

Mini-workshop on the frontier of LHC Chongqing, China, 05/19/2019

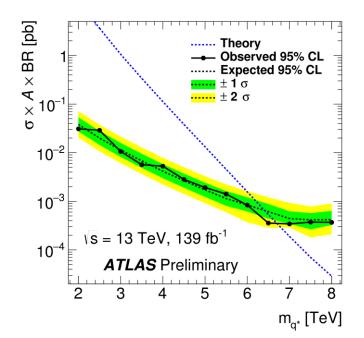
Overview

- ATLAS & CMS have kept probing new physics in Run2. However, no discovery yet!
- Excellent data taking efficiency(close to 100% for ATLAS); ~140fb⁻¹ data is available for physics in both experiments
- Nice running of the LHC, and more challenge with higher average interactions per BC due to increasing instant luminosity

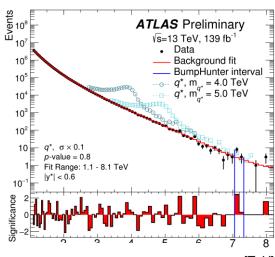
ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits Status: March 2019

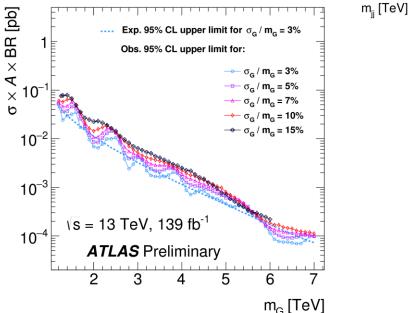
ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$


