Some materials for discussion on Higgs

Mingshui Chen (IHEP) LHC mini-workshop, Chongqing Univ. 2019.05.18-20

Notes

- Selected Run 2 results (still mostly based on partial dataset)
 - Differential XS, STXS, Width, Couplings
- Next Challenges for Run 3 and beyond
- Projection for HL-LHC

Where do we stand?

Run 2 Higgs Milestones -> 3rd generation

Yukawas at LHC		tau	b	top
	Exp. Sig.	5.4 σ	5.5 σ	5.1 <i>σ</i>
ATLAS	Obs. Sig.	6.4 σ	5.4 σ	6.3 σ
	mu	1.09 ± 0.35	1.01 ± 0.20	1.34 \pm 0.21 *
	Exp. Sig.	5.9 σ	5.6 σ	4.2 σ
CMS	Obs. Sig.	5.9 σ	5.5 σ	5.2 σ
	mu	1.09 \pm 0.27 *	1.04±0.20	1.26 \pm 0.26 **

* 13 TeV only derived from cross section measurements

** Lower uncertainty (upper uncertainty 31)

Recently, observation of ttH in single channel H-> $\gamma\gamma$

- Still room for improvement
 - Larger statistics will allow to focus on more specific regions of phase space
 - Make ancillary measurements for a better control of the backgrounds

• More observables, double differential XS in pipeline

Simplified Template Cross Sections

- To measure as precisely as possible individual production processes (ggF, VBF, VH and ttH) in different regions of phase space
 - Integrate over the decay products of the Higgs.
 - Define fiducial cuts at truth particle level on the Higgs production (eta, pT, number and kinematics of the additional jets or leptons in the events).
 - Define (as much as possible) reconstruction level cuts corresponding to the fiducial volume of interest (as much as possible).
 - Fit the defined partially fiducial defined cross sections in all regions simultaneously.
- Advantage possibility to combine decay channels and use multivariate techniques in specific channels. Compromise as both aspects increase the extrapolation.

Simplified Template Cross Sections

22 signal regions aiming at stage 1.1 STXS

Events

10⁴

10³

10²

10

ggH-0j/pT[0,10]

ggH-0j/pT[10-200] ggH-1j/pT[0-60] ggH-1j/pT[60-120] ggH-2j/pT[0-60]

ggH-1j/pT[120-200]

Events / 4GeV

350

300

250

200

150

100

50

0

80

STXS Stage 1 – VH

VH(bb)

ATLAS 1903.04618

Analysis based on three main channels targeting WH and ZH production, based on the W or Z decays:

- 0 « leptons » (for neutrino decays of the Z)
- 1-lepton (W decaying to an electron or a muon)
- 2-leptons (Z decaying to electrons or muons)

Main background is V+jets (in particular b-jets), relies on a good simulation, but is controlled in the mass side-bands!

9

STXS Stage 1 – VBF

qqH(ττ)

Main background Z-jets estimated using embedding technique. Other backgrounds estimated using MC and fake factors.

Classification using a Multi-Class NN technique with 8 categories (ggH, qqH,Z-jets, diboson (dilepton), single top, tt, qcd, and misc other.

Interpretation based on STXS

ATLAS 1903.04618

Interpretation: interpret ATLAS VH(bb) STXSs in an EFT framework, in this case the high energy parametrization is important.

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} c_{i}^{(6)} \mathcal{O}_{i}^{(6)} + \sum_{j} c_{j}^{(8)} \mathcal{O}_{j}^{(8)} + \cdots$$

- Reduction of the (2499 baryon number preserving dim-6 Wilson coefficients) keeping only universal and CPinvariant operators reduces to 8 Higgs production operators and 9 operators affecting EW observables.
- **SILH**: Strongly interacting light Higgs basis, with universal couplings in which new physics couples only to the Higgs captures best the low energy effects.

