

晁 伟 北京师范大学物理学系 2019.05.18@重庆大学_23rd LHC mini workshop

	Main points of DDs in gauge portal
1	Velocity suppressed cross section is reachable by the current DD technique!
2	Effects of twist-2 operators are crucial for direct detections in some parameter space.
3	Spin-dependent cross section may play important role in rolling out WIMPs
4	DD cross section of scalar-type electroweak multiplet DM are first analytically calculated by us!

W. Chao, G.J. Ding, X.G. He and M.J. Ramsey-Musolf, 1812.07829 W. Chao, 1904.09785

Evidence of DM

What is dark matter

We do not exactly know!

Neutral, non-baryonic, weakly interacting particle!

4

Ways of probing DM

DM Direct detections

Detecting technologies

Where to go for Direct detections

CONHERENT

GOAL:Measure N² dependence of CEvNS process

Beam ON coincidence window	547 counts
Anticoincidence window	405 counts
Beam-on bg: prompt beam neutrons	7.0 ± 1.7
Beam-on bg: NINs (neglected)	4.0 ± 1.3
Signal counts, single-bin counting	136 ± 31
Signal counts, 2D likelihood fit	134 ± 22
Predicted SM signal counts	173 ± 48

Confirm CEvNS at 6.7 sigma

Be serious about the DD

DDs in gauge portal

Lagrangian	Scenario	DD cross section
$\mathscr{L} \sim \frac{1}{2} g_V \bar{\chi} \gamma^\mu \gamma^5 V_\mu \chi - \frac{1}{2} m_\chi \bar{\chi} \chi + \zeta g_V \bar{q} \gamma^\mu q V_\mu$	Α	SI but v suppressed
$\mathscr{L} \sim \frac{1}{2} g_V \bar{\chi} \gamma^\mu \gamma^5 V_\mu \chi - \frac{1}{2} m_\chi \bar{\chi} \chi + \zeta g_V \bar{q} \gamma^\mu \gamma^5 q V_\mu$	В	SD

DD cross sections

Scenario	DD cross section at leading order
Α	$\sigma_{\rm SI}^{\rm LO} \approx \frac{36\pi\zeta^2 \alpha_V^2 \mu^2 v^2}{m_V^4}$
B	$\sigma_{\rm SD}^{\rm LO} = 64\pi\zeta^2 \alpha_V^2 \frac{\mu^2}{m_V^4} (\sum_q \Delta_q^N)^2 J_N (J_N + 1)$

At the next-to-leading order:

Constraints of the relic abudance

Scalar-type EW multiplet DM in W-portal

Why interesting? Strumia, et al., NPB 2006							
Quantu	ım num	bers	DM can	DM mass	$m_{\rm DM^{\pm}} - m_{\rm DM}$	Events at LHC	$\sigma_{\rm SI}$ in
$SU(2)_L$	$\mathrm{U}(1)_Y$	Spin	decay into	in TeV	in MeV	$\int \mathcal{L} dt = 100/\text{fb}$	$10^{-45}{\rm cm}^2$
2	1/2	0	EL	0.54 ± 0.01	350	$320 \div 510$	0.2
2	1/2	1/2	EH	1.1 ± 0.03	341	$160 \div 330$	0.2
3	0	0	HH^*	2.0 ± 0.05	166	$0.2 \div 1.0$	1.3
3	0	1/2	LH	2.4 ± 0.06	166	$0.8 \div 4.0$	1.3
3	1	0	HH, LL	1.6 ± 0.04	540	$3.0 \div 10$	1.7
3	1	1/2	LH	1.8 ± 0.05	525	$27 \div 90$	1.7
4	1/2	0	HHH^*	2.4 ± 0.06	353	$0.10 \div 0.6$	1.6
4	1/2	1/2	(LHH^*)	2.4 ± 0.06	347	$5.3 \div 25$	1.6
4	3/2	0	HHH	2.9 ± 0.07	729	$0.01 \div 0.10$	7.5
4	3/2	1/2	(LHH)	2.6 ± 0.07	712	$1.7 \div 9.5$	7.5
5	0	0	(HHH^*H^*)	5.0 ± 0.1	166	$\ll 1$	12
5	0	1/2		4.4 ± 0.1	166	$\ll 1$	12
7	0	0		8.5 ± 0.2	166	$\ll 1$	46