0.	atus. March 2015					\mathcal{J}	3.2 – 139) tb	$\sqrt{s} = 8$, 13 lev
	Model	ℓ, γ	Jets†	E _T miss	∫£ dt[fb			Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \to \gamma\gamma$ Bulk RS $G_{KK} \to WW/ZZ$ Bulk RS $G_{KK} \to WW/ZZ$ – Bulk RS $g_{KK} \to tt$ 2UED/RPP		$\begin{array}{c} 1-4\mathrm{j}\\ -\\ 2\mathrm{j}\\ \geq 2\mathrm{j}\\ \geq 3\mathrm{j}\\ -\\ \mathrm{nel}\\ 2\mathrm{J}\\ \geq 1\mathrm{b}, \geq 1\mathrm{J}\\ \geq 2\mathrm{b}, \geq 3\\ \end{array}$		36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	MD 7.7 TeV Ms 8.6 TeV Mth 8.9 TeV Mth 8.2 TeV Mth 9.55 TeV GKK mass 4.1 TeV GKK mass 2.3 TeV GKK mass 2.8 TeV SKK mass 3.8 TeV KK mass 1.8 TeV	$\begin{array}{l} n=2 \\ n=3 \text{ HLZ NLO} \\ n=6 \\ n=6, M_D=3 \text{ TeV, rot BH} \\ n=6, M_D=3 \text{ TeV, rot BH} \\ k/\overline{M}_{Pl}=0.1 \\ k/\overline{M}_{Pl}=1.0 \\ k/\overline{M}_{Pl}=1.0 \\ \Gamma/m=15\% \\ \end{array}$ Tier (1,1), $\mathcal{B}(A^{(1,1)} \to tt)=1$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{Leptophobic} Z' \to tt \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{SSM} W' \to \tau\nu \\ \operatorname{HVT} V' \to WV \to qqqq \operatorname{mc} \\ \operatorname{HVT} V' \to WH/ZH \operatorname{model} \operatorname{I} \\ \operatorname{LRSM} W'_R' \to tb \\ \end{array}$	$\begin{array}{ccc} & 1 & e, \mu \\ & & 1 & \tau \\ \text{odel B} & 0 & e, \mu \end{array}$		- - - //2j Yes Yes Yes -	139 36.1 36.1 36.1 79.8 36.1 139 36.1 36.1	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV W' mass 5.6 TeV W' mass 3.7 TeV V' mass 4.4 TeV V' mass 2.93 TeV W' mass 3.25 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$	1903.06248 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2018-017 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473
C	Cl qqqq Cl ll qq Cl tttt	_ 2 e,μ ≥1 e,μ	2 j - ≥1 b, ≥1	– – j Yes	37.0 36.1 36.1	Λ Λ Λ 2.57 TeV	21.8 TeV η_{LL}^- 40.0 TeV $\eta_{LL}^ C_{4t} =4\pi$	1703.09127 1707.02424 1811.02305
DM	Axial-vector mediator (Dirac Colored scalar mediator (Dir $VV\chi\chi$ EFT (Dirac DM) Scalar reson. $\phi \to t\chi$ (Dirac	ac DM) 0 e, μ 0 e, μ	1 - 4j 1 - 4j $1 J, \le 1j$ 1 b, 0-1 J		36.1 36.1 3.2 36.1	$\begin{array}{ccc} m_{med} & & 1.55 \text{TeV} \\ m_{med} & & 1.67 \text{TeV} \\ M_{\bullet} & & 700 \text{GeV} \\ m_{\phi} & & 3.4 \text{TeV} \\ \end{array}$	$\begin{split} g_{\text{q}} = & 0.25, g_{\chi} = 1.0, m(\chi) = 1 \text{GeV} \\ g = & 1.0, m(\chi) = 1 \text{GeV} \\ m(\chi) < & 150 \text{GeV} \\ y = & 0.4, \lambda = 0.2, m(\chi) = 10 \text{GeV} \end{split}$	1711.03301 1711.03301 1608.02372 1812.09743
70	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass 1.4 TeV LQ mass 1.56 TeV LQ ^a ₃ mass 1.03 TeV LQ ^a ₃ mass 970 GeV	$\begin{split} \beta &= 1 \\ \beta &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^o \to b\tau) &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^d \to t\tau) &= 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy	VLQ $TT \rightarrow Ht/Zt/Wb + X$ VLQ $BB \rightarrow Wt/Zb + X$ VLQ $T_{5/3}T_{5/3}T_{5/3} \rightarrow Wt + Y$ VLQ $Y \rightarrow Wb + X$ VLQ $QQ \rightarrow WqWq$	multi-chanr - X 2(SS)/≥3 e 1 e, μ	nel	lj Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1.37 TeV B mass 1.34 TeV T _{5/3} mass 1.64 TeV Y mass 1.85 TeV B mass 1.21 TeV Q mass 690 GeV	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{2/3} \rightarrow Wt) = 1, \ c(T_{5/3} Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1$ $\kappa_B = 0.5$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited	Excited quark $q^* o qg$ Excited quark $q^* o q\gamma$ Excited quark $b^* o bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j - -	- - - -	139 36.7 36.1 20.3 20.3	q* mass 6.7 TeV q* mass 5.3 TeV b* mass 2.6 TeV ℓ* mass 3.0 TeV ν* mass 1.6 TeV	only u^* and d^* , $\Lambda=m(q^*)$ only u^* and d^* , $\Lambda=m(q^*)$ $\Lambda=3.0{\rm TeV}$ $\Lambda=1.6{\rm TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \to \ell\ell$ Higgs triplet $H^{\pm\pm} \to \ell\tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	1 e, μ 2 μ 2,3,4 e, μ (\$\frac{1}{2}\$ (\$\frac{1}{2}\$ (\$\frac{1}{2}\$) = \frac{1}{2}\$ (\$\frac{1}{2}\$) = \frac{1}{3}\$ TeV	≥ 2 j 2 j SS) - - - - - - -	Yes	79.8 36.1 36.1 20.3 36.1 7.0	N⁰ mass 560 GeV N _R mass 3.2 TeV H±± mass 870 GeV H±± mass 400 GeV multi-charged particle mass 1.22 TeV monopole mass 1.34 TeV	$\begin{split} m(W_R) &= 4.1 \text{ TeV, } g_L = g_R \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{\pm\pm} \to \ell \tau) &= 1 \\ \text{DY production, } q &= 5e \\ \text{DY production, } g &= 1g_D, \text{ spin } 1/2 \end{split}$	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1509.08059
	vs = o lev	partial data	full c	data		10^{-1} 1 1	Mass scale [TeV]	