•
$$O_{HW} = i \left(D^{\mu} H \right)^{\dagger} \sigma^a \left(D^{\nu} H \right) W^a_{\mu\nu}$$

•
$$O_{HB} = i (D^{\mu}H)^{\dagger} (D^{\nu}H) B_{\mu\nu},$$

• $O_W = \frac{i}{2} \left(H^{\dagger} \sigma^a D^{\mu} H \right) D^{\nu} W^a_{\mu\nu}$

•
$$O_B = \frac{i}{2} \left(H^{\dagger} \stackrel{\leftrightarrow}{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu}.$$

Linear terms for SM-BSM interference and quadratic terms taken into account.

Constraints on Higgs Width

SM width (small i.e. potentially large relative variations from BSM couplings)

$$\Gamma^H_{SM} = 4.07 \pm 0.16 \text{ MeV}$$

Width from Lineshape measurements

 Current constraints from the measurement of the higgs line shape from 4-leptons and diphoton channels:

$$\Gamma^H_{SM} < 1.10 \text{ GeV at } 95\% \text{ CL}$$

(CMS-PAS-HIG-16-041 with 4I only and 36 fb-1)

Offshell Higgs measurements

CMS 1901.00174

Study the 4-leptons spectrum in high mass regime where the Higgs boson acts as **propagator**

Courtesy J. Campbell

Using ggF, VBF and VH production (and WW decays at Run 1)

$$\Gamma_H = \frac{\mu_{off \ shell}}{\mu_{on \ shell}} \times \Gamma_H^{SM}$$

Assuming running of the SM running of the couplings and that

Parameter	Observed	Expected
$\Gamma_{\rm H}$ (MeV)	$3.2^{+2.8}_{-2.2}$ [0.08, 9.16]	$4.1^{+5.0}_{-4.0} \ [0.0, 13.7]$

Impressively strong constraints with still room for improvements with higher statistics.

Careful to systematics from ggZZ (including interference term).

Higgs combination inputs

 All main production and decay modes, based on 2016 13 TeV dataset (35.9 fb-1) @ CMS

Analysis	Reference		
H→ZZ→4I	JHEP 11 (2017) 047		
Н→үү	arXiv:1804.02716		
H→WW	arXiv:1806.05246		
VH→bb	PLB 780 (2018) 501		
Η→ττ	PLB 779 (2018) 283		
H→µµ	arXiv:1807.06325		
Boosted H→bb	PRL 120 (2018) 071802		
ttH→WW/ZZ/ττ	arXiv:1803.05485		
ttH→bb (leptonic)	arXiv:1804.03682		
ttH→bb (hadronic)	arXiv:1803.06986		
H→invisible (*)	arXiv:1809.05937		

	ggF	VBF	VH	ttH
H→ZZ→4I	•	•	•	•
Н→үү	•	•	•	•
H→WW	•	•	•	•
H→bb	•		•	•
Η→ττ	•	•		•
Η→μμ	•	•		
H→inv	•	•	•	

Couplings – *k* framework

- LO coupling modifier/kappa framework to probe deviations from SM
 - Assumptions: only **one CP-even** Higgs state with m_H=125 GeV and **negligible width**
- Parameter scale cross sections and partial widths relative to SM

$$\begin{split} \kappa_{j}^{2} &= \sigma_{j} / \sigma_{j}^{\mathrm{SM}} & \kappa_{j}^{2} &= \Gamma_{j} / \Gamma_{j}^{\mathrm{SM}} \\ \mathrm{BR}^{f} &= \frac{\sigma_{i}(\vec{\kappa}) \cdot \Gamma^{f}(\vec{\kappa})}{\Gamma_{\mathrm{H}}} & \prod_{\mathrm{Total width determined as}} \\ \kappa_{\mathrm{H}}^{2} &= \frac{\kappa_{H}^{2} \cdot \Gamma_{H}^{\mathrm{SM}}}{1 - \mathrm{BR}_{\mathrm{BSM}}} \\ \mathrm{Where} & \\ \kappa_{H}^{2} &= \sum_{j} \mathrm{BR}_{\mathrm{SM}}^{j} \kappa_{j}^{2} \end{split}$$

 σ_i .

