# ATLAS High Granularity Timing Detector (HGTD)

João Guimarães da Costa

November 5, 2018





Institute of High Energy Physics Chinese Academy of Sciences



# Outline

- ATLAS funding situation
  - OTP situation and upgrade connection
- Brief description of project
- Situation with the ATLAS project (people involved, budget, timeline)
  - Project already approved by ATLAS as a Phase-II project
  - Next target:TDR March 2019
- HGTD Tasks for China
  - Sensor development and production
  - ASIC design
  - Module and stave construction
  - Potentially, front-end and readout electronics
  - Simulation work
- Manpower
- Budget required



中國科學院為能物理研究所

# ATLAS China Membership

#### Active members: 248;

#### Total number of authors: 99

#### IHEP: 61; IHEP: 27;

#### USTC: 72 USTC: 36

| short name          | name                                                             | active<br>members | physicist | PhD<br>std | master | ugraduate | eng<br>PhD | eng | eng<br>std | tech | admin |
|---------------------|------------------------------------------------------------------|-------------------|-----------|------------|--------|-----------|------------|-----|------------|------|-------|
| Beijing IHEP        | Institute of High Energy Physics, Chinese<br>Academy of Sciences | 61                | 17        | 16         | 2      | 0         | 16         | 5   | 4          | 1    | 0     |
| Beijing<br>Tsinghua | Tsinghua University                                              | 9                 | 2         | 4          | 0      | 3         | 0          | 0   | 0          | 0    | 0     |
| Hefei               | University of Science and Technology of China                    | 72                | 24        | 19         | 12     | 3         | 2          | 1   | 10         | 1    | 0     |
| Hong Kong<br>CUHK   | Chinese University of Hong Kong                                  | 23                | 5         | 6          | 0      | 2         | 0          | 3   | 1          | 0    | 6     |
| Hong Kong<br>HKU    | University of Hong Kong                                          | 5                 | 2         | 3          | 0      | 0         | 0          | 0   | 0          | 0    | 0     |
| Hong Kong<br>HKUST  | Hong Kong University of Science and<br>Technology                | 5                 | 3         | 2          | 0      | 0         | 0          | 0   | 0          | 0    | 0     |
| Nanjing             | Nanjing University                                               | 19                | 5         | 5          | 3      | 6         | 0          | 0   | 0          | 0    | 0     |
| Shandong            | Shandong University                                              | 23                | 6         | 9          | 6      | 0         | 2          | 0   | 0          | 0    | 0     |
| Shanghai            | Shanghai Jiao Tong University                                    | 23                | 8         | 13         | 1      | 0         | 1          | 0   | 0          | 0    | 0     |
| TDLI                | Tsung-Dao Lee Institute                                          | 7                 | 2         | 1          | 0      | 3         | 0          | 0   | 0          | 0    | 1     |
|                     | total:                                                           | 248               | 74        | 78         | 24     | 17        | 21         | 9   | 16         | 2    | 7     |

#### 3.4% of the collaboration ==> M&O funding: 2.74%



### ATLAS-China Contribution Situation

- ATLAS China authors: 3.4% of ATLAS collaboration
  - M&O authors: **2.74%**

中国科学院高能物理研究所

- Total Core cost of phase II upgrade: 269 MCHF
  - (including 24M CHF common fund)
- China Fair-share contribution:
  - Author based: 9.1 MCHF (excluding common funds: 8.3 MCHF)
  - M&O based: 7.4 MCHF (excluding common funds: 6.7 MCHF)
- Core funding currently expected (MOST +NSFC):
  - 2.746 MCHF + 0.627 MCHF = 3.372 MCHF
- Excluding common funds:

Problem: Missing: 3 MCHF 60% of fair share

• Fair-share: 6.7 MCHF ==> Planned: 2.7 MCHF

#### Not easy to find funds and not easy to find suitable projects

### Introduction to ATLAS HGTD

- ATLAS will upgrade endcap calorimeter in 2026
  - Aim for High-Granularity Timing Detector (HGTD)
  - LGAD will be used for timing and energy measurement



- Pseudorapidity coverage: 2.4<|η|<4.0 Radial extension: 12 cm < R < 64 cm
- z position: 3.5 m
- Thickness in z: 7.5cm
- 2 double planar layers per endcap

