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Introduction

_l The interaction between the proton beam and the target produces high
radiation.

1 The performance of the superconducting magnets in such high irradiation
environment can be degraded

1 Simulation need to be done in order to understand the radiation and guide the
design of the target station




The baseline scheme design

1.6 GeV, 5 kW proton beam
Conical carbon target (better for surface muon production and radiation)

4-coil/3-step superconducting adiabatic solenoid (high particle collection efficiency)
Tungsten shields to protect the coils from radiation
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Geometry description in simulation

I_ 15mm Cable Dimension w/o insulation: 15 X 4.7 mm?
I- w/ insulation: 15.3 X 5.0 mm?
Strand Diameter: 1.15 mm
Number: 8 X 2
Stabilizer Aluminum
Insulation Polyimide
Support shell Al5083
Initial RRR 400 (stabilizer)

Support shell

Simplified strand

Insulation

Stabilizer

Cable model in simulation



Radiation limit: peak dose in epoxy < 7 MGy for
ifetime

) The most restricted radiation limit is the
maximum local radiation dose to the
superconductor insulation and epoxy over
the lifetime of the experiment.
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their layout need to be optimized.



From simulation results, the first capture solenoid (CS1) and the
matching solenoid (MS) experience the largest dose. Their shield
layouts should be optimized.

Absorbed Dose (MGy/y)

100

a0

40 |

«— r(cm)

CS1 shield thickness

N

=100 =G ] ] 100 150 200 260 T
z(cm) — «—
MS shield thickness




CS1 shield optimization
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MS shield optimization
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Two possible options:
a) Aperture = 30 cm; thickness = 60 cm
b) Aperture = 25 cm; thickness = 50 cm 9




MS shield optimization (cont.)
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Peak dose for 1 year operation (MGy)

The optimal shield configuration:
- CS1 shield thickness: 25 cm

- MS shield thickness: 50 cm

- MS shield aperture: 25 cm
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Peak doses are below the 0.7 MGy/y limit for all solenoid coils
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RRR limit

RRR is defined as the ratio of the electrical resistance at room
temperature of a conductor to that at 4.5 K.

RRR is an important parameter for the superconducting magnet
design that affects the magnet performance during operation in
superconducting mode and irreversible transition to the normal
state (quench).

For a given sample exposed to various neutron spectra, the RRR will
decrease. For the Al stabilizer, we require RRR is not larger than 100.

Temperature limit

The operation temperature of the superconducting coils should
below the critical value with a sufficient margin. The values are 5.9K
and 5.5K for low and high magnetic field modes.




Neutron fluence and energy density

Peak fast neutron fluence in coils ~ 1.7E21 n/m?/y
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Neutron irradiation tests at Kyoto Univ.
Research Reactor Institute

Al stabilizer sample

FIGURE 2. The aluminum sample cut from the aluminum stabilized superconductor attached with a

voltage sense wire.

Al’s electrical resistance in
neutron irradiation environment
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TABLE 2. Summary of the Resistance Changes Observed in the Experiment
Period Temperature gtcgra fed Fast-Neutron Measured Resistance
uence
Before cool-down 300K 0 1.37 mi2
After cool-down WK 0 3.0 p2
During irradiation 12K-15K (flux - 14x10% n/im¥s) [ 3.1pQ-57pQ2
(increased monotonically with
fluence)
After irradiation 12K 2.3x10% n/m’ 5.6 uQ2
After warm-up to room 302K 2.3%10™ v/m’ 1.36 m2
temperature
After the second cool-down | 12K 2.3%10° n/m’ 3.0u0

0
1000 1500 2000 2500 3000

Elapsed Time (min)

v" Neutron induced
resistance rate is

0.03nQ - m for 1020 n/m?2

v" The resistance can be
recovered by warming

up to room temperature

M. Yoshida et al., Proc. AIP Conf., 2011, vol. 1435, pp. 167-173.
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Wiedemann-Franz-Lorenz (WFL) law

Q>

- Xp e LT (1-301)

where o = electrical conductivity, L = Lorenz number, and T = absolute tempera-

ture.

=1 For RRR =1000

0 LT ~11x107°V?2/K? @ 45K
=) For RRR =400

0 LT =112x10°V2/K?@ 45K

LORENZ RATIO,107°v?/k?
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J. Hust and A. Lankford, National Bureau of Standards,
B e e e Boulder, CO, USA, DOE-HDBK 1017/2-93, 1984.
volues of RRR.
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Radiation estimation for Al stabilizer

2 Effective RRR is calculated as RRR = 28T — __PRT
p(t) Po+TXP(1)

1 Assume

-1 Neutron induced resistance
2 r =0.03nQ - m for 10%2° n/m? (page 14)

0 According to WFL law, resistivity p(t) and thermal conductivity A(t) obey
O p(t) - A(t) = LT (page 15)

Month 0 1 2 3 6 9 12
Meutron fluence (/m2) 0 142E+20 283E+20 4.25E+20 850E+20 128E+21 170E+Z1
Initial RRR 400 400 400 400 400 400 400
Resistivity @ RT (Ohm m) 2 70E-08 270E-08 270E-08 270E-08 270E-08 2.70E-08 2.70E-08
Resistivity @ 4K (Ohm m) 6./5E-11 6.75E-11 6.75E-11 6.75E-11 675E-11 6.75E-11 6.75E-11