Coupling Parameterization

Couplings: Effective Loops

- No assumptions about loops (κ_q and κ_v free parameters)
- Assumption about total width: No BSM decays

Couplings: Effective Loops

- No assumptions about loops (κ_q and κ_v free parameters)
- Assumption about total width: $|\kappa_v| < 1$

|κ_v| < 1 imposed - typically the case in BSM models that affect Higgs couplings

BR_{inv} > 0, BR_{undet} > 0
BR_{inv}: Scales signal normalisation in
direct H→invisible searches
BR_{undet}: Represents branching ratio
to any final state not directly
detected by analyses

Constraint on Total Width

- Assuming κ_v < 1, but allowing for BSM decays, set constraint on total Higgs width
- Performed by making total width a parameter of the model (instead of a function of other κ's), and making κ_b a function of other κ's and total width

$$\begin{split} \frac{\Gamma_{\rm H}}{\Gamma_{\rm H}^{\rm SM}} &= \frac{\kappa_{\rm H}^2}{1 - ({\rm BR_{undet.} + BR_{inv.}})} \\ &= \frac{0.58 \cdot \kappa_{\rm b}^2 + 0.22 \cdot \kappa_{\rm W}^2 + 0.08 \cdot \kappa_{\rm g}^2 + \\ &+ 0.06 \cdot \kappa_{\tau}^2 + 0.026 \cdot \kappa_{Z}^2 + 0.029 \cdot \kappa_{\rm c}^2 + \\ &+ 0.0023 \cdot \kappa_{\gamma}^2 + 0.0015 \cdot \kappa_{Z\gamma}^2 + \\ &+ 0.00025 \cdot \kappa_{\rm s}^2 + 0.00022 \cdot \kappa_{u}^2 \end{split}$$

Couplings modifier ratios

 Analogous to signal strength ratios, measure ratios of coupling modifiers given a reference κ:

 $\kappa_{gZ} = \kappa_g \kappa_Z / \kappa_H$

- Assume κ_{gZ} >0 and λ_{Zg} >0 without loss of generality
- Evaluate λ_{tg} and λ_{WZ} <o subject to constraint $\lambda_{tg} \lambda_{WZ}$ >o, to probe interference in ggZH production but not tH

No assumption on total width

Next Challenges: H->μμ, H->Zγ

CMS dimuon search Phys. Rev. Lett. 122 (2019) 021801

- Very low s/b, search for peak in $m_{\mu\mu}$ spectrum over smooth background (requiring accurate background description)

- BDT separating ggF, VBF and VH signatures.

Current limits at

 $\mu < 2.92~(2.16~{\rm exp.})$ at 95% CL

Coupling precision reach at HL-LHC*

~5% HL-LHC YR 1902.00134

* With the kappa model assuming no BSM in the decay

ATLAS $Z\gamma$ search

Not so small branching fraction of 1.5 10-3 however search for leptonic decays of the Z boson.

Categorised in main production modes gluon fusion (at high pT) and VBF (with the typical VBF topology). Improved mass reconstruction with FS correction for muons.

95% CL limits at **6.6** (obs) and **5.2** (exp), no significant signal observed.

Precision reach at HL-LHC*

~10% HL-LHC YR 1902.00134

* With the kappa model assuming no BSM in the decay

Next Challenges: Charm Yukawa Couplings

Very challenging but various approaches and new ideas emerging!

