to K^+ \Lambda_c^+ \overline{\Lambda_c^-}$ are 1.2×10^{-4} and 2.0×10^{-4} .

Measurements of Br of $B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0, \Xi_c^0 \rightarrow anything$

- The $\overline{\Lambda}_c^-$ reconstructed via its $\overline{p}K^+\pi^-$ and $\overline{p}K_s^0$ decays
- A tagged B meson candidate, B_{tag}^+ , is reconstructed using a neural network based on the full hadron-reconstruction algorithm preliminary

- An unbinned maximum likelihood fit: $N(\Xi_c^0)=40.9 \pm 9.0, 5.5\sigma(\text{stat.})$
- $B(B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0, \Xi_c^0 \rightarrow anything) = (9.51 \pm 2.10 \pm 0.88) \times 10^{-4}$ for the first time

X.L. Wang (Fudan)

Measurements of absolute Brs of Ξ_c^0

Summary of the measured branching fractions and the ratios of Ξ_c^0 decays

Channel	Br/Ratio	preliminary
$B(B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0)$	(9.51±2.10±0.88)×10 ⁻⁴	
$B(\mathbf{B}^- \to \overline{\mathbf{\Lambda}}_c^- \Xi_c^0) B(\Xi_c^0 \to \Xi^- \pi^+)$	(1.71±0.28±0.15)×10 ⁻⁵	(2.4±0.9)×10 ⁻⁵
$B(\mathbf{B}^- \to \overline{\mathbf{\Lambda}}_c^- \Xi_c^0) B(\Xi_c^0 \to \Lambda \mathrm{K}^- \pi^+)$	(1.11±0.26±0.10)×10 ⁻⁵	(2.1±0.9)×10 ⁻⁵
$B(\boldsymbol{B}^- \to \overline{\boldsymbol{\Lambda}}_c^- \Xi_c^0) B(\Xi_c^0 \to \mathrm{pK}^- \mathrm{K}^- \pi^+)$	(5.47±1.78±0.57)×10 ⁻⁶	Ť
$B(\Xi_{\rm c}^0 \rightarrow \Xi^- \pi^+)$	$(1.80\pm0.50\pm0.14)\%$	
$B(\Xi_{\rm c}^0 \to \Lambda {\rm K}^- \pi^+)$	(1.17±0.37±0.09)%	PDG
$B(\Xi_{\rm c}^0 \rightarrow {\rm pK^-K^-}\pi^+)$	(0.58±0.23±0.05)%	4
$B(\Xi_{\rm c}^0\to\Lambda {\rm K}^-\pi^+)/B(\Xi_{\rm c}^0\to\Xi^-\pi^+)$	$0.65 \!\pm\! 0.18 \!\pm\! 0.04$	1.07 ± 0.14
$B(\Xi_{\rm c}^0\to {\rm pK^-K^-\pi^+})/B(\Xi_{\rm c}^0\to \Xi^-\pi^+)$	$0.32 \pm 0.12 \pm 0.07$	0.34 ± 0.04

- We have performed an analysis of $B^- \to \overline{\Lambda}^-_c \Xi^0_c$ inclusively and exclusively
- First model-independent measurement of absolute Brs of Ξ_c^0 decays
- The branching fraction $B(B^- \rightarrow \overline{\Lambda}_c^- \Xi_c^0)$ is measured for the first time
- The measured $B(\Xi_c^0 \to \Xi^- \pi^+)$ can be used to determine the BR of other Ξ_c^0 decays.

X.L. Wang (Fudan)

$$e^+e^- \to \gamma + \chi_{cJ}/\eta_c$$

Motivation

• Continuum production predictions by NRQCD (for Belle II):

N. Brambilla et al., PRD97, 096001(2018)

• We can study with Belle data at first:

•
$$\sigma(e^+e^- \to \chi_{c0} + \gamma) = (1.4 \pm 0.3) \text{ fb};$$

•
$$\sigma(e^+e^- \to \chi_{c1} + \gamma) = (15.0 \pm 3.3) \text{ fb};$$

•
$$\sigma(e^+e^- \to \chi_{c2} + \gamma) = (4.5 \pm 1.4)$$
 fb.