#### **Requirements:**

- $\circ~$  Excellent time resolution (30ps/track), flat in  $\eta~$
- radiation-hard (up to 3.7x10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup> and 4.1MGy)
- Low occupancy
- Low Gain Avalanche Detector sensors (LGADs)
- Pixel size: 1.3x1.3 mm<sup>2</sup>
  - Occupancy lower than 10%, low electronic noise
- 2 double planar layers per endcap
  - Average number of hits per track = 2-3, depending on R

### **Physics motivation**

- Pileup is the major challenges at HL-LHC
  - Track from different vertexes close in space, but well-separated in time.
  - Explore the spread of the collision to reduce pileup background by timing
  - Need 30ps timing resolution to reduce the pileup background by a factor of 6
- Significant impact on some physics case
  - VBF Higgs ,Weak mixing angle measurement



Using timing information to separate

### Physics case: Weak mixing angle

- HGTD can help weak mixing angle measurement
  - Central-forward(CF) and forward-forward(FF) channel is major channels
  - Forward electron is the key.
  - HGTD help to distinguish forward electron against pileup jets
  - Improve in CF channel by 13%, improve FF by 25%

Forward electron performance w/wo HGTD





m<sub>ee</sub> GeV

### Luminosity measurement

- 1% precision in Lumiosity measurement is needed in HL-LHC for Higgs
  - The high granularity HGTD gives a low occupancy
  - excellent linearity in the average #HGTD hits and #pp interactions
  - Can estimate of the bunch-by-bunch luminosity (fast readout)





# Why an HGTD Project?

• New sensor technology

中国科学院高能物理研究所

- Interesting application possibilities with maturity of the technology
  - Possibility of integrating into real 4D tracking
- New project in ATLAS, so it needs manpower and funds
  - Relatively small project (8.5 MCHF), so a relatively small contribution can make us one of the leaders of the project
- Still a lot of development to be done
  - TDR is planned for March 2019
  - Still lots of opportunities for our own contributions



中国科学院高能物理研究所

# Current HGTD ATLAS

| <b>Country (funding agency)</b> | Institutes/Universities                         |                                  |
|---------------------------------|-------------------------------------------------|----------------------------------|
|                                 | CERN                                            |                                  |
| France                          | LAL (Orsay), LPNHE (Paris), OMEGA (Palaiseau)   | US institutions                  |
| Germany                         | JGU (Mainz), JLU (Giessen)                      | not allowed                      |
| Slovenia                        | IJS (Ljubljana)                                 | a contribute to UCTD core        |
| Spain                           | IFAE (Barcelona)                                |                                  |
| Sweden                          | KTH (Stockholm)                                 |                                  |
| Taiwan                          | AS (Taipei), National Tsing-Hua U               |                                  |
| USA                             | BNL, Ohio State U, SLAC, SMU (Dallas),          |                                  |
|                                 | Stony Brook NY, UC Santa Cruz, U of Iowa        |                                  |
| Russia                          | JINR                                            | Opportunity of China             |
| Morrocco                        | Univ. Hassan II Casa Blanca                     |                                  |
| Activities                      | Institutes                                      |                                  |
| Sensors                         | BNL, CERN, Dubna, IFAE, , JSI, UCSC             | HGTD lacking                     |
| Electronics                     | AS, Tsing-Hua, CERN, Dubna, Giessen, IFAE, Iowa | l, participation of              |
|                                 | KTH, LAL, Omega, SLAC, SMU, Stony Brook         | institutes with silicon detector |
| Luminosity/trigger              | KTH, Ohio State                                 | infrastructure                   |
| Test beam                       | All institutes                                  | init astructure                  |
| Module assembly                 | CERN, BNL, Dubna, IFAE, Iowa, JSI, LAL, LPNH    | Ε,                               |
|                                 | Mainz, Ohio State                               |                                  |
| Mechanics/Integration           | CERN, Dubna, LAL, LPNHE                         |                                  |
| Software & Performance          | Casa Blanca, CERN, Giessen, IFAE, Iowa, KTH,    |                                  |
|                                 | LAL, LPNHE, SLAC                                |                                  |



# HGTD Tasks for China

- **Sensor** design, characterization and production
  - Work already on-going at IHEP
    - Sensor design
    - Leading some LGAD sensor characterization tests
    - Participated in test beam
- Module assembly (including R&D) and stave loading
  - Bump bonding
- ASIC design
- Front end **electronics** and readout electronics?
- Simulation work and physics case