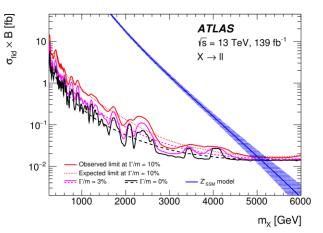
 $^{^{*}}$ Only a selection of the available mass limits on new states or phenomena is shown.

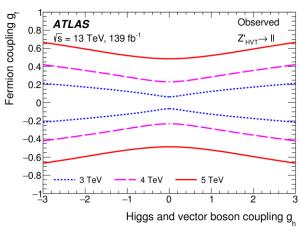

 $[\]dagger$ Small-radius (large-radius) jets are denoted by the letter j (J).


Dijet Resonances

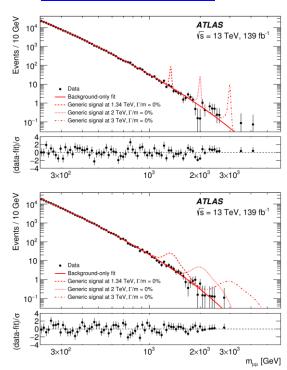
- Search for high mass resonance decaying into a pair of jets
- QCD predicts a smoothly-falling background, which is fit to data
- No excess is observed. Excited quarks(q*) is considered for limit setting
 - Exclude q* mass < 6.7 TeV @95% CL

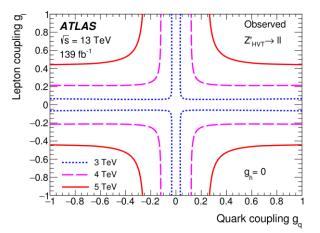
ATLAS-CONT-2019-007

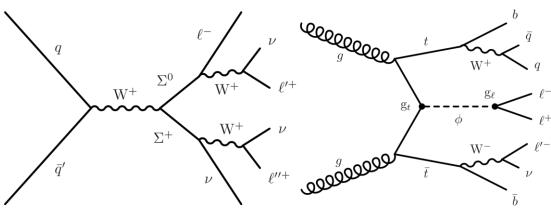



Di-lepton Resonances

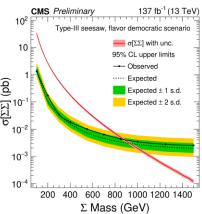
- Search for high mass resonance decaying into a pair of leptons(ee, μμ)
- Background is fitted to data using functional form
- No significant deviation from SM is observed. Exclude mass for SSM

