Calibration of the relative response of the ALICE electromagnetic calorimeter EMCAL

Outline

- **Physics motivations:**
 - Quark-Gluon Plasma study
- **The experiment:**
 - The ALICE experiment and its calorimeters
 - EMCAL characteristics
- **Calibration with cosmic muons:**
 - Experimental setup
 - Analysis procedure
 - Results
 - Tracking time variations

Julien FAIVRE for the ALICE collaboration
The Quark-Gluon Plasma (QGP):

<table>
<thead>
<tr>
<th>Interaction:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnet.</td>
<td>Strong</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Object</th>
<th>Charged particles</th>
<th>Quarks, gluons (partons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector</td>
<td>Photon</td>
<td>Gluon</td>
</tr>
</tbody>
</table>

Observable objects are always color-neutral
\[\Rightarrow \text{partons hadronize: they appear as jets} \]

Large color charge density
\[\Rightarrow \text{screening} \]
Color deconfinement
\[\Rightarrow \text{Quark-Gluon Plasma (QGP)} \]

QGP: dense medium, partonic (deconfined), in thermal equilibrium
Why/how study the QGP:

- **Phase transition** predicted by Quantum Chromodynamics calculations (QCD = theory of the strong interaction)
- Large color charge density? Ultra-relativistic heavy ion (e.g. Pb) collisions

 Reference experiments: p-p, p-A
- **Study**:
 - Phase diagram of nuclear matter
 - Behavior of the hot and dense matter
 - Test QCD calculations
 - Probe partonic composition of proton and nuclei

- **ALICE**: large experiment dedicated to the heavy ion collisions at **LHC @ CERN**
Some probes which involve calorimetry:

- **Photons:**
 - Reference (unaffected by strong interaction)

- **Thermal photons:**
 - Get QGP temperature

- **Jets, azimuthal correlations between jets and hadrons or γ:**
 - Get QGP density
 - Learn how partons interact in QGP
 - Investigate QGP equation of state
 - Measure the in-medium modification of the parton fragmentation function

- **Heavy flavor (c and b quarks):**
 - Test QCD predictions of smaller in-medium energy loss

- All probes
 - involve a test of QCD calculations
 - provide data to constrain nucleon and nuclei parton content
The calorimeter EMCAL:

Total: 10×1152 channels
- 10 supermodules
- 1 supermodule = 3×8 strips
- 1 strip = 12 modules of 2×2 towers
- Segmentation: $6 \times 6 \text{ cm} (4.5 \text{ m from IP})$
- Acceptance: $-0.7 < \eta < 0.7$, 100° in φ
- Located in front of PHOS

- Shashlik: Pb/scintillator stack with wavelength shifting optical fibers in
- Light collect.: avalanche photodiode (APD)
- LED gain monitoring system
- 8 temperature sensors per SM
- Provides a trigger for Physics

Currently: 4 supermodules installed

- Requirements: $\sigma_E/E < 2 \oplus 15/\sqrt{E}$
- Beam test: $\sigma_E/E = 1.7 \oplus 11.1/\sqrt{E} \oplus 5.1/E$
- Contribution miscalibration: adds in the constant term
Relative calibration with cosmic muons:

Pre-calibrate tower gains before inserting in ALICE

Requirements: dispersion < 10%

- APD gain = function of high voltage (measured)
- Towers have varying efficiencies (e.g. light collection)
- **Aim**: tune APD gains so they compensate for the varying efficiencies
 ⇒ Each tower gives identical response to identical E deposit
- **How**: cosmic muons (permanent and free MIPs)

 Take data → Calculate new HV

 New HV = f(prev HV; measured vs desired signal amplitude)
Relative calibration with cosmic muons:

Pre-calibrate tower gains before inserting in ALICE
Requirements: dispersion < 10 %

Mean deposited energy: \(\simeq 28 \text{ MeV}\) (equivalent of 300 MeV electrons)

- Experimental bench (side view):
 - Top scintillators
 - Bottom scintillators
 - Third at test
 - Cosmic muon
Isolation cut:

- Want narrow energy distribution
 ⇒ discard cosmics which hit more than 1 tower
 ⇒ discard event when a neighbor tower has some signal
 Isolation cut level limited by noise: 3 ADC

- "Map" of energy deposited by a muon crossing a given tower:

 Scintillator trigger Isolation cut
“Time of flight” (ToF) cut:

- Experimental bench (front view):

Photomultiplier

Scintillator paddle

- Time difference between both photomultipliers:
Average signal amplitude:

Where the muons deposit energy:

- Oblique muons are cut
 ⇒ muons deposit energy in ≃ a single tower
 ⇒ narrow deposited energy distribution
Average signal amplitude:

- No cuts
- ToF cut
- Isolation cut
- Isol + ToF cuts

Cuts: ToF + scintillator selection
Cuts: isol + signal shape + this tower has the largest signal