#### **IHEP HGTD Sensor Tests**

- Leading tasks:
  - I-V, C-V: "single" probes: singles, 2x2 arrays (cold)
  - I-V: Probe card: 5x5 arrays
- Test beam participation

- Contributing tasks:
  - TCT with Laster: 2x2 arrays
  - I-V: Probe card: 15x15 arrays
  - I-V: Breaking (X-rays)
  - ASIC Read-out

#### MultiRad 160 x-ray irradiator



#### LGAD Test board



#### **TCT** laser system



**Experience**: APD sensor, TCAD simulation, design and testing

# Task for Module production

#### Aim to construct a full wheel

- Module (2cm X 4cm) = Two ASIC + one Sensor
- List of tasks:
  - Bump bonding(connect ASIC sensor)
    - Work with local foundry to improve the yield of bump bonding.
  - FLEX cable design and production
  - Cooling and mechanical design of the module.
  - Module irradiation test

中國科學院為能物理研究所









# Sensor/Module Task Details

- Design of radiation hard LGAD for production at local foundry
  - Try to improve radiation hardness of current sensor
  - Sensor could be used for HGTD upgrade (if not ready for qualification of the first detector installment) — needed if no further improvements in radiation hardness
- Module construction

中國科學院為能物理研究所

- Ouyang's group to lead module construction at IHEP
  - Currently I.5 FTE: Yunpeng, Jing Dong
  - Two more technicians to join work at time of construction
- Bump bonding to be done in China by Chinese company
  - Contacts with companies already initiated



# ASIC Design Task

- ALTIROC chip: Pixel front-end chip with TDC
  - Project: Develop/include new ADC for signal amplitude measurement
- ALTIROCI uses two TDC

中国科学院高能物理研究所

- I. time of arrival (ToA) measurement
- 2. time over threshold (ToT) measurement
- Current chip has problems with ToTTDC measurement
- Solution: perform an amplitude measurement instead of the ToT.
  - Develop/include an ADC instead of the second TDC
  - Can be used in addition to TDC if TDC problems get fixed
  - Timescale: ASIC ready before ALTIROC2 submission September next year.

#### Close collaboration with Barcelona — also through CEPC MOST 2 Other design work could be necessary as time progresses

### ASIC for fast timing detector

- To design ASIC for fast timing detector
  - Need to handle jitter, Time walk (TW) and TDC uncertainty
  - ASIC record Time of arrival (TOA) and Time over Threshold (TOT)
    - Correction for Time walk, precision within 10ps

$$\sigma_{\rm elec}^2 = \sigma_{\rm jitter}^2 + \sigma_{\rm TW}^2 + \sigma_{\rm TDC}^2$$

Reduce capacitance to reduce jitter



Time walk correction with TOA and TOT





中國科學院高能物理研究所

# HGTD Wheel assembly

- Plan to contribute wheel assembly at CERN
  - Non-core contribution, but important upgrade OTP task
  - Loading staves on the wheel at CERN
  - Detector DAQ Commissioning





# IHEP Manpower

• IHEP people interested in the project:

中国科学院高能物理研究所

- ATLAS author physicists (8): Joao Guimaraes, Ouyang Qun, Shi Xin, Zhijun Liang, Xuai Zhuang, Yanping Huang, Xu Da, Lianyou Shan
- Other staff (5-7): Wei Wei, Zhao Mei, Jie Zhang, Yunpeng Lu, Jing Dong (at least two new technicians at time of production)
- Current students (2): Suyu Xiao, Kewei Wu
- Current postdocs (2): Mohamad Ayoub, Ryuta Kiuchi
- Collaboration with RD50 led by Shi Xin

#### Several of these are already actively working on the project



中國科學院高能物理研究所

# Core cost of HGTD in kCHF

| Item                                                                                            | Cost (kCHF) |
|-------------------------------------------------------------------------------------------------|-------------|
| Sensors                                                                                         | 1700        |
| Front-end ASICs                                                                                 | 730         |
| Bump bonding                                                                                    | 900         |
| Module assembly                                                                                 | 600         |
| Peripheral on-detector electronics (transition, optical and HV boards, optical links, services) | 717         |
| Power supplies and electronics in USA15                                                         | 2027        |
| Mechanics and integration (cooling support plates, vessel, feedthrough)                         | 405         |
| CO <sub>2</sub> cooling plant and distribution                                                  | 450         |
| Sub-total HGTD                                                                                  | 7529        |
| Detector readout, dataflow, and network                                                         | 970         |
| Total (kCHF)                                                                                    | 8499        |

