

Latest Results of flavor physics at LHCb

Wenbin Qian (钱文斌) University of Chinese Academy of Sciences (中国科学院大学)

中国科学院粒子物理前沿卓越创新中心第六次全体会议 2018-11-22

➤ General introduction

> Recent highlights from spectroscopy studies

> CKM physics status and its potential for future studies

≻ Conclusion

LHCb operation status

> Wonderful performance with the LHCb detector

> Run 1 + Run 2 (4×Run 1), 9.1 fb⁻¹ pp collision data collected

> Also collected p-Pb, Pb-Pb collision data for QGP studies

LHCb upgrade plans

> Upgrade I: several detector replaced; 40 MHz readout with fully software trigger

> Upgrade II: new ideas under study on tracking, calorimeter, timing info etc

Flavor physics @ LHCb

> Understanding properties of quarks and leptons and interactions between different generations

Spectroscopy, heavy quark production ...

> Search for physics beyond SM through precision test

All SM particles, including Higgs, found; however new mechanism needed (DM, matter-antimatter asymmetry, hierarchy problem ...)

No sign for BSM particles found through **direct searches** yet

Precise test of CKM mechanism, NP within FCNC, LFV and LNV searches, LFU test...

> LHCb China group is leading force in many important topics

Spectroscopy @ LHCb

> Many new particles discovered in LHCb, including Z(4430), pentaquark state, Ξ_{cc}^{++} , D₃(2760) ...

> More "exciting/excited" particles are coming

Understanding particles

> Particles properties (spin-parity, lifetime, decay modes etc) important for understanding nature of particles

> Sometimes surprise comes: Ω_c (from b-decays) lifetime four time more than previous value (69±12 fs)

 $\tau(\Omega_c) = (268 \pm 24_{\text{stat.}} \pm 10_{\text{syst.}} \pm 2_{D \text{ lifetime}}) \text{ fs}$

> LHCb-China group is working to confirm/disprove using prompt produced Ω_{c}

> While continue excellence in QCD physics, efforts from LHCb-China group now also on CKM physics and rare decays, searching for New Physics

Unitary triangle

> The "famous" triangle (origin of CPV in SM) and related variables: γ , α , β , β_s , $|V_{ub}|$, $|V_{cb}|$, Δm_d , Δm_s etc.

CKM angle y

 $B_s \rightarrow D_s K$, $B^+ \rightarrow DK^+$ with D to hh, Kshh, $D_s \rightarrow hhh$ etc, $h = K^{\pm}$, π^{\pm}

New MI GGSZ analysis with Run 2 data

- > Measure γ with B[±] \rightarrow DK[±], where D decays to K_S $\pi\pi$ and K_SKK, using 2 fb⁻¹ Run 2 data
- Sensitivity to γ for each point in D Dalitz plot: MI divide Dalitz plot into bins and sensitivity to γ in each Dalitz bin
- Strong phase information of D decays from CLEO-c measurements (C_i, S_i)
- > |Amplitude|² information from semileptonic control channel where D has definite flavor (F_i)
- > Information of B decays:

$$x_{\pm} = r_B \cos \left(\delta_B \pm \gamma\right)$$
$$y_{\pm} = r_B \sin \left(\delta_B \pm \gamma\right)$$

> Number of events in each bin:

$$N_{\pm i}^{+} = h_{B^{+}}(F_{\mp i} + (x_{+}^{2} + y_{+}^{2})F_{\pm i} + 2\sqrt{F_{i}F_{-i}}(x_{+}c_{\pm i} + y_{+}s_{\pm i})$$
$$N_{\pm i}^{-} = h_{B^{-}}(F_{\pm i} + (x_{-}^{2} + y_{-}^{2})F_{\mp i} + 2\sqrt{F_{i}F_{-i}}(x_{-}c_{\pm i} + y_{-}s_{\pm i})$$

Results of GGSZ analysis with Run 2 data

> Using 2 fb⁻¹ Run 2 data collected at 13 TeV

$$\begin{aligned} x_{-} &= (9.0 \pm 1.7 \pm 0.7 \pm 0.4) \times 10^{-2} \\ y_{-} &= (2.1 \pm 2.2 \pm 0.5 \pm 1.1) \times 10^{-2} \\ x_{+} &= (-7.7 \pm 1.9 \pm 0.7 \pm 0.4) \times 10^{-2} \\ y_{+} &= (-1.0 \pm 1.9 \pm 0.4 \pm 0.9) \times 10^{-2} \end{aligned}$$