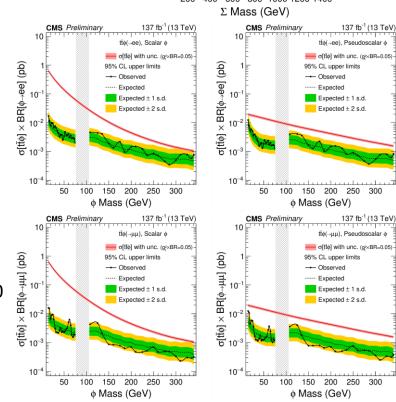

ee: 4.9 TeV


- μμ: 4.5 TeV

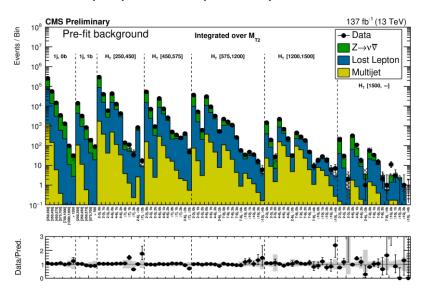


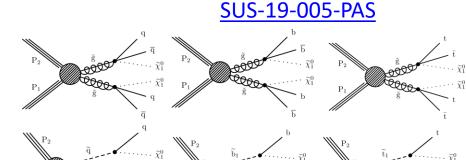
arxiv: 1903.06248

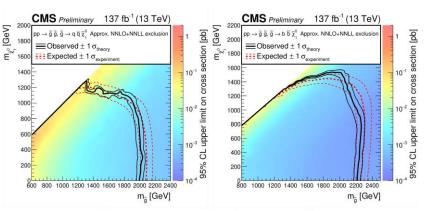


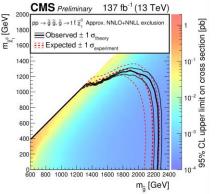

Multi-lepton final states

EXO-19-002-pas

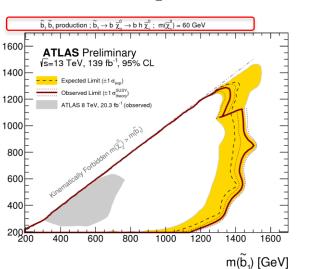


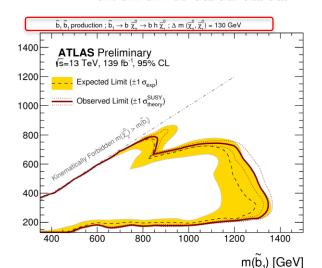

- Targeted models: type-III seesaw heavy fermions and light scalar or pseudoscalar extension to the SM
- At least 3 leptons in the final state
 - Non-resonant excess for heavy fermions
 - Resonant dilepton mass for light scalar(pseudoscalar)
- No significant excess on top of the SM:
 - Exclude heavy fermions of type-III seesaw below 880
 GeV
 - First limits on light scalar(pseudoscalar), excluding mass range of 15-75 GeV and 108-340 GeV

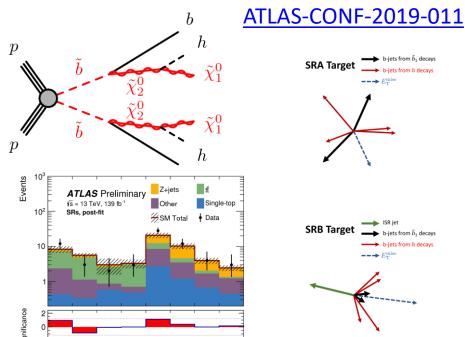



Search for multiple jets & E_Tmiss

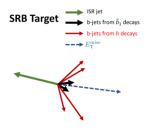
- Searches for gluinos and squarks with final states containing several jets and significant transverse momentum imbalance
- Two related searches:
 - Inclusive search using # of jets, b tagged jets, M_{T2},
 ...
 - Search for disappearing tracks due to long-lived charged particles
- No excess event yield is observed
 - Exclude mass up to 2.25, 1.77, 1.26 and 1.225 TeV for gluinos, light-flavor squarks, bottom squarks and top squarks, respectively

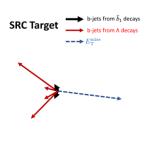

generation SUSY

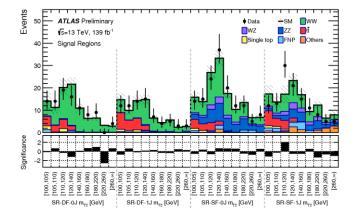

 $n(\widetilde{\chi}_2^0)$ [GeV]

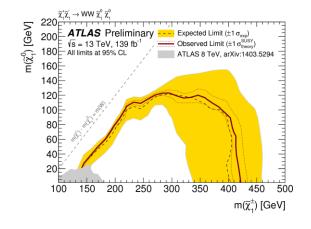

- Search for pair production of sbottom quark involving Higgs bosons
- Final states contain many quarks(up to 6 bjets), E_Tmiss, and zero charged leptons
- Categorize 3 signal regions to target different mass scenarios
- No excess compared to the SM