### Total HGTD core cost: 8499 kCHF = 58.4 MRMB Goal: take a leading role in the project

Core contribution suggestion: ~25 % ==> 15 RMB

about 2 MCHF or 66% of missing contribution to ATLAS



中国科学院高能物理研究所

# Preliminary funding by country

Outcome of 11 Jan informal kick-off meeting Core Contribution intentions (CHF):

France (IN2P3): 2 M

Germany (BMBF): 0.3 M

Russia (JINR): 0.5 M

Slovenia (Ljubljana): 0.12 M

Spain (IFAE and CNM Barcelona): 1 M

Sweden (KTH Stockholm): 0.8 M

Switzerland (CERN): 2 M

Taiwan (Academia Sinica, Nat. Tsing Hua Univ.): 0.33 M

US Labs (DOE): 0.63 M

US Universities: 0.9 M



Budget

| Topics                                             | Budget |
|----------------------------------------------------|--------|
| Sensor R&D and production                          | 800万   |
| Fast timing readout ASIC                           | 500万   |
| Module prototype R & D<br>(including bump bonding) | 400万   |
| Stave R & D                                        | 300万   |
| Backend electronics                                | 400万   |



# Budget (I)

#### • Sensor

- 500万: Production (core contribution)
- 210万: R&D
  - Special combined Wafer : 0.6万 X 50个 =30万
  - Engineering run: 25万×6次=150万
  - Mask: 5万×6次=30万
- 90万: Sensor testing (probe card, irradiation tests, test beam)
- Fast timing readout ASIC
  - I50万: Production (core contribution)
  - 350万: R&D, I75万×2次=350万



# Budget (2)

#### • Module and stave production

- 320万: Bump bonding production (core, for one full wheel)
- 220万: Module assembly (core, material fee, for one full wheel)
- 60万: R&D for bump bonding
- 100万: Manpower for stave assembly and integrate them on the HGTD wheel

#### • Electronics

- I30万: production (core)
- 270万: R&D
  - optical link, on-detector electronics, backend electronics, slow control





## HGTD Schedule in ATLAS

#### **HGTD schedule (Figure 64 of TP)**





### Extra slides



中國科學院為能物理研究所

# IHEP Infrastructure

• Existing class 1000 (ISO6) Cleanroom with 150 m<sup>2</sup>



- A few other cleanrooms available at the lab
  - Electronics group clean room
  - ITK module construction clean room



### Some relevant equipment

OGP Flash CNC 300 Smart scope Visual inspections

中國科學院為能物理研究所



Flash CNC 300

Hesse BondJet820 Fast auto wire bonder



Gantry



HESSE BJ820

Several other equipment: probe stations, wire bonders, etc



中國科學院為能物理研究所

### Some relevant equipment

#### Palomar 8000i Wire Bonder

**Probe station** 





New probe station with cold chuck

ESPEC Controlled environment chamber



中國科學院為能物理研究所

# Size of ATLAS clusters

#### USTC-SDU-SJTU Cluster

#### USTC-SDU-SJTU Cluster

Oper.

Task

26.5

7.75

5

39.25

**M&O** 

16

4

2

22

|          | Authors | Oper.<br>Task | M&O |          | Authors |
|----------|---------|---------------|-----|----------|---------|
| USTC     | 36      | 32.25         | 15  | IHEP     | 27      |
| Shandong | 12      | 12            | 6   | Noniina  | Л       |
| Shanghai | 13      | 15.5          | 8   | Nanjing  | 4       |
| TD Lee   | 2       | 2.75          | 2   | Tsinghua | 5       |
| Total    | 63      | 62.5          | 31  | Total    | 36      |

- Total ATLAS China authors: 99
- Total ATLAS authors: 2940

3.4% of the collaboration (M&O funding: 2.74%)