- Mean of gaussian fit over distributions with isolation and ToF cuts → average signal amplitude
- Measure average signal amplitude for all towers
- Then iteratively tune high voltages to move all average signal amplitudes to e.g. 16 ADC
Contributions to the width:

\[\sigma_{\text{tot}} = \sigma_{\text{deposited E}} \oplus \sigma_{\text{EMCAL resol}} \oplus \sigma_{\text{digit}} \oplus \sigma_{\text{temperature}} \oplus \sigma_{\text{other}} \]

\[\rightarrow \sigma_{\text{tot}} \simeq 14 - 17\% \]
\[\rightarrow \sigma_{\text{deposited E}} \simeq 12 - 16\% \]
\[\rightarrow \sigma_{\text{EMCAL resol}} \simeq 3.8 - 4.1\% \]
\[\rightarrow \sigma_{\text{digitization}} \simeq 1.8\% \]
\[\rightarrow \sigma_{\text{temperature}} \simeq 1.5 - 3.0\% \]
\[\rightarrow \sigma_{\text{other}} = \text{electronic noise, signal fit, pedestal subtraction, residual oblique muons, ...} \]

Uncertainty on the measured average signal amplitude:

\[\sigma_\mu = \frac{\sigma_{\text{tot}}}{\sqrt{N}} \]

- Typical statistical relative uncertainty on the average signal amplitude for a 23-hour run (in %)
 \[\rightarrow \text{Below the 1 \% level} \]
Relative calibration results:

- Dispersion (width ÷ mean) of average signal amplitudes from all towers:
 - \(\square \) Start with worse than 10 %
 - \(\triangle \) Reach < 2 % in 2-3 iterations

(Temperature rise in the hall)

- 5 iterations: spread keeps going down! ⇒ dominated only by statistics collected and number of iterations
- ⇒ relative calibration provided after 3 iterations is reliable
 → can reach the 1 % level
Tracking the tower gain changes:

- **Temperature sensors**: correlation between 2 sensors gives uncertainty ≃ 0.2°
- Temperature dependence of APD gain G:
 \[
 \frac{1}{G} \frac{dG}{dT} \simeq -1.5 \rightarrow -4\%/K
 \]
 ⇒ control of the relative calibration at the < 0.5 % level

- **LED monitoring**: currently under study
 LED pulse illuminates tower and goes to reference APD
 ⇒ real-time monitoring of tower gain changes
Conclusion:

<table>
<thead>
<tr>
<th>How</th>
<th>Requirem. Status</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-calibration</td>
<td>Cosmics < 10 %</td>
<td>∼ 2 % Time</td>
</tr>
<tr>
<td>Online monitoring</td>
<td>LED < 5 %</td>
<td>OK LED statistics</td>
</tr>
<tr>
<td>Offline monitoring</td>
<td>TemperatureParticles ∼ 1 %</td>
<td>OK Sensors accuracy</td>
</tr>
<tr>
<td>Offline calibration</td>
<td>Simu OK Stat, HV digitiz.</td>
<td></td>
</tr>
</tbody>
</table>

- **Relative calibration**:
 Three 1-night data-taking enough to calibrate 1/3 supermodule to < 2 %
- π^0 peak in Alice with real data
 (no further relative calibration)

To be done next:
- Relative & absolute calib. with real data
 (MIPs, electrons matched with TPC tracks, π^0)
- Check how well LED and temperature monitoring perform in real situation
- DCAL extension (∼ doubles EMCAL acceptance) : same procedure
BACKUP’s
Convergence of the APD high voltages:

- High voltage digitization: 0.2 V/bit
- Limit on gain calibration: $\simeq 0.5\%$

(Temperature rise in the hall)
APD gain as a function of high voltage:

- $G(V) = A + Be^{kV}$
EMCAL data:

- Tower size (active volume): \(\simeq 6.0 \times 6.0 \times 24.6 \, cm^3 \)
- Tower size: \(\Delta \varphi \times \Delta \eta = 0.0143 \times 0.0143 \)
- Layers: \(76 \times 1.44 \, mm \) Pb
 \(77 \times 1.76 \, mm \) scintillator
- Number of radiation lengths: \(20.1 \, X_0 \)
Expected Physics performance with EMCAL:

- Corrected spectrum
- Systematic uncertainty (uncorrelated)
- Systematic uncertainty (100% correlated)

\(p+p \) at 5.5 TeV
Average \(R=0.4 \)
3 \(\text{pb}^{-1} \)

- \(\frac{dN}{dp_T} \)
- Statistical Error
- Systematical

\(L=10^{20} \text{ cm}^{-2} \text{s}^{-1}, T=10^7 \text{s} \)
- \(\text{pp collision} \)
- \(\text{Pb+Pb} \)
- \(\text{p+p} \)

- 1/ln(1/x)

- \(R_{\text{PbPb}} = R_{\text{pp}} \)