> Extract information of γ and r_B

Combination of Run 1 and Run 2

$$\gamma = 80^{\circ} {}^{+10^{\circ}}_{-9^{\circ}} \left({}^{+19^{\circ}}_{-18^{\circ}} \right),$$

$$r_B = 0.080 {}^{+0.011}_{-0.011} \left({}^{+0.022}_{-0.023} \right),$$

$$\delta_B = 110^{\circ} {}^{+10^{\circ}}_{-10^{\circ}} \left({}^{+19^{\circ}}_{-20^{\circ}} \right).$$

New method proposed in EPJC 78 (2018) 121 for future improvement

New TD measurements related to y JHEP 03 (2018) 059

> TD results of $B_s \rightarrow D_s^{\mp} K^{\pm}$ with 3 fb⁻¹ Run 1 data published early this year;

JHEP 06 (2018) 084

> New TD results on B⁰ \rightarrow D^{\mp} π^{\pm} with 3 fb⁻¹ Run 1 data

$$B_{s}^{0} \to D_{s}^{\mp} \mathcal{K}^{\pm} \qquad B^{0} \to D^{\mp} \pi^{\pm} \qquad \text{Small r, but very large statistics} \\ \Gamma_{B^{0} \to f} \propto \lambda^{3} \qquad \Gamma_{B^{0} \to f} \propto \lambda^{2} \\ \Gamma_{\overline{B}^{0} \to f} \propto \lambda^{3} \qquad \Gamma_{\overline{B}^{0} \to f} \propto \lambda^{4} \qquad r = \left| \frac{\overline{\mathcal{A}}_{f}}{\mathcal{A}_{f}} \right| \qquad \mathbf{2\beta} \qquad \mathbf{\beta} \qquad \mathbf{\beta$$

➤ The main formula:

$$A_f(t) = \frac{\Gamma_{B^0 \to f}(t) - \Gamma_{\overline{B}{}^0 \to f}(t)}{\Gamma_{B^0 \to f}(t) + \Gamma_{\overline{B}{}^0 \to f}(t)} = \frac{C_f \cos(\Delta m t) + S_f \sin(\Delta m t)}{\cosh(\Delta \Gamma/2t) + A_f^{\Delta \Gamma} \sinh(\Delta \Gamma/2t)}$$

 $> C_f$, S_f and $A_f^{\Delta\Gamma}$: functions of γ , r, δ , β_s , and $\beta_{(s)}$, $\Delta m_{(s)}$, Γ , $\Delta\Gamma_s$, $r(D\pi)$ from external inputs

JHEP 03 (2018) 059 JHEP 06 (2018) 084

153

152

068

Results from TD analyses

13

 $B^0 \rightarrow D^{\mp} \pi^{\pm}$

$B_s \rightarrow D_s \overline{+} K^{\pm}$

 $S_f = 0.058 \pm 0.020(\text{stat}) \pm 0.011(\text{syst})$ $S_{\overline{f}} = 0.038 \pm 0.020(\text{stat}) \pm 0.007(\text{syst})$

consistent with Belle and Babar, but more precise

2.7σ CPV

> Interpretation of the results

$$C_f$$
 $0.730 \pm 0.142 \pm 0.045$ $A_f^{\Delta\Gamma}$ $0.387 \pm 0.277 \pm 0.153$ $A_{\overline{f}}^{\Delta\Gamma}$ $0.308 \pm 0.275 \pm 0.152$ S_f $-0.519 \pm 0.202 \pm 0.070$ $S_{\overline{f}}$ $-0.489 \pm 0.196 \pm 0.068$

