CCALT: Crystal calorimeter At KLOE2

F. Happacher on behalf of the KLOE2 Collaboration
Laboratori Nazionali di Frascati of INFN, Frascati, Italy

CALOR2010 - Beijing, May 10, 2010
Outlook

- KLOE 2 Upgrade: a crystal calorimeter with timing

- Physics motivations for a small angle calorimeter upgrade

- The **CCALT** crystal calorimeter
 - requirements and first design
 - LYSO crystals + APD study
 - crystal matrix realization
 - test beams results
 - Monte Carlo studies
 - critical issues

- Plans
CCALT

In the new machine layout of DAΦNE the position of the inner quadrupole, QD0, at 30 cm from IP, reduces to 18 d the minimum polar angle of the photons accepted by EMC. This opens the possibility to insert new calorimeters in this volume.

We are designing a crystals calorimeter with timing, CCALT, to improve acceptance for tagging photons coming from prompt η and K_S decays.
Physics improvement

There are some physics items that can benefit from these upgrades. In particular, the last KLOE measurement on $\text{BR}(K_S \rightarrow \gamma \gamma)$ (JHEP 0805:051, 2008).

3σ difference between KLOE and NA48.
KLOE confirms $O(p^4)$ prediction of ChPT.

Major bkg: $K_S \rightarrow 2\pi^0$ with 2 photons lost (beam pipe - QCAL inefficiency)

KLOE EMC covers down to 21 degrees.
With the CCALT extension down to 10 degrees.

Golden channels:
- Working as a veto for $K_S \rightarrow 2\pi^0$
- Increase acceptance for $K_S \rightarrow 3\pi^0$

CCALT can reduce the background by a factor of 3
Requirements for the CCALT calorimeter

- Dense due to the small available space (15 cm long): small X_0 and Moliere radius
- Extremely accurate on timing: 200-300 ps @ 20 MeV
timing needed to reject accidental/machine Touschek bkg (100 kHz per channel)
CCALT == Crystal Calorimeter with Timing
- Highly efficient for 20-300 MeV photons----> High Light Yield
- Small number of channels w photosensors working in 0.52 kGauss B field
- Energy resolution will be poor: no transversal coverage (3-4 cm radius)
- Reasonable position resolution (2-3 mm at 15 cm from IP) to improve
 energy resolution with kinematic fitting (K_s->$3\pi^0$ search)

LYSO crystals look as a perfect match for this work:
- high light yield: 27000 photons/MeV
- emission time of 40-42 ns
- $X_0 = 1.1, R_m = 2$ cm, refraction index = 1.8
- not hygroscopic
- good optical coupling with APD
First Test of crystal with CR (mar 2009)

- Amplifier based on MAR8+
- APD 5x5 mm2
- X 25 amplification
- Bandwidth 1 GHz

- Large signals with CR (40 mV) with APD@410V
- HV from CAEN (CMS-like)
- Noise of few mV
- Readout by Lecroy ADC
 400ns wide gate
- $\sigma(\text{ped}) = 1.5$ counts
- MIP(peak) = 50 Counts
- $\sigma(\text{MeV}) = 0.6$ MeV
Due to high LYSO cost, we assembled a cocktail of crystals:

- an inner core with 10 LYSO+APD
- an outer leakage-recovery section using PbWO+bialkali PM

Crystal dimensions:
- 3 SG (15x15x150) mm³
- 1 Scionix (15x15x130) mm³
- 1 SG (20x20x150) mm³
- 2 Scionix (20x20x130) mm³
- 3 LFS (20x20x130) mm³
From CAD to realization

- Aluminum shell
- APD+Pre box
- FEE cards
- Outer matrix PMs
- APD mask
- Different length crystals and boxes
- Front face free for LED pulsing

All parts realized by LNF mechanical shop
BTF @LNF provides 100-500 MeV electrons to experimental area with selectable multiplicity at few tens of Hz (i.e. the Linac repetition rate)

To select clean electrons we required OFFLINE the firing of two external finger scintillators (1x0.5x5) cm³ which defined also the beam spot on the calorimeter.