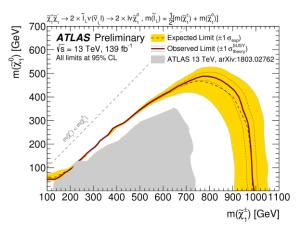
 $n(\widetilde{\chi}_{s}^{0})$ [GeV]

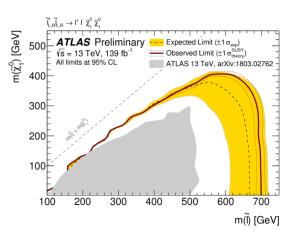

- For $m(\tilde{\chi}_1^0)$ = 60 GeV, exclude sbottom up to 1.45 TeV and m($\tilde{\chi}_2^0$) up to 1.1 TeV
- For $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$ = 130 GeV, exclude sbottom up to 1.2 TeV for $m(\tilde{\chi}_2^0)$ up to 750 GeV



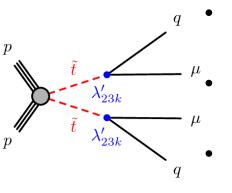


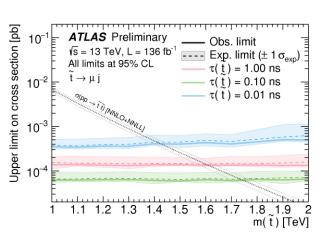


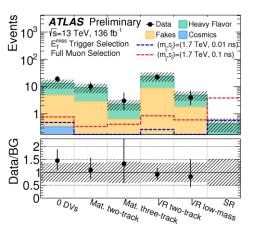

Search for EW processes

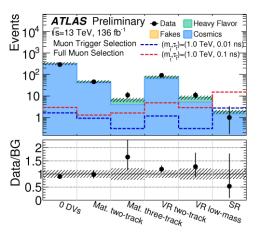

ATLAS-CONF-2019-008

- Search for electroweak production of charginos and sleptons decaying into final states with two leptons and E_T^{miss}
- stranverse mass m_{T2} is used for discrimination
- No excess is observed
 - Exclude mass < 420, 1000, 700 GeV when $m(\tilde{\chi}_1^0)$ = 0 GeV for 3 cases, respectively

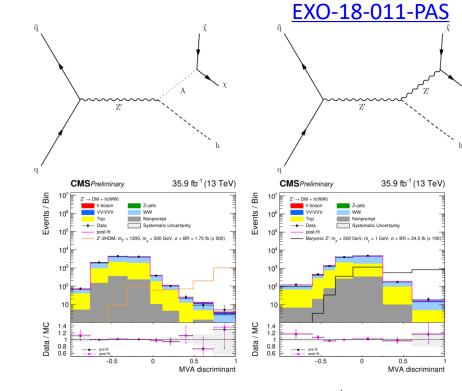


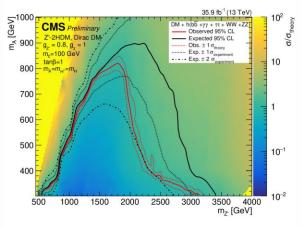

Search for long-lived particles

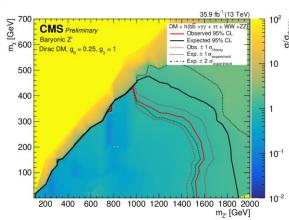

ATLAS-CONF-2019-006

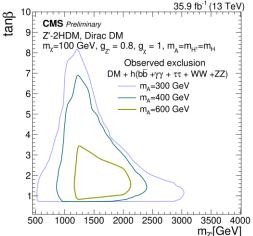


- Search for long-lived particles in RPV decaying into $\geq 1 \mu$ + hadrons
- Observed events yields are compatible with the SM expectation
- Set exclusion limits for pair-production of long-lived top squarks using a small RPV coupling
 - Exclude mass<1.7(1.3) TeV for lifetime of 0.1(0.01-30) ns