y combination

> Adding all the measurements, we have

	B decay	D decay	Method	Ref.	Dataset [†]	$\begin{bmatrix} 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$
	$B^+ \to DK^+$	$D \rightarrow h^+ h^-$	GLW	[14]	Run 1 & 2	
	$B^+ \to DK^+$	$D \to h^+ h^-$	ADS	[15]	Run 1	$0.6 - 74.0^{+5.0}$
	$B^+ \to DK^+$	$D \to h^+ \pi^- \pi^+ \pi^-$	$\mathrm{GLW}/\mathrm{ADS}$	[15]	Run 1	-3.8
	$B^+ \to DK^+$	$D \to h^+ h^- \pi^0$	$\mathrm{GLW}/\mathrm{ADS}$	[16]	Run 1	0.4 - 68.3%
	$B^+ \to DK^+$	$D \to K^0_{\rm s} h^+ h^-$	GGSZ	[17]	Run 1	
New	$B^+ \to DK^+$	$D \to K^0_{\rm s} h^+ h^-$	GGSZ	[18]	Run 2	95.5%
	$B^+ \to DK^+$	$D \to K^0_{\rm s} K^+ \pi^-$	GLS	[19]	Run 1	0 - 50 - 60 - 70 - 80 - 90
	$B^+ \to D^* K^+$	$D \rightarrow h^+ h^-$	GLW	[14]	Run 1 & 2	γ [°]
	$B^+ \to DK^{*+}$	$D \to h^+ h^-$	$\mathrm{GLW}/\mathrm{ADS}$	[20]	Run 1 & 2	
New	$B^+ \rightarrow DK^{*+}$	$D \to h^+ \pi^- \pi^+ \pi^-$	$\mathrm{GLW}/\mathrm{ADS}$	[20]	Run 1 & 2	World average: $\gamma = (73.5^{+4.2})^{\circ}$
	$B^+ \to D K^+ \pi^+ \pi^-$	$D \rightarrow h^+ h^-$	$\mathrm{GLW}/\mathrm{ADS}$	[21]	Run 1	(10.0-5.1)
	$B^0 \to DK^{*0}$	$D \to K^+ \pi^-$	ADS	[22]	Run 1	HFLAV winter 2018
	$B^0\!\to DK^+\pi^-$	$D \to h^+ h^-$	$\operatorname{GLW-Dalitz}$	[23]	Run 1	
	$B^0 \to DK^{*0}$	$D\to K^0_{\rm s}\pi^+\pi^-$	GGSZ	[24]	Run 1	> Inputs from RESIII important
-	$B^0_s \to D^\mp_s K^\pm$	$D_s^+\!\to h^+h^-\pi^+$	TD	[25]	Run 1	ombining offorts will holp
New	$B^0 \rightarrow D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^+ \pi^- \pi^+$	TD	[26]	Run 1	combining chories will help
•						

y combination

> Comparing different processes

LHCb-CONF-2018-002

> Some tension exists, interesting to follow-up

> Future sensitivities (scaled according to statistical uncertainties)

Run 1	Run 2	Upgrade 1	Upgrade 2
5.5°	2.8 °	0.71°	0.28°

> LHCb is continuing to investigate its potential in γ measurements

Extra channels for y

Phys. Rev. D 98 (2018) 072006 Phys. Rev. D 98 (2018) 071103(R)

 $> B^0 \rightarrow \overline{D}^0 KK$ and $B_s \rightarrow \overline{D}^0 KK$ decays

> Time-Dependent Dalitz analyses to access CKM angle γ and $\beta_{(s)}$

- > Not only probe $\sin 2\beta_{(s)}$, but also $\cos 2\beta_{(s)}$
- > Dalitz structures interesting for charm spectroscopy studies

 $> B_s \rightarrow D^{(*)} \phi$ decays: special cases where final states are in CP eigenstates

> Comparable sensitivity on γ w.r.t. that of the golden GGSZ mode expected for $B_s \rightarrow D^{(*)} \varphi$ decays and we are currently working on its measurements

> The golden channels for b \rightarrow ccs process: B_s \rightarrow J/ ψ KK, J/ ψ $\pi\pi$

Final LHCb Run I results:

$J/\psi K^+K^-$ in ϕ region	$-58 \pm 49 \pm 6 \text{ mrad}$	[PRL 114 (2015) 041801]
$J/\psi K^+K^-$ in high mass K^+K^- region	$119\pm107\pm34~\mathrm{mrad}$	[JHEP 08 (2017) 037]
$J/\psi \pi^+\pi^-$	$70\pm68\pm8~\mathrm{mrad}$	[PLB 713 (2012) 378]
Overall	$1 \pm 37 \text{ mrad}$	

