

粒子物理前沿卓越创新中心成员年度工作汇报 2017-2018

答辩人: 高 俊

依托单位:上海交通大学 2018年11月23日 北京

- 二. 年度科研论文
- 三. 基金申请及奖项
- 四. 学术会议及报告
- 五. 总结

二. 年度科研论文

三. 基金申请及奖项

四. 学术会议及报告

五. 总结

教育及科研工作经历

教育经历:

- ▶ 2002.9-2006.7, 北京大学, 元培计划理学学士
- ▶ 2006.9-2011.7, 北京大学, 理论物理专业博士

工作经历:

- ▶ 2011.9-2014.9, Southern Methodist University,博士后
- ▶ 2014.9-2016.9, Argonne National Laboratory, 博士后
- ▶ 2016.10- ,上海交通大学物理与天文学院,特别研究员 中组部第十三批"青年千人"计划

SMU.

粒子物理的对撞机唯象学:顶夸克物理、希格斯物理、微扰 QCD、质子部分子分部函数

发表论文

期刊	论文数
Phys.Rev.Lett.	6
Physics Reports	1
JHEP	11
Phys.Rev.D	23
Euro.Phys.J.C	2
J.Phys.G	2
Comp.Phys.Comm	2
总计	47

引用统计

Citations Summary

57 papers found, 57 of them citeable (published or arXiv)

	Citeable papers	Published only
Number of papers analyzed:	57	47
Number of citations:	2987	2948
Citations per paper (average):	52.4	62.7
h _{HEP} index [?]	23	22

Breakdown of papers by citations:

	Citeable papers	Published only
Renowned papers (500+)	2	2
Famous papers (250-499)	1	1
Very well-known papers (100- 249)	2	2
Well-known papers (50-99)	5	5
Known papers (10-49)	27	26
Less known papers (1-9)	16	11
Unknown papers (0)	4	0

二. 年度科研论文

三. 基金申请及奖项

四. 学术会议及报告

五. 总结

2017-2018年度论文统计

2017.9至今共发表9篇论文(1篇Physics Reports, 4篇JHEP, 3篇PRD, 1篇EPJC), 拟结合(HL-)LHC,CEPC等高能量前沿 装置研究解决以下关键物理问题:

费米子的Yukawa耦合

希格斯粒子总宽度和寿命

Particle	Particle Width(GeV life	
top	1.3	0.15
Higgs	0.004	47
Z	2.5	0.08
W	2.1	0.09

 10^{12} 10^{14} 10^{16} 10^{18} 10

+12y22_6y4 顶夸克质量及电弱相互作用

large-x部分子和BSM寻找

利用全局事例形状变量检验轻夸克Yukawa耦合

费米子质量起源机制的检验

希格斯耦合 vs. 质量

Carbon atom

☆ 轻费米子包括轻夸克Yukawa耦合的检验至关重要,并且实验测量极具挑战性

利用全局事例形状变量检验轻夸克Yukawa耦合

利用事例形状变量来筛选Higgs到轻夸克末态

CEPC Higgs 耦合预期精度 Precision of Higgs coupling measurement (7-parameter Fit) LHC 300/3000 fb⁻¹ CEPC 250 GeV at 5 ab⁻¹ wi/wo HL-LHC Relative Error 10 10 10 $K_t | K_c$ Кg Kτ K_V KW K7 Kb b g С 重味标记 bb CC 夸克胶子甄别 gg qq

冲度变量甄别双胶子 / 夸克末态

利用全局事例形状变量检验轻夸克Yukawa耦合

对轻夸克Yukawa耦合给出极高灵敏度

CEPC Higgs 强子末态预期事例数

$Z(l^+l^-)H(X)$	gg	$b\overline{b}$	$c\overline{c}$	$WW^*(4h)$	$ZZ^*(4h)$	$q\bar{q}$
$BR \ [\%]$	8.6	57.7	2.9	9.5	1.3	~ 0.02
Nevent	6140	41170	2070	6780	930	14

QGP环境下检验Higgs粒子寿命

相对论性重离子碰撞中Higgs的产生及衰变

LHC上无法直接测量Higgs粒子总宽度

Particle	Width(GeV)	lifetime(fm/c)
top	1.3	0.15
Higgs	0.004	47
Z	2.5	0.08
W	2.1	0.09