We had a small optical leakage between the inner (LYSO) and outer (PbWO) matrix. 0.2% of the light was crossing the Tyvek and \(\frac{A(\text{PM})}{A(\text{Apd})} = 10^3 \)

This problem is now fixed wrapping with .2 mm layer pvc and ready for a new test beam!
Timing measurement at BTF

Each spill of 10 ns from LINAC consists of bunches separated 200-300 ps

To eliminate the jitter of the start provided by the Linac Gate, we plot the difference of the calorimeter and finger scintillator times: $\Delta T = T_{\text{clu}} - T_{\text{sc}}$

Jitter of the scintillator: $\sigma(T_{\text{sc}}(1) - T_{\text{sc}}(2))/\sqrt{2}$

KLOE TDC - 53 ps/Count

$\sigma_{\text{scint}} = 245$ ps @ 500 MeV
$= 265$ ps @ 100 MeV

- $T_{\text{clu}} = \sum(T_i - T_0 i)Q_i/Q_{\text{tot}}$
- Assuming all channels calibrated with 53 ps/Count!
- $\sigma(T_{\text{clu}}) = 250 (49)$ ps at 500 MeV, 291 (120) ps at 100 MeV without (with) correction for trigger jitter
Position resolution @ 500 MeV

- Position reconstruction in prototype by means of energy weighted mean of the fired crystals

\[
X_{\text{pos}} = \frac{\sum (X_i Q_i)}{Q_{\text{tot}}}
\]
\[
Y_{\text{pos}} = \frac{\sum (Y_i Q_i)}{Q_{\text{tot}}}
\]

- we acquire also the beam position coordinates with a scintillating fibers hodoscope (3mm pitch)

Resolution of \(\sim 2.8 \) mm compared to \(\sim 4.3 \) mm due to the pitch

\(\sigma_y = 2.7 \) mm

\(\sigma_x = 2.9 \) mm
TB09: Fit to the ADC spectra

\[\eta = \text{asym}, \quad \sigma = \text{FWHM/2.35} \]

\[\frac{df}{dE} = \frac{\eta}{\sqrt{2\pi} \cdot \sigma \cdot s_0} \cdot e^{-\frac{1}{2} \left[\ln \left(1 - \frac{\eta}{\sigma_E} (E - E_{\text{peak}}) \right) \right]^2} \]

\(<M> = 100 \text{ Counts}; \quad 1 \text{ MIP} = 16 \text{ MeV} \)

Gain vs HV from 300 to 500 (@ 410),

Gamp=25, adc count = .25 pC

\[Q(1e) = 1e \cdot G_{\text{apd}} \cdot G_{\text{amp}} = 1.6 \times 10^{-19} \cdot 3 \times 10^2 \cdot 25 = 1.2 \text{ fC} \]

1 MeV = 800 fC ---> 1 MeV = 400-700 pe
TB09: Energy resolution dependence

Disappointing results on energy resolution (12% @ 100 MeV)

1. Constant term dominated by leakage. (MC 4-5%)
2. k/E term between ~ 1.1%/E(GeV).
 Electronic Noise Charge/channel ENC = 1 MeV.
 ENC(inner matrix)=4.2-4.8 MeV -> 0.48%/E(GeV)
3. Stochastic term between 1-1.2% vs expected from p.e.
 stat. < 0.2%
MC simulation of matrix: leakage term

- Detailed Geant-4 simulation
- All dimensions respected (crystals, wrapping, APD’s)
- Beam spot dimensions (5x5 mm2, 10x10 mm2)
- Optical transportation of photons + time emission spectra

Considering only the inner core of 1.5 Moliere radii

<table>
<thead>
<tr>
<th>E_{beam} (MeV)</th>
<th>E_{peak}</th>
<th>σ</th>
<th>σ/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.9373</td>
<td>0.04594</td>
<td>4.9%</td>
</tr>
<tr>
<td>200</td>
<td>0.9206</td>
<td>0.04212</td>
<td>4.6%</td>
</tr>
<tr>
<td>300</td>
<td>0.9112</td>
<td>0.03856</td>
<td>4.2%</td>
</tr>
<tr>
<td>400</td>
<td>0.9065</td>
<td>0.03728</td>
<td>4.1%</td>
</tr>
<tr>
<td>495</td>
<td>0.9019</td>
<td>0.03502</td>
<td>3.9%</td>
</tr>
</tbody>
</table>

Geant can also be used to check whether any possible shower development Fluctuation convoluted with the Light Response Uniformity of crystals can play a role.
LYSO longitudinal response

Longitudinal response of crystals tested by using a Na22 source and standard bialkali PM. Cross check of different crystal faces.

