Modification record						
No.	Modification	Date	Note			
1	Creation	2018-7-21	Xiaomin WEI			
2	Fig.5 TDA<12.5ns→TDA<25ns	2018-10-1	Xiaomin WEI			
3	Modify Trigger rate 20kHz→50kHz;	2018-10-8	Xiaomin WEI			
	ModifyTable.1, Fig.1~Fig.5					
4	Delete the low power mode	2018-10-20	Xiaomin WEI			
5	Add Fig.6	2018-10-22	Xiaomin WEI			
6	Modify DOUT→LVDS_DATA;	2018-10-29	Xiaomin WEI			
	Delete DOUT_AVA;					
	Add LVDS_REF_CLK;					
	Delete PCN1, PCN2;					
	Modify the frequency range defined by					
	DOFREQ[1:0].					

Design specification of Peripheral readout for MOST2

1. Introduction

This design aims for the readout of pixel array in MOST2.

The CPS is designed for CEPC. The hit density and the chip data rate are calculated in Table.1. In this estimation, the chip area is 3.2768cm² (1024*512 pixel array, 25um pixel pitch), and the cluster size is 3 pixels. Each hit pixel is recoded with 32 bits (See Fig.3, Timestamp: 8 bits, Address: 19 bits). The trigger latency is supposed 3~6 us, and the average trigger rate is **50 kHz**.

Parameter	Unit	Higgs	W	Z
Bunch spacing	ns	680	210	25
	hits/bunch/cm ²	2.5	2.5	0.2
Hit density	hits/bunch	8.2	8.2	0.66
	pixels/bunch	25	25	2
Uit nivel rate	MHz/cm ²	11	36	24
nit pixel late	MHz/chip	36	120	80
Chip data rate	Gbps	1.15	3.84	2.56
(triggerless)	MHz/32bit	36	120	80
Chip data rate	Mbps (Average)	40	40	3.2
(trigger, no error)	MHz/32bit	1.25	1.25	0.1

- 1 -

Table. 1 The hit density of CEPC

NWPU Confidential

contact: weixm@nwpu.edu.cn, Xiaomin WEI

Chip data rate	Mbps (Average)	40	40	25.6
(trigger, 7LSB error)	MHz/32bit	1.25	1.25	0.8
Designed data rate (trigger)	MHz/32bit	5	5	5
Designed data rate (triggerless)	MHz/32bit	160	160	160

2. Features

- Pixel array 512*1024
- Pixel pitch 25 µm
- Support trigger and triggerless mode
- Data compression

Suggested in triggerless mode

• Parity check for output data

3. Interface Discription

Fig.1 the interface between peripheral logic and related blocks

- 2 -

Signal Name	Туре	Descriptions				
Chip input						
CLK_160MHZ	Ι	160MHz				
CLK_40MHZ	Ι	Input system clock, 40MHz				
TRIGGER	Ι	Fig.2. The average frequency is 50KHz. The actual				
		frequency depends on the happen of true event. In				
		the trigger mode, the data fit the TRIGGER				
		arriving time are read out, and the other data will				
		be disposed. It is disable in the triggerless mode.				
		See Fig.4 for the data transmission.				
	Da	ata output				
LVDS_DATA [31:0]	0	Data output to LVDS transmitter.				
		LVDS_DATA [31:24] are 8 bits time stamp.				
		LVDS_DATA [23:15] are the double column				
		address.				
		LVDS_DATA [14:5] are the hit pixel address in a				
		double column.				
		LVDS_DATA [4:2] is the data compression				
		pattern.				
		LVDS_DATA[1] is the data available flag. 1: data				
		valid. 0 : data invalid.				
		LVDS_DATA[0]: Parity check bit. (It's not				
		available in design $V0.1$)				
		See Fig.3 for the data format.				
LVDS_REF_CLK	0	LVDS PLL reference clock.				
		In trigger mode, the output frequency is defined by				
		DOFREQ[1:0], the minimum output frequency is				
		2MHz.				
		In triggerless mode, the output frequency is the				
		constant 160MHz.				
		LVDS_DATA [31:0] should be received on the				
		rising edge of LVDS_REF_CLK.				
		Note: The LVDS PLL should support a				
	D:					
READI (1=0,1,,511)	0	Hit address read signal. Reset the nit pixel when				
FASTORI (I=0,1,,511)	1	OK results of all the pixel digital output in a double				
ADDB:[0:0] (i=0.1	т	Column.				
ADDKI[9:0] (I=0,1,,511)	1 6	I ne address of the nit pixel in a double column.				
Signals from Configuration registers						