- VH(cc) direct detection (relies on ability to distinguish b and c jets)
- Differential cross sections
- Charmonium-photon exclusive decays
- WH production charge asymmetry (PDFs)
- Total width from the couplings fit

Next Challenges: Higgs self-coupling

HH production allows to probe the self-coupling

5/18/19 The combination probes ~**10 times the SM prediction**

Next Challenges: Higgs self-coupling

- Single Higgs processes are sensitive to λ via **loop corrections**
- NLO EW κ_{λ} -dependent corrections to
 - cross-sections (ttH, ggF, VH, VBF)
 - Higgs boson decay rates
 - kinematics properties of the event (differential distributions)

JHEP 12 (2016) 080, Eur. Phys. J. C77 (2017) 887

Next Challenges: Higgs self-coupling

 $\kappa_{\lambda} = 4.0^{+4.3}$ -4.1

 $\kappa_{\lambda} \in [-3.2, 11.9] @95\%$ CL ($\kappa_{F} = \kappa_{V} = 1$) [-6.2, 14.4] exp.

Projections for HL-LHC

- Analysis of simulated samples with HL-LHC conditions and detectors
 - Generally for new, or significantly improved, analyses
- Extrapolations from Run 2 data to 3 ab⁻¹
 - Analyses that were already performed in Run 2
 - Efficiencies, resolutions, fake rates assumed unchanged from the Run 2 values
 - Main scenario **YR18 systematic uncertainties (S2)**:
 - Most theoretical uncertainties scaled down by a factor 1/2, experimental uncertainties scaled down by √L until they reach a defined lower limit.
 - Scenario for comparison: using Run 2 systematic uncertainties (S1)
 - In all cases uncertainties due to the finite number of simulated events are neglected

Projections for HL-LHC

Mostly limited by theoretical uncertainties

To summarize

- Full Run 2 Higgs results are on their way
- Lumi will not increased rapidly in next few years
 - New ideas, technique, etc. to be explored for Run 2 and 3 data
- Still very promising program ahead @ HL-LHC

backup

Observation of ttH in single channel H-> $\gamma\gamma$

ATLAS Full dataset!!

Observation and measurement of ttH production in the diphoton channel with 139 fb-1 of data at Run 2

Analysis in two separate main channels **0L** and **1L** using a BDT based on low level variables:

- 3-vector of photons (normalised to Myy)
- 4-vectors of jets (up to 6 leading jets)
- 4-vectors of leptons (up to 2 leading leptons)

Background and signal modelled using analytic functions.

Observed	Expected	
4.9σ	(4.2σ)	

Measurement dominated by statistical uncertainties:

$$\sigma_{t\bar{t}H} \times B_{\gamma\gamma} = 1.59^{+0.38}_{-0.36} \text{ (stat.)} {}^{+0.15}_{-0.12} \text{ (exp.)} {}^{+0.15}_{-0.11} \text{ (theo.) fb}$$

CMS CMS-PAS-HIG-18-018

Similarly CMS analysis with 35.9 fb-1 (2016) + 41.5 fb-1 (2017).

BDTs also with low level variables (and additional and modelling backgrounds and signals using analytic functions.

Similar analysis with similar performance, difference in sensitivity largely due to difference in dataset.

Differential XS in 4l channel

double differential, off-shell Higgs region

Couplings from differential XS

STXS Combination

ATLAS Combination of STXS results

ATLAS-CONF-2019-04

Combination of all channels including STXSs (ATLAS), presented last week.

All main channels entering the combination (diphoton, ZZ*, WW*, bb, tautau, ttH).

With a dataset corresponding to an integrated luminosity of up to ~80 fb-1.

STXS Combination

Ratios of branching fractions to the ZZ branching left floating in the fit.

Correlation matrix indicating the level of degeneracy of different SXSs and the resolution effects from one bin to the other.

This version of the correlation matrix is from the fit with fixed branching fractions for simplicity.