• $e^+e^- \rightarrow \gamma + \chi_{cJ}/\eta_c$ measured by BESIII: PRD96,051101(2017) and Chin.Phys.C39, 041001(2015)

	$E_{\rm CM}~({\rm GeV})$		$N^{\rm obs}$	significance $(\sigma)~\sigma^{\rm U}$	P (pb)	$\sigma^{\rm B}~({\rm pb})$	3.	οĒ	(b)	I		
		χ_{c0}	7.0 ± 6.6	1.6	182	$65.0 \pm 61.3 \pm 5.3$	2	Ē			σ _{ΕΙ ΔΤ}	
	4.009	χ_{c1}	4.4 ± 2.6	2.2	5.3	$2.4\pm1.4\pm0.2$	~ -	Cor	nventional States		OBELLE	
		χ_{c2}	1.8 ± 1.7	1.5	18	$4.7\pm4.4\pm0.6$	₫ 2.0 	⁰È-	ψ(4040)	1	• ····· σ _{Y(4260)}	
		χ_{c0}	0.2 ± 2.3	0.0	26	$0.7\pm8.0\pm0.1$	1 L	5 E -	-ψ(4415) +	AIN.	O _{Y(4360)}	
	4.230	χ_{c1}	6.7 ± 4.3	1.9	1.7	$0.7\pm0.5\pm0.1$	Ŷ		/	(† † 🔨	1.1	
		χ_{c2}	13.3 ± 5.2	2.9	5.0	$2.7\pm1.1\pm0.3$	- 1. +	吃	Λ	$\perp \Lambda$		
		χ_{c0}	0.1 ± 1.9	0.0	26	$0.5\pm8.8\pm0.1$) e 0.	5₽/		12		
	4.260	χ_{c1}	3.0 ± 3.0	1.1	1.1	$0.4\pm0.4\pm0.1$	0	Ľ				
		χ_{c2}	7.5 ± 3.9	2.3	4.2	$2.0\pm1.1\pm0.2$		ŧ.			ļ	
		χ_{c0}	0.1 ± 0.7	0.0	23	$0.7 \pm 5.0 \pm 0.1$	-0.1	5 =	ļ			
rudan)	4.360	÷.,	5.2 ± 4.0	2.4	2.0	Dene/Belle II	Status	Ε.	han dara da		and a second second second	

7/31

$e^+e^- \rightarrow \gamma + \chi_{cJ}$ from Belle

• $\chi_{cJ} \rightarrow \gamma J/\psi, \ J/\psi \rightarrow \mu^+ \mu^-$ for reconstruction;

- 5C constraints: 4C to initial e^+e^- collision system &. 1C to J/ψ mass
- ISR events $e^+e^- \rightarrow \gamma_{\text{ISR}}\psi(2S) \rightarrow \gamma_{\text{ISR}}\gamma\chi_{cJ}$ removed by $M(\gamma_{\text{ext}}\gamma\mu^+\mu^-) < 3.60 \text{ GeV}/c^2 \text{ or } > 3.78 \text{ GeV}/c^2$:
 - $N^{\text{residual}}(\chi_{c1}) = 0.84 \pm 0.15 \text{ and } N^{\text{residual}}(\chi_{c2}) = 0.43 \pm 0.05.$

A significant χ_{c1} signal in 10.58 GeV data sample:

- $N^{\text{obs}}(\chi_{c1}) = 39.0^{+9.5}_{-8.8}$ with $\varepsilon = 19.9\%$;
- The significance: 5.1σ including systematic uncertainties;

•
$$\sigma^{\text{Born}}(e^+e^- \to \gamma + \chi_{c1}) = (17.3^{+4.2}_{-3.9}(stat.) \pm 1.7(syst.))$$
 fb.

S. Jia, X.L. Wang et al.,

$\sigma(e^+e^- \to \gamma \chi_{c1})$ vs. \sqrt{s}

• Assuming $\sigma(e^+e^- \rightarrow \gamma \chi_{cJ}/\eta_c) \propto 1/s^n$, the prediction:

charmonium	χ_{c0}	χ_{c1}	χ_{c2}	η_c
n	1.4	2.1	2.4	1.3

L.B. Chen, Y. Liang and C.F. Qiao, JHEP1801,091(2018)

- Combining measurements from BESIII and Belle.
- Fitting yields $n = 2.1^{+0.3}_{-0.4}$.

• ULs determined in $e^+e^- \rightarrow \gamma + \eta_c, \ \chi_{c0}, \ \chi_{c2}$.