Natural DM candidate without requiring any other symmetry

Higgs vacuum stability

Avoiding constraints of DD as they are superheavy

Scalar-type EW multiplet DM in W-portal

How about the direct detection cross section

Fermion	$\mathscr{L}_{\text{eff}}^{W} = (n^{2} - (1 \pm 2Y)^{2}) \frac{\pi \alpha_{2}^{2}}{16M_{W}} \sum_{q} \left[(\frac{1}{M_{W}^{2}} + \frac{1}{m_{h}^{2}}) [\bar{\mathcal{X}}\mathcal{X}] m_{q}[\bar{q}q] - \frac{2}{3M} [\bar{\mathcal{X}}\gamma_{\mu}\gamma_{5}\mathcal{X}] [\bar{q}\gamma_{\mu}\gamma_{5}q] \right]$
Scalar	No effective lagrangian! only some arguments.

Questions:

No twist-2 effective operators in the Lagrangian?

No effective gluon-DM operators in the Lagrangian?

What is the situation when Higgs-portal interactions are included in SDM?

Scalar-type EW multiplet DM in W-portal

$$\begin{aligned} \mathbf{Results:} \\ \mathscr{L} &= \frac{(n^2 - 1)\alpha^2}{4} \left[\zeta_1 \phi^2 \bar{q} m_q q + \zeta_2 \phi i \partial^\mu i \partial^\nu \phi O^q_{\mu\nu} \right] \\ \zeta_1 &= m^2 (2C_0 + C_1 - 2Z_{11}) + 8Z_{00} - Y_2 - 4Z_{00} \\ \zeta_2 &= -8m^2 Z_{11} - 32Z_{00} - 8Y_2 \end{aligned}$$

C,Z,Y, are integration functions
Gluon results are on the way
RGE running should be included in DD
When Higgs portal interactions are included, only twist-2 contribution is unique.

Numerical results

Numerical results

21

Conclusions

	Main points of DDs in gauge portal
1	Velocity suppressed cross section is reachable by the current DD technique!
2	Effects of twist-two operators are crucial for light DM.
3	Spin-dependent cross section may play important role in rolling out WIMPs
4	DD cross section of scalar-type electroweak multiplet DM are first analytically calculated by us!

Outlooking

Recent Progress-CDEX

25

Recent Progress-DarkSide

Recent Progress-PandaX

Recent Progress-XENON1T XENON1T Science Data 300 All Exposure Corrections Science run time (days) Rn220 Kr83m AmBe Calibration NG Calibration LED 2016-12 2017-04 2017-06 2017-08 2017-10 2017-12 2017-02 2018-02 Date Phys. Rev. Lett. 119, 181301 (2017) **XENON1T Exposure time Time:** From 2016 10⁻⁴³ Total: 3500 kg Normalized Target: 2000 kg **Updated exclusion** WIMP-nucleon σ_{SI} [cm²] 10⁻⁴⁴ Fiducial: >1000 kg limit Sensitivity: ~10⁻⁴⁷ cm⁻² 10⁻⁴⁵ WIMP mass [GeV/c²] **XENONnT** XENONIT (1 txyr, this work) **Time:** From 2019 10^{-10} Total: 7500 kg Target: 5900 kg 10-47 Fiducial: 4000 kg 10^{1} 10^{2} 10^{3} Sensitivity: ~10⁻⁴⁸ cm⁻² WIMP mass $[GeV/c^2]$

粒子物理天空中的乌云

历史总是有些相似!

具有确凿试验证据的超出标准模型 的新物理

Numerical results-1: vector interactions with X131

Numerical results-3: scalar interactions with X131