> LHCb dominates combination; currently consistent with SM

 $\begin{array}{l} \mbox{HFLAV combination} \\ \phi_s^{c\bar{c}s} = & -0.021 \pm 0.031 \ \mbox{rad} \\ \Delta\Gamma_s = & 0.085 \pm 0.006 \ \mbox{ps}^{-1} \\ \Gamma_s &= 0.6640 \pm 0.0020 \ \mbox{ps}^{-1} \end{array}$

Penguin effects under control

 $\Delta \phi_{s} \sim 0.001 \pm 0.020$ rad

 $\phi_s^{c\bar{c}s} \stackrel{\text{SM}}{=} -0.0370 \pm 0.0006 \text{ rad} [CKMFitter, PRD 84 (2011) 033005]$ $\Delta\Gamma_s \stackrel{\text{SM}}{=} 0.088 \pm 0.020 \text{ ps}^{-1}$ [M. Artuso et al, arXiv:1511.09466]

φ_{s} measurements and prospects

> Similar (much harder) analyses performed for Bs $\rightarrow \phi \phi$ and Bs $\rightarrow K \pi K \pi$ for $\phi_s^{s\bar{s}s}$ and $\phi_s^{d\bar{d}s}$

$$\begin{array}{l} \phi_s^{s\bar{s}s}\sim 0\\ \phi_s^{s\bar{s}s}=\text{-}0.17{\pm}0.15{\pm}0.03 \text{ rad} \end{array}$$

$$\phi_s^{dds}\sim 0$$

 $\phi_s^{s\overline{d}d}=-0.10\pm 0.13\pm 0.14$ rad,

> LHCb prospects for ϕ_s in different processes

	Run 1	Run 2	Upgrade I	Upgrade II
$\phi_s^{car{c}s}$	37 mrad	15 mrad	4 mrad	2 mrad
$\phi^{dar{d}s}_s$	180 mrad	90 mrad	22 mrad	10 mrad
$\phi^{sar{s}s}_{s}$	150 mrad	75 mrad	19 mrad	8 mrad

> LHCb-China group heavily involved in $B_s \rightarrow J/\psi KK$, $J/\psi \pi \pi$ and $Bs \rightarrow \varphi \varphi$ modes

Other CKM parameters

> For sin2 β , with Run 1 data, LHCb has similar precision as B-factories

➤ Future expectations:

Run 1	Run 2	Upgrade I	Upgrade II
0.034	0.017	0.004	0.002

> For $|V_{ub}|/|V_{cb}|$ and CKM angle α , future sensitivities driven by Belle II, but LHCb can still make important contributions

> LHCb has proved the ability to do $|V_{ub}|/|V_{cb}|$ measurement at hadron collider

> New methods also suggested to use LHCb data to solve ambiguities on α measurements

arXiv:1808.09391

> Sensitivities on Δm_d and Δm_s are dominated by LHCb, but interpreting limited by Lattice

CPV in unexplored sectors

- > CPV found in many places, but not yet in **D** decays and baryon decays
- > In baryon decays, first evidence for CPV with 3.3σ using triple products in $L_b \rightarrow p3\pi$ where non-zero values indicates violation of T-symmetries

LHCb-China group actively involving in searches for CPV in the two fields through other decay modes
20

Conclusion

> LHCb has a wide range of physics programs and has already made many important contributions to answer fundamental questions

> Many particles have been discovered in LHCb and more will come

> While continuing to understand QCD, efforts from LHCb China group will also be on CKM physics

> Unitarity test shows results which are consistent with SM now, but 20% new physics still allowed

Conclusion

> LHCb has a wide range of physics programs and has already made many important contributions to answer fundamental questions

> Many particles have been discovered in LHCb and more will come

> While continuing to understand QCD, efforts from LHCb China group will also be on CKM physics

Unitarity test shows results which are consistent with SM now, but 20% new physics still allowed

CPV and CKM matrix

> In SM, CPV offered through a single weak phase in the CKM matrix

$$\begin{aligned} V_{\text{CKM}} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}, \\ s_{12} &= \lambda \sim \mathbf{0.23} (\mathbf{13^{\circ}}) \qquad s_{23} = A\lambda^2 \sim \mathbf{0.042} (\mathbf{2.4^{\circ}}) \\ s_{13}e^{i\delta} &= V_{ub}^* = A\lambda^3(\rho + i\eta) \sim \mathbf{0.0037} (\mathbf{0.2^{\circ}}) \times \exp(\mathbf{i} \ \mathbf{65.4^{\circ}}) \end{aligned}$$