#### Institutes manpower coverage

|                                                     |                | R&D Ph            | ase             |                    | C     | onstructio | on Phas | se    |  |
|-----------------------------------------------------|----------------|-------------------|-----------------|--------------------|-------|------------|---------|-------|--|
|                                                     | Phys.          | Student           | Eng.            | Tech.              | Phys. | Student    | Eng.    | Tech. |  |
| France (IN2P3):                                     | 4.5            | 1                 | 5.4             | 2.1                | 4     | 1          | 6.5     | 2.8   |  |
| Germany (BMBF):                                     | 1.5            | 2                 | 0.2             | 0.2                | 1.6   | 3          | 0.1     | 0.7   |  |
| Russia (JINR):                                      | 1.5            | 0.5               | 2               | 0.5                | 1.5   | 0.5        | 1.5     | 0.5   |  |
| Slovenia (Ljubljana):                               | 1.5            | 1                 | 0.3             | 0.3                | 1.5   | 1          | 0.3     | 0.3   |  |
| Spain (IFAE Barcelona):                             | 2              | 1                 | 0.5             | 0.5                | 1     | 1          | 1       | 1     |  |
| Sweden (KTH Stockholm):                             | 0.9            | 0.2               | 0.5             | 0.0                | 0.6   | 0.2        | 0.5     | 0.0   |  |
| Switzerland (CERN):                                 | 3              | 0.5               | 3               | 1                  | 4     | 1          | 3       | 2     |  |
| Taiwan:                                             | 2              | 2                 | 0.0             | 0.0                | 2     | 2          | 0.0     | 0.0   |  |
| US Labs (BNL and SLAC):                             | 2.3            | 0.3               | 1               | 0.3                | 2.3   | 0.3        | 2.2     | 2.2   |  |
| US (5 Universities):<br>*About ½ of US students are | 7.9<br>e under | 11.1<br>graduates | * 2.2<br>used f | 1.4<br>for testing | 8.9   | 14.2*      | 1.9     | 1.7   |  |
| Sum (FTE)                                           | 27.1           | 19.6              | 15.1            | 6.3                | 27.4  | 24.2       | 17.0    | 11.2  |  |

#### USA groups approved only for R&D.

#### Without China, Italy, Brazil

+Morocco: phys 0.8 ; student 0.5 ; tech =0 eng =0





# ATLAS R&D funding required

#### Main R&D Costs 2018-2020 (KCHF) preliminary

| Item (KCHF)                       | 2018 | 2019 | 2020        | Total     |
|-----------------------------------|------|------|-------------|-----------|
| Sensors                           | 100  | 100  | up to 100 ? | 200-300   |
| Electronics                       | 80   | 275  | 330         | 685       |
| Testbeams                         | ~20  | ~20  | ~20         | 60        |
| Modules assembly                  |      | 10   | 24          | 34        |
| Mechanics, services & integration |      | 28   | 45          | 73        |
| Total                             |      |      |             | 1052-1152 |

2018: costs mostly on sensors and ASIC-ALTIROC was shared with few Institutes → results on laboratory and test beams available for the TDR
 2019-2020:

- Larger costs mostly due to full ALTIROC iteration Version 1,2 (250k/iteration)
- Ongoing inquiry to Institutes for possible costs sharing (Abe Seiden)
- Need cost sharing agreement for Sensors/ASICS to more Institutes (similar to ITK)
- For other items expect costs to be shared w/ Institutes involved
- → post-TDR results needed for Milestones 9-18 of TP table 18 (PDR,FDR, PRR)



### Manpower details

#### • Jie Zhang

中国科学院高能物理研究所

- PhD, rich experience on advanced digital electronics design
- Especially on system architecture, high speed communication...
- Interest on the digital design
- May also contribute to the backend readout electronics

#### • Mei Zhao

- PhD, expert on Sensor design and simulation
- May contribute to the sensor design and manufacture

#### • Wei Wei

- PhD, experience on mixed signal ASIC design
- Especially on hybrid pixel detector ASIC design