Maximum variation below 5\% (LY: 240 pe - 1st peak \rightarrow 470 pe/MeV)

\[\sigma/p = 6.5\%\]

\begin{tabular}{|c|c|}
\hline
Na22 1st peak & 0.511 MeV \\
Na22 2nd peak & 1.275 MeV \\
\hline
\end{tabular}
Convolution of LRU and shower shape

Due to the large CPU time needed to simulate the whole matrix we have simplified the geometry to understand the effect of LRU convolution and used two techniques:

LYSO Cylinder of $R=10$ cm ($5 R_m$) $L=50$ cm
1) Full simulation of optical transportation with a LRU dependence on GEANT code
2) Collecting the hits in z-slices of 0.5 cm weighted by LRU dependence on (z)

- Wrapping of mylar (100μm)
- $LO=1000$ photons/MeV w.r.t. 27000/MeV in real life (CPU limit)
- $\lambda_a=100$ cm

- EffiCollection == Tunable
Resolution of 5 RM CILINDER @ 500 MeV

We monitor the statistical fluctuations at every stage of the shower evolution:

• Energy deposited (leakage)
• Number of secondaries e^+e^-
• Photoelectrons

<table>
<thead>
<tr>
<th></th>
<th>Sigma E/Edep</th>
<th>0.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SigmaNsec/Nsec</td>
<td>0.5%</td>
</tr>
<tr>
<td></td>
<td>SigmaNhit/Nhit</td>
<td>0.8% vs 0.2 (p.e.)</td>
</tr>
</tbody>
</table>

Similar results obtained with the simplified simulation, with delta=5%, max effect < 2%
✓ **Leakage contribution small**
 (0.8 to 0.2 % with Rm=5, l=15, l=50 cm)
 ~1-1.2% @ Rm=3.5 with L=15.

✓ **LY is not the limiting factor.**
 Even with a smaller than expected LY we observe other source of intrinsic signal fluctuations

✓ **Not negligible effect -> shower shape convoluted with longitudinal response.**
 We see effects at the level of 1.6 % @ 20 MeV, 0.8 % @ 500 MeV
 Work is in progress to quantify the effect in a sistematic way with the simplified simulation
1) Minimization of noise for single channel
 tried increasing HV w/o reaching Geiger
 mode. The HV increase on larger crystals
 improves gain without introducing noise
2) High noise channels are the ones where
 the gain could not be raised enough to
 increase the mip value (photoelectron
 statistics): bad optical coupling

200-300 KeV small
500-600 KeV large

1) APD 5x5 mm2 used
2) Crystals of two transversal area
 Small 15x15 mm2
 Large 20x20 mm2
 Rcoll = 1/9, 1/16
We find an optimized Vbias trade-off looking for
(1) a low signal spread due to gain variation and
(2) a reasonably low ENC
For a Saint Gobain crystal and an APD at 450 V
- $\text{ENC} = \frac{\text{Sigma(ped)}}{\text{Mip(Peak)}} \times \text{Mip(MEV)} = 90 \text{ KeV},$
- $\frac{dG}{G} \leq 0.7\%$
TestBeam critical issues and plans

The energy resolution terms at BTF are not too clear:
- Leakage 5%, Noise 4%, Npe=0.3%, shower= 1% @ 100 MeV
 Why do we get 12%? Additional contribution?

(1) We started questioning the beam energy spread
 - experts replied: $\Delta p/p$ 1 % (2 %) for e-/e+ @500 MeV
 - no measurements below 300 MeV
 - only existing measurement w AMS-02 silicon tracker
 indicated $\Delta p/p \sim 15% @ 50$ MeV

(2) We were limited in precision by a
 - not working OUTER MATRIX
 now operational

(3) Looking for a more precise test beam
New TB with an improved matrix

A lot of improvements:
1) Outer matrix enlarged and optically separated
2) Inner matrix longitudinal dimension of 15 cm with new SICCAS crystals
 \[20 \times 20 \times 150 \text{ mm}^3 \rightarrow 10 \times 10 \text{ mm}^2\ APD\]
3) Overall matrix coverage 3 Molière radii.

New LYSO crystals and 10x10 mm2 APD’s ordered

1 inch PMT

~3 Molière ~radii

PMT: 0.6 cm
New matrix layout
energy resolution expectations @100MeV with a 3 Moliere radii matrix

- Negligible photostatistic term
- Disuniformity of crystals: shower development fluctuations -> MC studies show small effects O(1%);
- Electronic noise -> is 4 MeV 4%@100 MeV for the inner matrix -> aim to Σ 90KeV/$\sqrt{N} = 0.45$ MeV <1%;
- Intrinsic resolution (Leakage, back-splashes) < 2%

Cylinder of 5 RM @100 MeV

$\sigma \approx 0.8$ MeV
CCALT conclusions & plans

- First prototype has been built and tested with CR and e-beam
- High Light Yield observed
- Energy resolution not well understood
- Timing resolution 250-300 ps from 100 to 500 MeV. Can improve using larger area APD’s (√2)

The prototype already satisfies the Kloe2 detector requirements. We don’t know yet if O(100-200 KHz) rates are an issue

PLANS for 2010:

- new test beam at MAINZ (tagged photons - 50 ps jitter Δp/p<1%) to test energy resolution and high rates behaviour of the detector
- make electronics prototypes ---> final for KLOE2
- COMPLETE engineering for the insertion between IP and QD0