6./5E-11 110E-10 153E-10 195E-10 323E-10 450E-10 578E-10

Resistivity (Ohm m)

RRR 400 2.45E+02 177 138 84 60 47
Thermal conductivity (W./m/K) 166E+02 102E+02 734FE+01 5 7AE+01 347E+01 2ASE+01 194E+0
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Degradation of the Al stabilizer

RRR vs. Month
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The RRR of the Al stabilizer downgrade to 100 after 5-month continuous
operation. Then it can be 100% covered by warming up the
superconducting solenoids to room temperature.
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Thermal analysis: cooling

Two Phase Helium cooling:
Different arrangement of cooling pipe

Condition 1 : 3-2-2-2 Condition 2 : 5-3-2-2

Taking electrical resistivity and thermal conductivity during operation
into account, we calculate the temperature of coils using ANSYS
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Max temperatures on coils (condition 1)
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Max temperatures on coils (condition 2)
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Thermal analysis: thermal bridge

1 Inserting Al 1100 strips between the coil layers can lead to better thermal transfer.

1 The Al 1100 has much better thermal conductivity compared to Al 5083

-1 COMET magnetic coil design show promising results
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Max temperatures on coils

w/ condition2 cooling

//-
P

—
_ _

/././ 5.5K

0 2 4 6 8 10 12
beam operation time(month)

757 [“a— With Axial pure Aluminum strip

—o— None Pure Aluminum strip

X
o

o
()

o
(3

max temperature on coil 1 (K)
o]
o

o
o
L

~4% lower temperature
the coils can continuously run for 5 months in total
(high field mode + low field mode)

Axial pure Al strips:

* 12 piecesin
azimuthal

* 2 layers

* Thickness: 0.9 mm
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Radiation calculation for the baby scheme

1 The baby scheme design
Thin targets for proton beam recirculation

Quadrupoles (lower acceptance, focusing) place at 90 deg or higher angle
High polarization, less contamination from decay muons

ISIS target and beam window geometries show promising results

window

: / Quadpup lee

+ muon beam line
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Geometry description in simulation

The 15t quadrupole magnet

Steel shield
5kW proton
beam The thin target (semi-interact with the beam)
Width =3 cm

\

€ Length=10cm
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Power density (W/cm?3)

w b deposition (W)
g f et Target 75.1
- . Container 37.1
:: . Concrete shield 135.3
Coill 0.24
. o0t Coil2 0.06
| e  Coil3 0.06
- 0 i Coild 0.24
= Magnet Iron 2.7
:: _ o Steel shield 1.7
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Dose on the coils (MGy/y)
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Much less dose (0.2 MGy) than the baseline

scheme (0.7 MGy)
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Neutron flux on the coils

Neutron flux (n/m?2)
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Over 1 order of magnitude (819 n/m?) lower than the baseline
scheme (1.7E21 n/m?)
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The radiation simulation for the target station has been
presented.

For the baseline scheme
The shield layout is optimized by the peak dose in the epoxy. The
optimal parameters are:
CS1 shield thickness: 25 cm
MS shield thickness: 50 cm
MS shield aperture: 25 cm
The degradation of the stabilizer is estimated
The RRR of the Al stabilizer degrades to 100 for 5-month operation

Thermal analysis is carried out by considering the cooling and
thermal bridge (refer Donghui’s report for shielding cooling)

The maximum temperature in the 15t coil arises above 5.9K after 5-
month high field + low field operation



For the baby scheme

As the thin target interact with the beam less probably, the
radiation is much less than the baseline scheme

Next to do

Further optimize the baby scheme design
Further optimize thermal bridge design
Perform the quench analysis

Thank you



Backups



Dose for different particles (MGy/y)
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Degradation of Al strip

Manth 1] 1 2 3 (] 9 12
Meutron fluence (/m2) 0 1.42E+20 2.83E+20 4.25E+20 B8.50E+20 1.28E+21 1.70E+21
Initial RRR 2000 2000 2000 2000 2000 2000 2000
Resistivity @ RT (Ohm m) 2.70E-08 2.70E-08 2.70E-08 2.70E-08 2.70E-08 2.70E-08 2.70E-08
Resistivity @ 4K (Ohm m) 1.25E-11 1.35E-11 1.35E-11 1.35E-11 1.35E-11 1.35E-11 1.35E-11
Meutron induced resistivity (Ohm m) 0.00E+00 4.25E-11 8.50E-11 1.28E-10 2.55E-10 3.83E-10 5.10E-10

| Resistivity (Ohm m) 1.35E-11 5.60E-11 9.85E-11 1.41E-10 2.69E-10 3.96E-10 5.24E-10 |
RRR 2000 4.82E+02 274 191 101 BE 32

| Thermal conductivity {(W/m/K) 8.15E+02 1.96E+02 1.12E+02 7.BO0E+01 4.10E+01 2.78E+01 2.10E+01 |
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Proton flux around the baby target
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Cross check with a simplified COMET
geometry

Iron Yoke

Our results
COMET’s results e
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