New ATLAS Combination

ATLAS-CONF-2019-04

Parameter	(a) $B_{inv} = B_{undet} = 0$	(b) B_{inv} free, $B_{undet} \ge 0$, $\kappa_{W,Z} \le 1$	(c) $B_{BSM} \ge 0$, $\kappa_{off} = \kappa_{on}$
κ _Z	1.11 ± 0.08	> 0.87 at 95% CL	$1.16^{+0.18}_{-0.13}$
κ _W	1.05 ± 0.09	> 0.85 at 95% CL	$1.12^{+0.18}_{-0.15}$
КЪ	$1.03^{+0.19}_{-0.17}$	0.88 ± 0.13	$1.08^{+0.25}_{-0.20}$
K _t	$1.09^{+0.15}_{-0.14}$	$[-1.03, -0.79] \cup [0.93, 1.24]$ at 68% CL	$1.14^{+0.19}_{-0.18}$
Kτ	$1.05^{+0.16}_{-0.15}$	0.97 ± 0.13	$1.12^{+0.23}_{-0.21}$
κγ	1.05 ± 0.09	0.98 ± 0.07	$1.10^{+0.19}_{-0.13}$
Кд	$0.99^{+0.11}_{-0.10}$	$1.01\substack{+0.13\\-0.11}$	$1.02^{+0.22}_{-0.13}$
B _{inv}	-	< 0.30 at 95% CL	-
Bundet	-	< 0.22 at 95% CL	-
B _{BSM}	-	-	< 0.47 at 95% CL

Precision on main couplings to bosons to better than 10% ! Precision on 3d generation Yukawas to better than 20% !!

Assuming kV<1 allows to set a limit on Br(BSM) with Run 2 data of ~22% (ATLAS only with generic model)

At HL-LHC Br(BSM) < 5% (95% CL) HL-LHC YR 1902.00134

New ATLAS Combination

Measurement of the couplings properties of the Higgs boson - in this case assuming no BSM in the Higgs width

					√s =	$\sqrt{s} = 14 \text{ TeV}, 3000 \text{ fb}^{-1} \text{ per experiment}$		
AT	LAS - CMS Run 1 combination	ATLAS Run 2	HL-LHC		Total Statistical Experimental Theory	ATLAS and CMS HL-LHC Projection Uncertainty [%]	Experimental systematics non negligible	
κ_γ	13%	9%	1.8%	κ_{γ}		1.8 0.8 1.0 1.3		
κ_W	11%	8.6%	1.7%	κ_W	 _	1.7 0.8 0.7 1.3		
κ_Z	11%	7.2%	1.5%	κ _z	=	1.5 0.7 0.6 1.2		
κ_g	14%	11%	2.5%	κ_{g}	 _	2.5 0.9 0.8 2.1		
κ_t	30%	14%	3.4%	κ _t		3.4 0.9 1.1 3.1		
κ_b	26%	18%	3.7%	κ_{b}		3.7 1.3 1.3 3.2		
$\kappa_{ au}$	15%	14%	1.9%	κ_{τ}	=_	1.9 0.9 0.8 1.5		
	JHEP 08 (2016) 045	ATLAS-CONF-2019-04	HL-LHC YR 1902.00134	κ _μ κ _{Ζγ}		4.3 3.8 1.0 1.7 9.8 7.2 1.7 6.4		
		Improv factor curr	red TH and PDF uncertain of 2 w.r.t. current (motiva ent PDF studies and curre uncertainties assumption	nties by a (ted from ent TH is)	0 0.02 0.04 0.06	5 0.08 0.1 0.12 0.14 Expected uncertainty] 	

17

NEW

Projection assumptions

S1 is a conservative scenario using the uncertainties of the current Run II measurements.