#### 中国科学院高能物理研究所

#### Core contributions from countries to ATLAS

#### ATLAS Phase-II Upgrades – envisaged CORE Contributions by Funding Agency [kCHF]

|                                 |         |         | Ш       | k        | _       |         |         |         | 31     |         | Common   |                               |          |          |
|---------------------------------|---------|---------|---------|----------|---------|---------|---------|---------|--------|---------|----------|-------------------------------|----------|----------|
| l                               | TDAQ    | Total   | Pixels  | Strips   | Common  | LAr     | Tile    | Muons   | HGTD " | Total   | Fund     | TOTAL <sup>2</sup> (incl. CF) | LUCID */ | FWD °    |
| CORE Costs <sup>1)</sup> [kCHF] | 44'880  | 123'226 | 47'804  | 60'638   | 14'784  | 28'385  | 11'573  | 28'403  | 8'499  | 244'966 | 24'420   | 269'386                       | 500      | 80       |
| Funding Agency                  |         |         |         |          |         | CORE    | Commitm | nents   |        |         |          |                               |          |          |
| Argentina                       | 759     |         |         |          |         |         |         |         |        | 759     | 78       | 837                           |          |          |
| Armenia                         |         |         |         |          |         |         |         |         |        |         |          |                               |          |          |
| Australia                       | 390     | 2'021   |         | 2'021    |         |         |         |         |        | 2'411   | 196      | 2'606                         |          |          |
| Austria                         | 200     |         |         |          |         |         |         |         |        | 200     | 39       | 239                           |          |          |
| Azerbaijan                      |         |         |         |          |         |         |         |         |        |         | 13       | 13                            |          |          |
| Belarus                         |         |         |         |          |         |         | 13      |         |        | 13      | 26       | 39                            |          |          |
| Brazil                          |         |         |         |          |         |         |         |         |        |         | 183      | 183                           |          |          |
| Canada                          |         | 5'958   |         | 5'308    | 650     | 1'573   |         |         |        | 7'531   | 849      | 8'379                         |          |          |
| Chile                           |         |         |         |          |         |         |         | 50      |        | 50      | 131      | 181                           |          |          |
| China NSEC+MSTC                 |         | 2'043   |         | 2'043    |         |         |         | 703     |        | 2'746   | 627      | 3'372                         |          |          |
| Colombia                        | 400     | 2 045   |         | 2 043    |         |         |         | 705     |        | 400     | 52       | 452                           |          |          |
| Zech Republic                   | 500     | 4'550   | 1'306   | 2'700    | 151     |         | 560     |         |        | 5'610   | 500      | 6'110                         |          |          |
| Jenmark                         | 772     | 4 550   | 1 3 90  | 2 700    | 4.54    |         | 500     |         |        | 1'/21   | 144      | 1'565                         |          |          |
| France IN/2D2                   | 775     | 6'075   | 5'025   | 048      | 1'050   | E'900   | 042     |         | 2'700  | 16'205  | 1/400    | 1 505                         |          |          |
|                                 | 786     | 0.075   | 5.025   |          | 1050    | 5'800   | 943     | 440     | 2.700  | 10.305  | 1.489    | 17.794                        |          |          |
|                                 |         | 1.139   | 959     |          | 180     | 2.343   |         | 410     |        | 3.891   | 313      | 4.204                         | 1        |          |
| eorgia                          |         |         | -       |          |         |         | 78      |         |        | 78      | 78       | 156                           | /        |          |
| Germany BMBF                    | 2'760   | 11'677  | 6'068   | 4'300    | 1'310   | 1'450   | 444     | 1'946   | 300    | 18'578  | 1'998    | 20'576                        |          |          |
| Germany DESY                    |         | 6'034   |         | 5'344    | 690     |         |         |         |        | 6'034   | 483      | 6'518                         |          |          |
| Germany MPI                     | 636     | 493     | 403     |          | 90      | 237     |         | 2'433   |        | 3'799   | 274      | 4'073                         |          |          |
| Greece                          | 800     |         |         |          |         |         |         | 2'490   |        | 3'290   | 196      | 3'486                         |          |          |
| long Kong                       |         | 466     | 406     |          | 60      |         |         | 323     |        | 789     | 131      | 920                           |          |          |
| srael                           | 2'503   |         |         |          |         |         |         | 384     |        | 2'887   | 379      | 3'265                         |          |          |
| aly                             | 3'850   | 5'585   | 5'070   |          | 515     | 1'800   | 598     | 5'620   |        | 17'454  | 2'207    | 19'661                        | 290      |          |