Accepted by PRD.
 X.L. Wang (Fudan)

II. Belle II进展

- Belle II合作组
- SuperKEKB进展
- Belle Ⅱ探测器表现
- 中国组过去一年的工作

Belle II Collaboration

- Belle II Collaboration: 26 counties/regions, 113 institutions, > 800 collaborators.
- Belle II China Group: 高能所, 中科大, 北大, 北航, 复旦, 辽宁师大, 以及苏州大学. 成员超过45名。
- 中国组网页: https://napp.fudan.edu.cn/belle2/

Current schedule

- First collisions on 4/26/2018, 8 years after KEKB and Belle being shut down.
- Phase 2 until July 17th.
- On the way to Phase III: Physics Run.

The SuperKEKB

A lot of new designs

The final focus: Key of achieving the goal of $L = 0.8 \times 10^{36} \text{ cm}^{-2} \text{s}^{-1}$

The superconducting final focus system

- The record the vertical spot size is 400nm with $I \sim 15$ mA, goal is $\mathcal{O}(50 \text{ nm})$ with full capability of the QCS system.
- Early Phase 3 will continue with $\beta^* = 3$ mm, goal is $\beta^* \sim 0.3$ mm.
- Struggling with beam-beam blow-up, a major issue for Phase3. Belie/Belle II Status

SuperKEKB achievements at Phase II

Keep on squeezing the two beams with the superconducting final focus $\beta_y^* = 3$ mm.

• Luminosity tuning had priority, so most of the time was assigned for accelerator physicists.

- Belle II only record 0.5 fb^{-1} data, usually owl shift.
- $L = 0.55 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ achieved in Phase II, compared to $L_{max} = 2.1 \times 10^{34}$ by KEKB.

X.L. Wang (Fudan)

Cut view of Belle II detector

H = 7.1m, L = 7.4m, W = 1400t

• Belle II subsystems: PXD, SVD, CDC, iTOP, ARICH, ECL, KLM, DAQ/TRG, GRID...

• 中国组(可)参与: PXD, SVD, CDC, iTOP, ARICH, KLM, DAQ/TRG, GRID

X.L. Wang (Fudan)

Detector highlights

Signals involving photons (ECL)

X.L. Wang (Fudan)

TOP for Particle Identification: K^{\pm} , p and π^{\pm}

- The charged correlation with the slow pion determines which track is the kaon (or pion)
- Kinematically identified kaon from a D^{*+} in the TOP.
- Cherenkov x vs. t pattern (mapping of the Cherenkov ring):

B mesons from Belle II

• Rediscovery of *B* mesons in June, shown at ICHEP2018.

• Use the full Phase 2 dataset and apply the FEI (Full Event Interpretation) technique based on boosted decision trees (BDTs, a machine learning technique).

Onwards to Phase 3 and the Physics Run

- VXD = PXD+SVD
- PXD installation ongoing well at KEK.

- 叶桦(DESY)正在KEK负责相关工作。
- 复旦博士后刘清源通过中联合项目,正 在DESY参与PXD的工作。
 - X.L. Wang (Fudan)

• SVD installation, finished in July, 2018

• Successful marriage of the PXD and SVD, current highlight of Belle II.

Luminosity and prospects

Book of Belle II Physics is available at arXiv:1808.10567

Prog. Theor. Exp. Phys. **2018**, 00000 (681 pages) DOI: 10.1093/ptep/0000000000

The Belle II Physics Book (Draft v1.0)

Emi $\mathrm{Kou}^1,$ Phillip Urquijo², The Belle II collaboration³, and The B2TiP theory community³

¹LAL ²Melbourne

The report of the Belle II Theory Interface Platform is presented in this document.

Belle II China Group in the past year

- New institutions: Fudan in June 2017, LNNU and SUDA in June 2018.
- Workshops:1st Workshop in March 2018, 1st Winter School in Nov. 2018.
- Hardware:
 - New lab at Fudan, working on KLM and DAQ upgrades; M&O of KLM.
 - IHEP's proposal for DAQ upgrade, based on xFP;
 - USTC has interest on DAQ;
 - IHEP joining the CDC maintenance and operation;
- M&O of Belle II: Fudan(+SUDA) in KLM, IHEP in CDC.
- Exchanges and cooperation: Agreement between Fudan and KEK.
- Computing resources: BUAA joining Belle II GRID, Fudan building a cluster, and IHEP is applying 修购计划.
- VIPs visiting KEK: 2018年7月中科院财务与保障局局长, 8月发改委副主任。
- Web site: https://napp.fudan.edu.cn/belle2/
 - Databases, public and internal;
 - Wiki
 - Blog
 - Forum
 - HyperNews in the future?