PbPb碰撞夸克胶子等离子体及Higgs粒子的时间演化

直接影响Higgs绝对耦合的抽取

- ☆ 利用QGP(~10 fm/c)做为 时间标尺检验Higgs寿命
- ☆ 检验Higgs衰变出的双喷注(bb)是否受QGP影响

QGP环境下检验Higgs粒子寿命

相关信号和背景的模拟及分析

QGP介质增强QCD辐射

PbPb碰撞下横动量比值pT(bb)/pT(Z)的分布

☆ 与Higgs信号不一样PbPb碰撞 下背景过程会受喷注淬火影响

☆ 背景截面被压低并且具有不同 的运动学特征

预言PbPb碰撞中发现Higgs强子衰变所需亮度

双喷注(bb)不变质量分布

统计显示度 vs. 离子亮度

LHCP18大会上理论视野 报告重点介绍 by G. Salam

精确预言LHC上单个顶夸克产生及衰变

顶夸克电弱耦合(tbW及CKM Vtb)的直接检验

单个顶夸克产生,t-道和s-道

产生截面 vs. 对撞能量

CMS 13 TeV 截面测量

Uncertainty source	$\Delta \sigma_{t-ch.,t} / \sigma_{t-ch.,t}^{obs}$	$\Delta \sigma_{t-ch.,\bar{t}} / \sigma_{t-ch.,\bar{t}}^{obs}$	$\Delta R_{t-ch.}/R_{t-ch.}$	
Statistical uncert.	±5.3%	±11.5%	±9.7%	
Profiled exp. uncert.	±5.7%	$\pm 4.9\%$	±3.3%	
Total fit uncert.	±7.8%	±12.5%	±10.3%	
Integrated luminosity	±2.7%	±2.7%	-	
Signal modelling	$\pm 8.2\%$	$\pm 8.5\%$	$\pm 5.3\%$	
t ī modelling	$\pm 4.3\%$	$\pm 4.5\%$	$\pm 4.0\%$	
W+jets modelling	-1.6/+2.3%	-2.5/+2.3%	-1.7/+2.0%	
$\mu_{\rm R}/\mu_{\rm F}$ scale <i>t</i> -channel	-5.7/+5.2%	-7.2/+5.1%	-0.7/+1.2%	
$\mu_{\rm R}/\mu_{\rm F}$ scale t $\bar{ m t}$	-3.5/+4.1%	-4.7/		
$\mu_{\rm R}/\mu_{\rm F}$ scale tW	-0.6/+0.8%	-1.1/		
$\mu_{\rm R}/\mu_{\rm F}$ scale W+jets	-3.5/+3.0%	-4.9/		1
PDF uncert.	-2.1/+1.6%	-1.8/		
Top quark $p_{\rm T}$ modelling	$\pm 0.2\%$			
Total theory uncert.	-12.2/+12.1%	-13.6/		
Total uncert.	±14.7%	-18.7/		· · · · · · ·
		a		
☆ 1/5的有刻	汝体积	^q		
		W A	TLAC	
				mber: 179739, Event Number: 106 Date: 2011-04-16 01:19:41 CEST
🗴 米用多安:	重分析		PERIMENT	
		g .see	h 🖤	

QCD修正的理论误差占主导

1.4

1.2

首次计算全微分产生及衰变的NNLO QCD修正

10%的NNLO修正;理论误差降低

与ATLAS测量结果符合更好

二. 年度科研论文

三. 基金申请及奖项

四. 学术会议及报告

五. 总结

2017-2018年度基金

2018年成功申请自然科学基金面上项目一项、作为骨干成员成功申请自然科学基金重点项目一项(2019执行);另主持CEPC理论研究课题一项(2018-2019)