| apan                            | 1'643   | 11'638  | 3'577   | 7'051    | 1'010   |         |         | 4'281   |        | 17'562  | 992      | 18'555                        |          |          |
| lorocco                         |         |         |         |          |         |         |         |         |        |         | 144      | 144                           |          |          |
| letherlands                     | 400     | 2'779   | 147     | 2'452    | 180     |         |         | 424     |        | 3'603   | 313      | 3'916                         |          |          |
| lorway                          |         | 1'918   | 1'330   |          | 588     |         |         |         |        | 1'918   | 209      | 2'127                         |          |          |
| Poland                          | 2'000   | 1'720   |         | 1'090    | 630     |         |         |         |        | 3'720   | 379      | 4'098                         |          | -        |
| Portugal                        | 405     | 2720    |         | 2 050    | 0.50    |         | 988     |         |        | 1'393   | 196      | 1'589                         |          |          |
| Romania                         | 1'735   |         |         |          |         |         | 1'17/   |         |        | 2'000   | 200      | 2'118                         |          |          |
| Russia                          | 1755    | 11202   | 550     |          | 722     | 1/421   | 70      | 1'012   |        | 2 303   | 205      | 5 110<br>E'422                |          | -        |
| INID                            | 040     | 1 203   | 550     |          | 733     | 1'042   | 10      | 1013    | 600    | 2'061   | 240      | 2'400                         |          | -        |
| inn.                            | 940     |         |         |          |         | 1 045   | 40      | 450     | 000    | 5 001   | 540      | 5 400                         |          |          |
| Nerpia                          | 600     |         |         |          |         | 400     | 200     |         |        | 41200   | 20       | 05                            |          |          |
| BIOVAK REPUBLIC                 | 600     |         |         |          |         | 400     | 300     |         |        | 1'300   | 131      | 1'431                         |          |          |
| slovenia                        |         | 755     |         | 695      | 60      |         |         |         | 120    | 875     | 104      | 980                           |          |          |
| South Africa                    |         | 400     |         |          | 400     |         | 700     |         |        | 1'100   | 118      | 1'218                         |          |          |
| Spain                           |         | 3'502   | 902     | 2'213    | 387     |         | 1'315   |         | 440    | 5'257   | 640      | 5'897                         |          |          |
| Sweden                          | 200     | 2'162   |         | 2'162    |         |         | 1'561   |         | 800    | 4'723   | 392      | 5'115                         |          |          |
| Switzerland                     | 1'500   | 5'275   | 5'075   |          | 200     |         |         |         |        | 6'775   | 326      | 7'101                         |          |          |
| aipei                           |         |         |         |          |         |         |         | 502     | 500    | 1'001   | 104      | 1'106                         |          |          |
| urkey                           | 500     |         |         |          |         |         |         | 507     | 250    | 1'257   | 144      | 1'400                         |          |          |
| Inited Kingdom                  | 3'821   | 16'818  | 5'107   | 11'612   | 99      |         |         |         |        | 20'639  | 2'494    | 23'134                        |          |          |
| JSA DOE                         | 2'135   | 20'470  | 7'034   | 10'901   | 2'534   | 378     |         |         |        | 22'983  | 3'656    | 26'639                        |          |          |
| ISA NSF                         | 5'940   |         |         |          |         | 8'441   | 1'882   | 2'899   |        | 19'162  | 901      | 20'063                        |          |          |
| ERN                             | 8'044   | 7'975   | 4'475   | 100      | 3'400   | 3'494   | 882     | 3'094   | 2'006  | 25'495  | 1'332    | 26'827                        |          |          |
| OTAL (kCHF)                     | 44'221  | 123'384 | 47'525  | 60'638   | 15'220  | 28'389  | 11'557  | 28'307  | 7'715  | 243'573 | 24'420   | 267'993                       | 290      |          |
| Incertainty Low                 | 73.5%   | 85.6%   | 89.9%   | 81.7%    | 88.0%   | 95.0%   | 73.7%   | 62.5%   | 87.8%  | 81.3%   | 100.0%   | 83.0%                         |          |          |
| ledium                          | 16.0%   | 14 1%   | 8.6%    | 18 3%    | 9.5%    | 5.0%    | 25.3%   | 34 5%   | 07.070 | 15.8%   | 200.070  | 14.4%                         | 58.0%    |          |
| liah                            | 0.0%    | 0.4%    | 0.0%    | 10.5%    | 0.4%    | 5.0%    | 0.8%    | 2 7%    | 2 0%   | 2 2%    |          | 2.1%                          | 00.070   |          |
| 6 of CORE Costs                 | 98.5%   | 100 1%  | 99.4%   | 100.0%   | 98.0%   | 100.0%  | 99.9%   | 99.7%   | 90.8%  | 99 A%   | 100.0%   | QQ 5%                         | 58.0%    |          |
|                                 | 30.3 /0 | 100.176 | 33.4 /0 | 100.0 /6 | 30.0 /0 | 100.0/6 | 33.3 /0 | 33.1 /0 | 30.0 % | 33.4 /0 | 100.0 /8 | 39.576                        | 50.0 %   | <u> </u> |
| ∆ (Total - CORE Costs)          | -659    | 157     | -279    | 0        | 436     | 4       | -15     | -95     | -784   | -1'392  |          | -1'392                        | -210     | -80      |