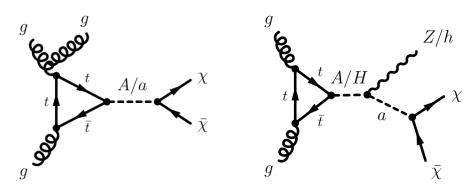


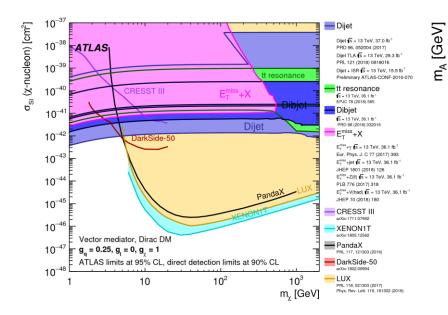


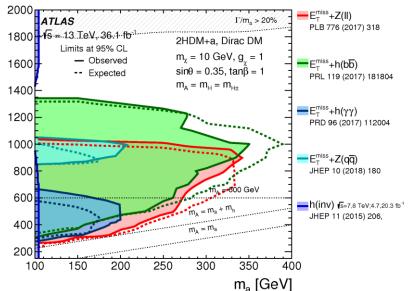



Dark matter associated with Higgs boson

- Search for dark matter particles using Higgs+large E_T^{miss}
- 5 Higgs decay channels are covered
 - H->bb,ττ,γγ,WW,ZZ
- No excess. Combine 5 channels to set limits for 2 benchmark simplified models
 - Z'-2HDM; Baryonic Z'






Mediator-based dark matter

- Overview of ATLAS searches for mediatorbased DM
- Results of a variety of final states are interpreted in terms of different sets of models, complementary to direct searches and sensitive to low DM masses
 - Spin-1 and spin-0 single-mediator DM simplified models
 - Extended Higgs sector plus an additional vector or pseudo-scalar mediator

arxiv: 1903.01400

BSM Higgs (1)

±1σ hMSSM

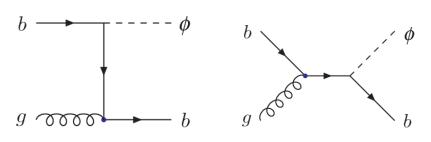
±2σ hMSSM

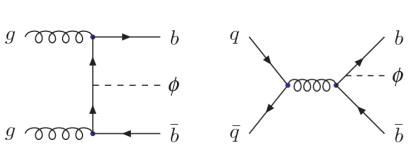
m, [GeV]

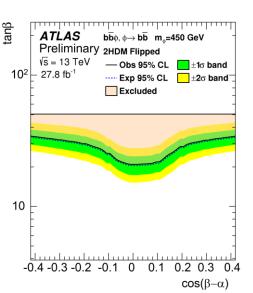
Search for heavy neutral Higgs bosons produced in association with one or two b-quarks and decaying to b-quark pairs

No excess is observed. Interpret results with 2HDM and MSSM

10

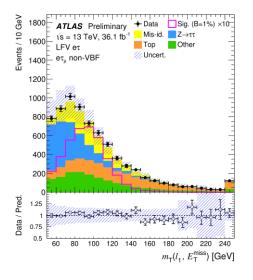

10²

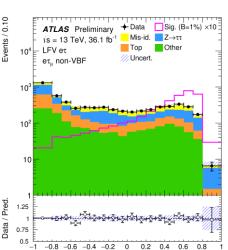

Exclude mass in 450 -1400 GeV


Obs hMSSN ATLAS Preliminary = 13 TeV, 27.8 fb⁻¹ Multi-b-jet background ····· Exp hMSSM 80 - \s=13 TeV, 27.8 fb After fit (S+B) MSSM scenarios ···· Prefit background 70 bb̄, 0→bb̄ Exp mmod \cdots $b\overline{b}\phi$, $\phi \rightarrow b\overline{b}$ at 20 pb Exp m mod bbb 3-jet m = 600 GeV 60 50 40 30