Table.2 Interface Signal Description

Periphera	l readout for	CPS i	n MOST2
-----------	---------------	-------	---------

1					
TRIGGER_MODE	W	0 tigger mode			
		1 triggerless mode			
TRIGGER_LATENCY [7:0]	W	Trigger latency: 0-6us			
		00000000: 0ns			
		00000001: 25ns			
		11110000: 6us			
		11110001~1111111: invalid			
TRIGGER_UNCERTAIN [2:0]	W	Negative trigger error:			
		000: 0ns			
		001:25ns			
		010:50ns (default)			
		011:75ns			
		100:100ns			
		101:125ns			
		110:150ns			
		111:175ns			
		If the trigger uncertain is negative, please adjust the			
		trigger latency and provide negative trigger error.			
		See Fig.6.			
CPRN	W	0: default, data compression for the addresses of			
		four adjacent pixels in a double column. The first			
		pixel address is DOUT[23:5]. DOUT[4],DOUT[3]			
		and DOUT[2] note whether the address of			
		DOUT[23:5]+3, DOUT[23:5]+2, DOUT[23:5]+1			
		is '1', respectively. For example,			
		DOUT[23:5]=19'd0, DOUT[4:2]=3'b001, then			
		the pixel digital outputs of addresses			
		19'd0,19'd1,19'd2,19'd3 are 1,1,0, and 0.			
		1: by pass the data compression block			
DOFREQ[1:0]	W	Set the data output (DOUT[31:0]) frequency in			
		trigger mode.			
		00: 2MHz			
		01: 5MHz,			
		10:10MHz,			
		11: 20MHz			

Fig.2 Timing of input signal TIGGER. The TRIGGER arriving time are recoded at the positive edge of Trigger_syn (See Fig. 4(b)). The average trigger cycle is 20us.

- 4 -

Fig.3 The output data format. LVDS_DATA [31:24] are 8 bits time stamp. LVDS_DATA [23:15] are the double column address. LVDS_DATA [14:5] are the hit pixel address in a double column. LVDS_DATA [4:2] is the data compression pattern. LVDS_DATA[1] is the data available flag. 1:data valid. 0 : data invalid. LVDS_DATA[0]: Parity check bit. (It's not available in design V0.1)

LVDS_REF_CLK					
LVDS_DATA[1]					
LVDS_DATA[31:0]	Data1	Data2	Data3	Data4	

Fig.4 Data output Timing. The output data LVDS_DATA are sending at the falling edge of LVDS_REF_CLK. In the triggerless mode, the output frequency is 160MHz. In the trigger mode, the external trigger start signal (trigger) is synchronized (Trigger_syn) by CLK_40MHz. The output data frequency is set by DOFREQ[1:0].

Fig.5 Timing of double column readout. FASTOR is generated when any pixel in the double column is hit. Since the hit pixel will be reset after readout, FASTOR changes into zero when the last hit address is readout. FASTOR is synchronized as Fastor_syn. READ is active when FASTOR_sync is "1". The cycle of READ is 50ns which corresponds the maximal delay of the addressing encoding (TDA) is 20 ns. For the peripheral logic, the hit timestamp (Time_stamp[7:0]) is recoded at the positive edge of Fastor_sync. The address of hit pixel (ADDR[9:0]) is taken at the clock positive edge when ADDR[9:0] are available.

Fig.6 Example of setting trigger latency and trigger uncertain. Suppose the trigger signal comes at 6us, and users wants to acquire the hits from 2.925us to 3.075us, then we should set TRIGGER_LATENCY as 8'd 123 (123*25ns=3.075us), and TRIGGER_UNCERTAIN as 3'b110. (0.15us).