Summary

- Belle analyses:
 - $\Xi_c(2930)^0$ in $B^+ \to K^+ \Lambda_c^+ \bar{\Lambda}_c^-$; evidence of charged $\Xi_c(2930)$ in $B^0 \to K^0 \Lambda_c^+ \bar{\Lambda}_c^-$.
 - Measurements of absolute $\mathcal{B}s$ of Ξ_c^0 .
 - $e^+e^- \rightarrow \gamma + \chi_{cJ}/\eta_c$, observation of χ_{c1} .
- Belle II had the first collisions on April 26, 2018, and the Phase 2 was until July 17th.
- The Phase 2 got very impressive results from both the SuperKEKB accelerator and the Belle II detector.
- $L_{peak} = 0.55 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ was achieved during Phase 2.
- The nano-beam scheme is working well and the Belle II detector has very good performance!
- Belle II is going to start physics running in 2019.
- Belle II China group did a lot of work in the past year.

Thank you!

Back-up

A lot list of charged charmonium-like states

State	M (MeV)	Γ (MeV)	J^{PC}	Process (decay mode)	Experiment
$Z_{c}^{+,0}(3900)$	3886.6 ± 2.4	28.1 ± 2.6	1+-	$e^+e^- \to \pi^{-0}(J/\psi\pi^{+,0})$	BESIII (Ablikim et al., 2013a, 2015f), Belle (Liu et al., 2013)
				$e^+e^- \rightarrow \pi^{-,0}(D\bar{D}^*)^{+,0}$	BESIII (Ablikim et al., 2014b, 2015e)
$Z_c^{+,0}(4020)$	4024.1 ± 1.9	13 ± 5	$1^{+-}(?)$	$e^+e^- \rightarrow \pi^{-,0}(h_e\pi^{+,0})$ $e^+e^- \rightarrow \pi^{-,0}(D^*\bar{D}^*)^{+,0}$	BESIII (Ablikim et al., 2013b, 2014c) BESIII (Ablikim et al., 2014a, 2015d)
$Z^{+}(4050)$	4051_{-43}^{+24}	82^{+51}_{-55}	$?^{2+}$	$B \to K(\chi_{c1}\pi^+)$	Belle (Mizuk et al., 2008), BABAR (Lees et al., 2012a)
$Z^{+}(4200)$	4196_{-32}^{+38}	370^{+99}_{-149}	1+	$B \rightarrow K(J/\psi \pi^+)$ $B \rightarrow K(\psi' \pi^+)$	Belle (Chilikin et al., 2014) LHCb (Aaij et al., 2014b)
$Z^+(4250)$	$4248\substack{+185\\-45}$	177^{+321}_{-72}	7^{2+}	$B \to K(\chi_{c1}\pi^+)$	Belle (Mizuk et al., 2008), BABAR (Lees et al., 2012a)
$Z^{+}(4430)$	4477 ± 20	181 ± 31	1+	$B \to K(\psi' \pi^+)$	Belle (Choi et al., 2008; Mizuk et al., 2009), Belle (Chilikin et al., 2013), LHCb (Aaij et al., 2014b, 2015b)
				$B \rightarrow K(J\psi \pi^+)$	Belle (Chilikin et al., 2014)
$P_{c}^{+}(4380)$	4380 ± 30	205 ± 88	$(\frac{3}{7} / \frac{5}{7})^{\mp}$	$\Lambda_0^0 \rightarrow K(J/\psi p)$	LHCb (Aaij et al., 2015c)
$P_c^+(4450)$	4450 ± 3	39 ± 20	$(\frac{3}{2}/\frac{3}{2})^{\pm}$	$\Lambda_0^0 \rightarrow K(J/\psi p)$	LHCb (Aaij et al., 2015c)
$Y_{k}(10860)$	$10891.1^{+3.4}_{-3.8}$	53.7 ^{+7.2}	1	$e^+e^- \rightarrow (\Upsilon(nS)\pi^+\pi^-)$	Belle (Chen et al., 2008; Santel et al., 2016)
$Z_{b}^{\pm,0}(10610)$	10607.2 ± 2.0	18.4 ± 2.4	1^{+-}	$Y_{\delta}(10860) \rightarrow \pi^{-0} \bigl(\Upsilon(nS) \pi^{+,0} \bigr)$	Belle (Bondar et al., 2012; Garmash et al., 2015), Belle (Krokovny et al., 2013)
				$Y_{\delta}(10860) \rightarrow \pi^{-}(h_{\delta}(nP)\pi^{+})$ $Y_{\delta}(10860) \rightarrow \pi^{-}(B\bar{B}^{+})^{+}$	Belle (Bondar et al., 2012) Belle (Garmash et al., 2016)
$Z_{k}^{+}(10650)$	10652.2 ± 1.5	11.5 ± 2.2	1+-	$\begin{array}{l} Y_{b}(10860) ightarrow \pi^{-}(\Upsilon(nS)\pi^{+}) \\ Y_{b}(10860) ightarrow \pi^{-}(h_{b}(nP)\pi^{+}) \\ Y_{b}(10860) ightarrow \pi^{-}(B^{+}\bar{B}^{+})^{+} \end{array}$	Belle (Bondar et al., 2012; Garmash et al., 2015) Belle (Bondar et al., 2012) Belle (Garmash et al., 2016)