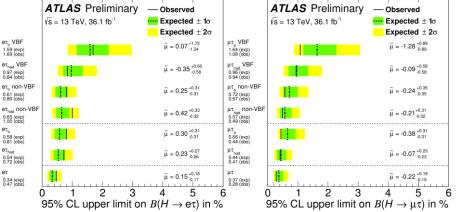
m', [GeV]

ATLAS-CONF-2019-010

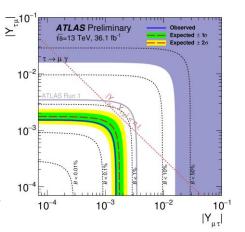



BSM Higgs (2): LFV

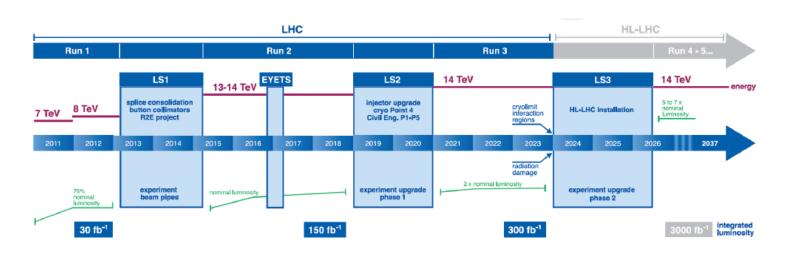
- Search for Lepton Flavor Violation in Higgs boson decays, H->eτ and H->μτ
- BDT is explored for better discrimination
- No signal is observed. Set upper limits on BR of the 2 channels


- H->eτ: 0.47%


- H->μτ: 0.28%



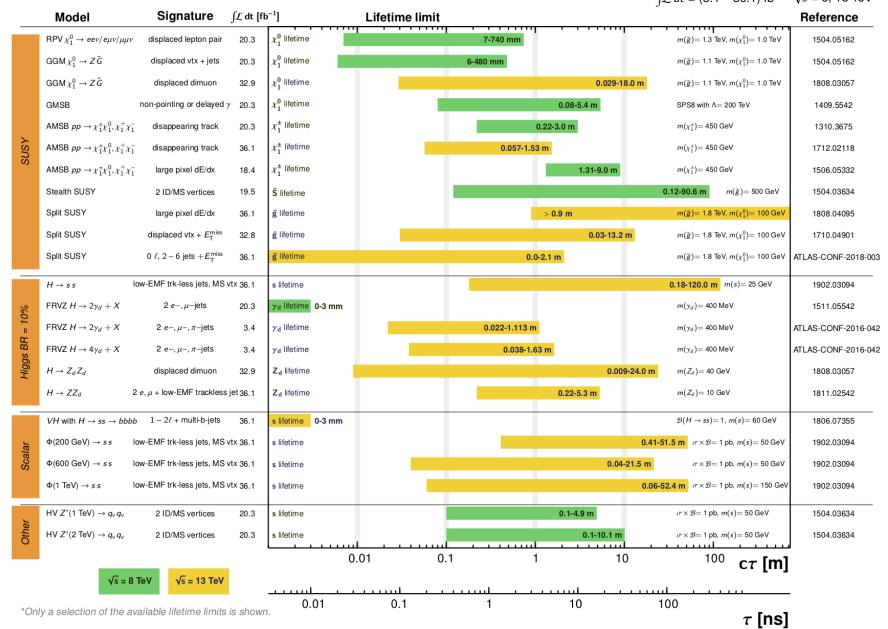
ATLAS-CONF-2019-013



BDT Score

Summary

- Smooth running of the LHC and detectors
 - The peak luminosity(2x10³⁴cm⁻²s⁻¹) is twice the designed
- Fruitful results of new physics searches in multiple aspects and tested a variety of BSM theories.
 - Some analyses have utilized the full Run2 datasets. More will do
- LHC will resume running at 14 TeV in Run3. Look forward to more exciting physics!



backup

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

Status: March 2019

ATLAS Preliminary $\int \mathcal{L} dt = (3.4 - 36.1) \text{ fb}^{-1} \sqrt{s} = 8, 13 \text{ TeV}$