Coverage of CORE costs (245 MCHF) excl. Common Fund (24.4 MCHF)



#### Notes

1) CORE costs as defined in the TDRs and reviewed in detail by the Upgrade Cost Group (UCG) for TDAQ, ITk, LAr, Tile, Muons. For HGTD, FWD, μ-Tagger see notes 3-6). 2) Bar scale normalised to largest entry in column.

3) The High Granularity Timing Detector (HGTD) has not yet been reviewed, the TDR will follow in 2019.

4) A new LUCID detector was originally proposed in the Scoping Document under "Forward Detectors". It is now planned as a "Small Project" with details to be worked out in the coming months. 5) The remaining Forward Detector projects (ALFA,AFP,ZDC) are not being formally proposed at this stage.

6) The μ-Tagger project is not included in the present Phase-II scope, but remains an option as a further upgrade project for installation at a later stage (>2025)



# Bump bonding



中国科学院高能物理研究所

#### Technical Specification for the Bump Bonding of HGTD Modules

| ATLAS Project Document No: | EDMS Document No.: | Created: 20/11/17  | Page: 1 of 7  |
|----------------------------|--------------------|--------------------|---------------|
| ATL-COM-UPGRADE-2017-022   | AT2-G-ES-0001      | Modified: 10/10/18 | Rev. No.: 0.4 |

#### Technical Specification for the Bump Bonding of HGTD Modules

#### Summary

This Memo describes the technical specifications for the bump bonding of the hybrid modules of the proposed High Granularity Timing Detector (HGTD) to be installed in ATLAS for the LHC high luminosity period.

| setti             |                           |
|-------------------|---------------------------|
|                   | A. Henriques              |
| cour              | L. Serin                  |
|                   |                           |
|                   |                           |
| Distribution List |                           |
|                   |                           |
|                   | cour<br>Distribution List |



中國科學院為能物理研究所

# IHEP Infrastructure

• New class 10000 (ISO7) cleanroom with 80 m<sup>2</sup> is on the way





# ITK Upgrade

- Responsible for 1000 barrel strip modules (together with RAL)
  - Production to be split between UK and IHEP
- CMOS strip sensor characterization
- Test beams at CERN and DESY

中國科學院為能物理研究所

- Front-end Readout Electronics ASIC Design (ABC-star)





#### **BPIX-1M System: a Hybrid Pixel Detector for HEPS**



X ray diffraction on

beamlines

Analysis on diffraction data vs PDF

- 300um Si PinN sensor +
  ASIC + In Bump
- Pixel size 150\*150um
- Sensitive area: 18cm\*14.4cm
  - Energy range: 6keV~19.5keV
- 20 bit counting depth
- Frame rate>1.2 kHz full system
- All key technologies (sensor, ASIC, bump bonding) done in China



# APD Sensor

• Sensor modeling and simulation





The sensor is designed for photon detector Sensor Structure 2D\3DTCAD simulation



## APD Sensor

- Sensors with different areas and shapes
- I V characteristics and Signal based on 410nm incident light 10 10-4







### APD Sensor

• Test results

中國科學院為能物理研究所



- Connect sensor and amplifier on PCB
- Output signal increases as increasing numbers of incident photons
- More tests will be done on the Gain and Timing resolution
- New sensor will based on high resistivity substrate and large area 1.3\*1.3 mm<sup>2</sup>



- Hybrid Pixel Detector Design
  - Designed for High Energy Photon Source (HEPS)
  - Co-designed sensor + self designed ASIC + bump bonding by Chinese company + self designed readout Elec. + self designed mechanics
  - Various related pixel readout chip designed
- JUNO underwater PMT readout
  - Self designed ASICs for PMT & MCP-PMT
  - Large dynamic range, fast leading edge (~1.5ns)
  - High reliability requirement (over 10 years underwater, non-replaceable)
- Low noise frontend ASIC design
  - Involved in nEXO collaboration
  - Backup scheme for charge readout: analog serial readout
  - ~200e ENC requirement @ liquid Xeon
- Rich experience on backend electronics
  - Full design experience in BESIII, Dayabay, JUNO, LHAASSO electronic system