> Successful model which explains all the current experiment measurements except matter-antimatter asymmetry observed in the Universe

> Unitarity test of CKM triangle offers a nice platform to combine all the efforts from different measurements

R(K) and R(K*)

> Another LFU tests of μ and e are also of great interests

 $R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^{-}\mu^{+})}{\mathcal{B}(B \to K^{(*)}e^{-}e^{+})}$

SM: 1.000 ± 0.001 for K and 0.991 ± 0.002 for K*

R(D), R(D^{*}) and R(J/ψ)

Summary of prospects

Table 10.1: Summary of prospects for future measurements of selected flavour observables for LHCb, Belle II and Phase-II ATLAS and CMS. The projected LHCb sensitivities take no account of potential detector improvements, apart from in the trigger. The Belle-II sensitivities are taken from Ref. [608].

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$\overline{R_K \ (1 < q^2 < 6} \mathrm{GeV}^2 c^4)$	$0.1 \ [274]$	0.025	0.036	0.007	_
$R_{K^*} \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	$0.1 \ [275]$	0.031	0.032	0.008	_
$R_{\phi}, R_{pK}, R_{\pi}$	_	0.08,0.06,0.18	_	0.02,0.02,0.05	_
<u>CKM tests</u>					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	_	1°	_
γ , all modes	$\binom{+5.0}{-5.8}^{\circ}$ [167]	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 [609]	0.011	0.005	0.003	_
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad [44]	$14 \mathrm{\ mrad}$	_	$4 \mathrm{mrad}$	22 mrad [610]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	$35 \mathrm{\ mrad}$	_	$9 \mathrm{mrad}$	-
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad [94]	39 mrad	_	$11 \mathrm{mrad}$	Under study [611]
$a_{ m sl}^s$	33×10^{-4} [211]	10×10^{-4}	_	3×10^{-4}	_
$ V_{ub} / V_{cb} $	$6\% \ [201]$	3%	1%	1%	_
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	34%	_	10%	21% [612]
$\tau_{B^0 \to \mu^+ \mu^-}$	22% [264]	8%	_	2%	_
$S_{\mu\mu}^{\sigma}$	-	_	_	0.2	_
$b \to c \ell^- \bar{\nu_l} \text{ LUV studies}$					
$\overline{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 [220]	0.071	_	0.02	_
Charm					
$\overline{\Delta A_{CP}(KK - \pi\pi)}$	8.5×10^{-4} [613]	1.7×10^{-4}	5.4×10^{-4}	3.0×10^{-5}	_
$A_{\Gamma} (\approx x \sin \phi)$	2.8×10^{-4} [240]	4.3×10^{-5}	$3.5 imes 10^{-4}$	1.0×10^{-5}	_
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} [228]	3.2×10^{-4}	4.6×10^{-4}	8.0×10^{-5}	_
$x\sin\phi$ from multibody decays		$(K3\pi) 4.0 \times 10^{-5}$	$(K_{\rm s}^0\pi\pi) \ 1.2 \times 10^{-4}$	$(K3\pi) \ 8.0 \times 10^{-6}$	_

B(s)→µµ

> Highly suppressed FCNC mode, sensitive to new physics

 $BF_{SM} (B^{0} \to \mu^{+} \mu^{-}) = (1.06 \pm 0.09) \times 10^{-10}$ $BF_{SM} (B_{s}^{0} \to \mu^{+} \mu^{-}) = (3.60 \pm 0.18) \times 10^{-9}$

Bobeth et al.	Altmannshofer et al.		
[PRL 112(2014)101801]	[arXiv:1702.05498]		

➤ First single experiment observation by LHCb (4.4 fb⁻¹)

 $\mathcal{B}(B^0_s o \mu^+ \mu^-) = (3.0^{+0.7}_{-0.6}) imes 10^{-9} \ (S = 7.8\sigma)$ $\mathcal{B}(B^0 o \mu^+ \mu^-) < 3.4 imes 10^{-10} \ ext{at 95\% CL}$

 $\tau(B_s^0 \to \mu^+ \mu^-) = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$