资助类	别: 面上项目
亚类说	明
附注说	明:
项目名	称: 高能对撞机上量子色动力学的应用
直接 ⁱ 费	Thick is the jj $(gg+q\bar{q})$ channel. To suppress the heavy quark contributions, one can the following of the heavy quarks, b and c a technique which is well established at
负壳	dron and lepton colliders [40]. It has been shown that, assuming an efficiency of 97.2% for $f(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2}$
CE	PC could reach 8.9% and 40.7% respectively [4, 41]. Since there are two quarks/gluons m the decay, by requiring both of them untagged one can remove $99(84)\%$ of the $b\bar{b}(c\bar{c})$
bao	kground while only changing the signal jj by 6%. There are also backgrounds from other
SM rec	希格斯粒子强子衰变道的未态全局形状变量及喷注
ma_{50°	ss, and the polar angle of the Higgs have a setimate a total signal (jj) efficiency of $[4, 38]$ We assume a total $q\bar{q}$ -lips have a set $q\bar{q}$ of the signal rate from Higgs boson
dec	cays to $b\bar{b}$, $c\bar{c}$ and the SM $Zq\bar{q}$ production of which about 10% is from $b\bar{b}$ and $c\bar{c}$ as can be
cal	e申请从rom 高俊nisi依托单位n ra上海交通大学de邮箱Bs jung 49@sjtutedwfc和q
bao	skground is estimated according to Fig. 7 in Ref. [38]. A second category of backgrounds
选题代码 合。如 qua on our bac	F: CEPC希格斯工厂预计时产生上首为个希格斯和学用以精确测量希格斯和学的耦 ion of our signal as shown in Fig. 1 they do not have a large inpact to the measurement the light-quark couplings. We estimate a total rate of 60% of the signal for these four a tark backgrounds after all selection cuts. They can be further suppressed if additional cuts dijet invariant masses are used. Noted we do not impose any selection cuts directly in calculations of the signal and backgrounds but rather estimate their effects on signal and ekground normalizations.
	-

 $Z(l^+l^-)H(X)$

BR [%]

gg

8.6

bb

57.7

 $c\bar{c}$

2.9

 $WW^{*}(4h) \quad ZZ^{*}(4h)$

1.3

9.5

 $q\bar{q}$

 ~ 0.02

亚类说明:							
附注说明:	标准模型物理与新物理(A0502)						
项目名称:	TeV新物理理论与实验检验						
直接费用:	330万元 执行:	軍限: <u>2019.01-2023.12</u>					
负 责 人:	何红建						

项目组主要成员

资助类别:重点项目

编号	姓名	出生年月	性别	职称	学位	单位名称
1	何红建	1965.04	男	教授	博士	上海交通大学
2	高俊	1984.10	男	研究员	博士	上海交通大学
3	周宁	1981.11	男	研究员	博士	上海交通大学
4	李亮	1977.11	男	研究员	博士	上海交通大学

17

发表LHC上PDF研究的综述文章

Physics Reports Volume 742, 1 May 2018, Pages 1-121

The structure of the proton in the LHC precision era

Jun Gao ^a 쬐, Lucian Harland-Lang ^b 옷 쬐, Juan Rojo ^{c, d} 쬐

impact factor: 20

Content

1 Introduction

- 2 The global QCD analysis framework
- 2.1 A brief history of PDF fits 2.2 QCD factorization in deep-inelastic scattering
- 2.3 QCD factorization in hadronic collisions
- 2.4 The DGLAP evolution equations 2.5 Heavy quark structure functions . . .

3.5 The p_T distribution of Z bosons

3.9 W production in association with charm quarl

3.10 Central exclusive production

4.1.1 Choice of functional form

4.1.2 Sum rules 4.1.3 Quark flavour assumptions

4.2.1 Fit quality and χ^2 definition . . . 4.2.2 Minimization strategies

4.3.1 The Hessian method

4.3.2 The Monte Carlo method

4.3.3 The Lagrange multiplier method .

4.5.2 Heavy quark masses

4.4 Combined and reduced PDF sets

4.5 Treatment of theoretical parametric uncertain 4.5.1 The strong coupling constant α_S .

4.6 Approximate methods 4.6.1 Bayesian Monte Carlo reweighting

4.2 Fit quality and minimization strategies . . .

3.11 Fast interfaces to (N)NLO calculations .

4.1 PDF parametrization . . .

4.3 PDF uncertainties

4 Fitting methodology

3 Experimental data and theoretical calculation

- 3.2 Deep-inelastic scattering 6 The proton structure
- 6.1 The gluon PDF . 3.4 Inclusive gauge boson production
 - 6.2 Quark flavour separation

5 PDF analyses: state of the art

5.5 CTEQ-JLab (CJ) . . .

5.1 CT

5.2 MMHT

5.6 HERAfitter/xFitter

5.7 PDF efforts by the LHC collaborations

5.7.1 ATLAS

5.7.2 CMS

- 6.4 The charm content of the proton
- 3.6 Direct photon production 3.7 Top quark production 3.8 Charm production in pp collisions
 - 7 Electroweak corrections and the photon PD 7.1 Photon-induced processes
 - 7.2 Electroweak corrections