• Rough summary of XYZ discoveries:

- Belle: X(3872), X(3915), X(3940), Y(4160), Y(4350), Y(4660), Y(4630), $Z_c(3900)$, Z(4050), Z(4200), Z(4250), Z(4430), $Z_b(10610)$, $Z_b(10650)$, $X(3860)^*$
- BaBar: Y(4260), Y(4360) (Y(4324)).
- BESIII: $Z_c(3900)$, Y(4220).
- LHCb: $P_c(4380)$, $P_c(4450)$, X(4700).
- China group contributions: *Y*(4008), *Y*(4260), *X*(4350), *Y*(4360), *Y*(4660), *Z*_c(3900), ...

S. Olsen, T. Skwarnicki and D. Zieminska: Rev. Mod. Phys. 90, 015003(2018)

X.L. Wang (Fudan)

Some golden observables (I)

Pure-leptonic and semi-leptonic B decays

					wert	[ab-1]		
	Process	Observable	Theory	Sys. limit	Disce VS LHCb	v ⁸ Belle	Anomal	5 FAP
•	$B \rightarrow \pi \ell \nu_l$	$ V_{ub} $	* * *	10-20	* * *	***	**	*
	$B \rightarrow X_u \ell \nu_\ell$	$ V_{ub} $	**	2-10	***	**	***	*
	$B \to \tau \nu$	Br.	***	>50(2)	***	***	*	***
	$B \rightarrow \mu \nu$	Br.	***	>50(5)	* * *	***	*	***
	$B \to D^{(*)} \ell \nu_{\ell}$	$ V_{cb} $	***	1-10	***	**	**	*
	$B \rightarrow X_c \ell \nu_\ell$	$ V_{cb} $	* * *	1-5	* * *	**	**	**
	$B \rightarrow D^{(*)} \tau \nu_{\tau}$	$R(D^{(*)})$	* * *	5 - 10	**	* * *	* * *	* * *
	$B \rightarrow D^{(*)} \tau \nu_{\tau}$	P_{τ}	* * *	15 - 20	* * *	* * *	**	* * *
	$B \to D^{**} \ell \nu_{\ell}$	Br.	*	-	**	***	**	-

Time dependent CPV

$B \rightarrow J/\psi K_S$	ϕ_1	***	5-10	**	**	*	*
$B \rightarrow \phi K_S$	ϕ_1	**	$>\!50$	**	***	*	***
$B \rightarrow \eta' K_S$	ϕ_1	**	$>\!50$	**	* * *	*	* * *
$B ightarrow J/\psi \pi^0$	ϕ_1	***	$>\!50$	*	***	_	-
$B \rightarrow \rho^{\pm} \rho^0$	ϕ_2	* * *	-	*	* * *	*	*
$B \to \pi^0 \pi^0$	ϕ_2	**	$>\!50$	* * *	* * *	**	**
$B \rightarrow \pi^0 K_S$	$S_{\rm CP}$	**	$>\!50$	***	***	**	**