- ≻ Yet consistent with SM
- In upgrade II, we may expect 10% precision on the ratio between two modes and 0.03 ps on effective lifetime
- > CPV will also be interesting

Other rare decays

> Statistics is the name of the game;

 $\mathcal{B}(K_{\rm s}^0 \to \mu^+ \mu^-) < 0.8 \ (1.0) \times 10^{-9}$

> Sensitivity scaled according to $1/\sqrt{N}$

 $\mathcal{B}(B_s^0 \to e^{\pm} \mu^{\mp}) < 5.4 \, (6.3) \times 10^{-9}$

 $\mathcal{B}(B^0 \to e^{\pm} \mu^{\mp}) < 1.0 \, (1.3) \times 10^{-9}$

β, βs

> β is the phase of V_{td}* and β_s is the phase of V_{ts}* and thus is accessed through loop diagrams, i.e. through mixing

➤ The processes are b→cc̄s tree level dominated decay where penguin pollution is small (still need to know for precise measurements)

> Predictions from CKMfitter group gives:

 $2\beta^{\rm SM} = (47.48^{+2.26}_{-1.96})^{\circ}$ $2\beta^{\rm SM}_s = (2.122 \pm 0.037)^{\circ}$

> Golden channels for the two measurements are $B^0 \rightarrow J/\psi K_S$ and $B_S \rightarrow J/\psi \phi$, while other channels are also studied to add further sensitivities to the two angles

> Channels where penguin contributions are important are also studied for comparison to search for new physics, i.e. $Bs \rightarrow \phi \phi$, $B_S \rightarrow K^* \overline{K^*}$

sin2_β

> With Run 1 data, LHCb has a similar precision as B-factories

➤ Future expectations:

> Additional modes to golden channel ($B^0 \rightarrow J/\psi K_S$) add 15% more sensitivities

Run 1	Run 2	Upgrade I	Upgrade II			
0.034	0.017	0.004	0.002			
> Upgrade statistics also gives sensitivity to the non-zero $\Delta\Gamma_d$ predicted in SM						

$|V_{ub}/V_{cb}|$ and a

Nature Phys. 11 (2015) 743-747

> LHCb has proved the ability to do $|V_{ub}|/|V_{cb}|$ measurement at hadron collider

> A recent TD measurements on $B^0 \rightarrow \pi^+\pi^-$ and $B_S \rightarrow K^+K^-$ with 3 fb⁻¹ data

> Hopefully we can do more with better calorimeter in upgrade

Δm_d and Δm_s

> Combinations of oscillation frequency Δm_d and Δm_s are dominated by LHCb and may continue to be dominated by LHCb

> However, interpreting are limited by Lattice inputs

$$\Delta m_{d} = \frac{G_{F}^{2}}{6\pi^{2}} m_{W}^{2} \eta_{c} S(x_{t}) A^{2} \lambda^{6} \left[(1 - \bar{\rho})^{2} + \bar{\eta}^{2} \right] m_{B_{d}} f_{B_{d}}^{2} \hat{B}_{B_{d}}$$

$$\frac{\Delta m_{d}}{\Delta m_{s}} = \frac{m_{B_{d}} f_{B_{d}}^{2} \hat{B}_{B_{d}}}{m_{B_{s}} f_{B_{s}}^{2} \hat{B}_{B_{s}}} \left(\frac{\lambda}{1 - \frac{\lambda^{2}}{2}} \right)^{2} \left[(1 - \bar{\rho})^{2} + \bar{\eta}^{2} \right]^{-7\%}$$

Efforts from Lattice community needed to further reduce uncertainty by a factor of 10 more

Three-body Charmless b decays

- Two-body charmless b decays have been used to extract CKM angles through complicated analyses while three-body charmless b decays contains more information over Dalitz plot and may have better sensitivities
- From experimental side, efforts have been made to give more information on the pattern through Dalitz plot analyses

PRD 90, 112004 (2014)

Clearly also need theoretical efforts to give methods to extract angles precisely

➤ Some efforts have been made, but clearly not enough, for example, a very recent paper to predict CPV in B→f2(1270)π

arXiv:1807.02641

Rare decays and Anomalies

Anomalies

35

≻ Anomalies seen in many b-decay processes (b→sll, b→clv)

New results in the sector