8 Implications for LHC phenomenology

- 8.1 Higgs production cross-sections 8.2 PDF uncertainties and searches for new r
- 8.3 Precision measurements of SM paramete

9 The future of PDF determinations

- 9.1 PDFs with theoretical uncertainties . 9.1.1 MHOU in matrix element calcula
- 9.1.2 MHOU in PDF determination .
- 9.2 Lattice QCD calculations of the proton st
- 9.3 Parton distributions at future high-energy 9.3.1 PDFs at high-energy lepton-had
- 9.3.2 PDFs at a 100 TeV hadron collid

10 Conclusion

18

- ▶ 2016(第一届), F. Caola (AP at Univ. Durham), J. Kretzso 理论
- ▶ 2017(第二届), M. Ubiali (AP at Univ. Cambridge), P. Gunnellini (PD at Univ. Hamburg)
- ▶ 2018(第三届), Jun Gao (SJTU), Or Hen (AP at MIT)

二. 年度科研论文

三. 基金申请及奖项

四. 学术会议及报告

五.总结

参加国际会议并作报告4次,其中包括TOP 17'和DIS 18'的两 个大会报告

- 1. Single Top Production and Decay: theory overview, plenary talk at the 10th International Workshop on Top Quark Physics, Braga, Portugal, September 2017 大会报告
- 2. Altarelli-Parisi (DGLAP) equation from one to three loops, plenary talk at the 26th International Workshop on DIS and Related Topics, Kobe University, Japan, April 15, 2018
- 3. Massive charged-current DIS at NNLO and impact on strange distributions, 26th International Workshop on DIS and Related Topics, Kobe University, Japan, April 18, 2018
- 4. Yukawa couplings and Higgs boson going beyond LHC, The second Workshop on QCD, Nankai University, China, May 5, 2018
- 5. Top quark at the LHC era: theory overview, Topical Mini-Workshop of the new Physics at the Terascale, Shanghai Jiao Tong University, China, August 4, 2018 大会报告
- 6. The structure of the Proton in the LHC precision Era, 48th International Symposium on Multiparticle Dynamics, Nanyang Technological University, Singapore, Sep. 5, 2018

理论综述报告

2017-2018年度会议组织

协助组织BSM研讨会2次、QCD理论暑期学校1次,另参与 CEPC CDR的QCD部分撰写及HL/HE-LHC YR的 WG1(SM)中 部分子函数相关研究的起草

- 1. Summer School on QCD and effective theory, T. D. Lee institute and Shanghai Jiao Tong University, July 1-20, 2018
- Workshop on Physics beyond the Standard Model, T. D. Lee institute and Shanghai Jiao Tong University, July 1-3, 2018
- 3. Topical Mini-Workshop of the new Physics at the Terascale, T. D. Lee institute and Shanghai Jiao Tong University, August 4-6, 2018

HL/HE-LHC Physics Workshop Report European Strategy for

Ultimate Parton Distributions at the HL-LHC

Standard Model physics opportunities Particle Physics Update Abdul Khalek¹, Shaun Bailey², Jun Gao³, Lucian Harland-Lang², and Juan Rojo¹.

CEPC

Conceptual Design Report

Volume II - Physics & Detector

2.4.2 JET RATES AT CEPC

Another distinct feature of CEPC compared with LEP is its unprecedented luminosity, in particular above the Z pole. The higher luminosity opens the door for the precision study of multi-jet production at an e^+e^- collider.

As an example, we show in Figure 2.38 the four-jet production cross sections at CEPC

2.4.4 QCD EVENT SHAPES AND LIGHT QUARK YUKAWA COUPLING

The SM Higgs boson decays dominantly to various hadronic final states with a total branching fraction of more than 80%. These hadronic decays provide a new source for QCD studies at CEPC (in its Higgs factory mode). In particular, Higgs decays produce a

二. 年度科研论文

三. 基金申请及奖项

四. 学术会议及报告

五. 总结

- 1, 共在Physics Reports, JHEP, PRD, EPJC发表9篇论文
- 2,获得自然科学基金面上项目资助1项(主持),重点项目 1项(参与),主持高能所CEPC理论研究课题1项
- 3,获得2018年度Guido Altarelli理论奖项
- 4,参加国际会议并作报告4次,参与CEPC CDR及CERN YR的撰写

感谢各位评委专家!

敬请批评指正!