Some golden observables (II)

Radiative and electroweak penguin B decays

					1) [ab-1]		
	10			Discove	<u>, 5</u> ,		
Process	Observable	Theory	Sys. limi	VB LHC	o vs Belle	Anomal	5 75 P
$B \rightarrow K^{(*)} \nu \nu$	$Br., F_L$	***	>50	***	***	*	**
$B \rightarrow X_{s+d}\gamma$	$A_{\rm CP}$	***	$>\!50$	***	***	*	**
$B \rightarrow X_d \gamma$	$A_{\rm CP}$	**	$>\!50$	***	***	-	**
$B \rightarrow K_S \pi^0 \gamma$	$S_{K_S\pi^0\gamma}$	**	$>\!50$	**	***	*	***
$B \rightarrow \rho \gamma$	$S_{\rho\gamma}$	**	$>\!50$	***	***	-	***
$B \rightarrow X_s l^+ l^-$	Br.	* * *	$>\!50$	***	**	**	* * *
$B \rightarrow X_s l^+ l^-$	R_{X_s}	* * *	$>\!50$	***	* * *	**	* * *
$B \to K^{(*)} e^+ e^-$	$R(K^{(*)})$	***	$>\!50$	**	* * *	***	* * *
$B \rightarrow X_s \gamma$	Br.	**	1-5	* * *	*	*	**
$B_{d,(s)} \to \gamma \gamma$	$Br., A_{CP}$	**	>	**	**	-	**
			50(5)				
$B \to K^* e^+ e^-$	P'_5	**	$>\!50$	***	**	* * *	* * *
$B \rightarrow K \tau l$	Br.	***	>50	**	***	**	***

$B \rightarrow D^{(*)} l \nu$: challenge to lepton universality

- Theoretically clean channel in SM
- Charged Higgs can contribute to the decay
- $R(D^{(*)})$ is sensitive parameter to BSM!

$B \to K^* \ell^+ \ell^-$: yet another smoking gun

Interesting discrepancy as well as measured in P5'

K*ee: ~200 events/ab⁻¹ K*μμ: ~280 events/ab⁻¹

Note: LHCb value is extrapolated from run-1 result

Data samples and expected signals based on NRQCD

TABLE I: The numbers of expected events in $e^+e^- \rightarrow \gamma \chi_{cJ}$ and $e^+e^- \rightarrow \gamma \eta_c$ at $\sqrt{s} = 10.52$, 10.58 and 10.867 GeV.

Channel	E G-N	σ_B (fb) predicted in Ref. [12] by NRQCD with		R (10-4)	- (07.)	NZ
Channel	√s Gev	all leading relativistic corrections included	L (ID -)	\mathcal{D}_{decay} (×10 ⁻¹)	2(70)	Nexpected
$e^+e^- \to \gamma \chi_{c0}$		1.4		7.6	19.0	0.1
$e^+e^- \to \gamma \chi_{c1}$	10.52	15.5	89.5	202.1	20.8	5.8
$e^+e^- \to \gamma \chi_{c2}$		4.7		114.4	19.9	1.0
$e^+e^- \to \gamma \chi_{c0}$		1.4		7.6	18.9	0.1
$e^+e^- \to \gamma \chi_{c1}$	10.58	15.1	711.0	202.1	19.9	43.2
$e^+e^- \to \gamma \chi_{c2}$		4.5		114.4	19.8	7.2
$e^+e^- \to \gamma \chi_{c0}$		1.3		7.6	17.7	0.1
$e^+e^- \to \gamma \chi_{c1}$	10.867	13.5	121.4	202.1	16.8	5.6
$e^+e^- ightarrow \gamma \chi_{c2}$		4.0		114.4	16.3	0.9
		σ_B (fb) by LO QCD/ σ_B (fb) by NLO QCD	a (a 1)	5.5 (%)		
Channel	√s Gev	in Ref. [14]		$\Sigma_i B_i \varepsilon_i(\%)$		Nexpected
$e^+e^- ightarrow \gamma \eta_c$	10.52	0.38/0.13	89.5	0.79		0.3/0.1
$e^+e^- \to \gamma \eta_c$	10.58	0.37/0.12	711.0	0.78		2.1/0.7
$e^+e^- \to \gamma \eta_c$	10.867	0.32/0.10	121.4	0.76		0.3/0.1