S2 assumes improvements due to detector upgrades and reduced uncertainties on the methods. For many sources the Run II uncertainty is **half** as shown in the table below. The luminosity uncertainty is 1% and the uncertainty due to size of simulation samples is negligible

Source	Component	Run 2 uncertainty	Projection minimum uncertainty
Muon ID		1–2%	0.5%
Electron ID		1–2%	0.5%
Photon ID		0.5–2%	0.25–1%
Hadronic tau ID		6%	2.5%
Jet energy scale	Absolute	0.5%	0.1–0.2%
	Relative	0.1–3%	0.1–0.5%
	Pileup	0–2%	Same as Run 2
	Method and sample	0.5–5%	No limit
	Jet flavour	1.5%	0.75%
	Time stability	0.2%	No limit
Jet energy res.		Varies with p_{T} and η	Half of Run 2
MET scale		Varies with analysis selection	Half of Run 2
b-Tagging	b-/c-jets (syst.)	Varies with p_{T} and η	Same as Run 2
	light mis-tag (syst.)	Varies with $p_{\rm T}$ and η	Same as Run 2
	b-/c-jets (stat.)	Varies with $p_{\rm T}$ and η	No limit
	light mis-tag (stat.)	Varies with $p_{\rm T}$ and η	No limit
Integrated lumi.		2.5%	1%

Table 1: The sources of systematic uncertainty for which minimum values are applied in S2.

Projection on signal strengths

Projections on Higgs self-coupling

arXiv:1809.10733

CMS Higgs Combination

Higgs combination inputs

• All main production and decay modes, based on 2016 13 TeV dataset (35.9 fb-1) @ CMS

Analysis	Reference
H→ZZ→4I	JHEP 11 (2017) 047
Н→үү	arXiv:1804.02716
H→WW	arXiv:1806.05246
VH→bb	PLB 780 (2018) 501
Η→ττ	PLB 779 (2018) 283
H→µµ	arXiv:1807.06325
Boosted H→bb	PRL 120 (2018) 071802
ttH→WW/ZZ/ττ	arXiv:1803.05485
ttH→bb (leptonic)	arXiv:1804.03682
ttH→bb (hadronic)	arXiv:1803.06986
H→invisible (*)	arXiv:1809.05937

	ggF	VBF	VH	ttH
H→ZZ→4I	•	•	•	•
Н→үү	•	•	•	•
H→WW	•	•	•	•
H→bb	•		•	•
Η→ττ	•	•		•
Η→μμ	•	•		
H→inv	•	•	•	

Higgs combination inputs

- In total up to 265 event categories and over 5500 nuisance parameters
- Correlation scheme studied in detail
- Consistency on signal modeling ensured among channels

Production	n and decay tags	Expected signal composition	Number of	Mass resolution
II ton Casting 2.1			categories	
$H \rightarrow \gamma \gamma$, Section 3.1	Untran d	74.019/11	4	
	VPE	74-91% 88H	4	
	V DF	51-60% VBF	3	
0.0	VH nadronic	25% WH, 15% ZH	1	~1. 29/
	WH leptonic ZU leptonic	04-83 % WH	2	~1-270
	ZH leptonic	98% ZH	1	
	$VH p_T$	59% VH	1	
II > 77(*) > 4/ C	ttH	80–89% ttH, ≈8% tH	2	
$H \to ZZ^{(+)} \to 4\ell$, Se	ection 3.2	- 05% II	2	
	Untagged	≈95% ggH	3	
	VBF 1, 2-jet	≈11–47% VBF	6	
4 <i>u</i> , 2e2 <i>u</i> /2 <i>u</i> 2e, 4e	VH hadronic	≈13% WH, ≈10% ZH	3	$\approx 1-2\%$
	VH leptonic	≈46% WH	3	
	VH $p_{\rm T}^{\rm miss}$	≈56% ZH	3	
	ttH	≈71% ttH	3	
$H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$,	, Section 3.3			
011/110	ggH 0, 1, 2-jet	\approx 55–92% ggH, up to \approx 15% H \rightarrow $\tau\tau$	17	
$e_{\mu}/\mu e$	VBF 2-jet	\approx 47% VBF, up to \approx 25% H \rightarrow $\tau\tau$	2	
ee+µµ	ggH 0, 1-jet	≈84–94% ggH	6	~20%
eµ+jj	VH 2-jet	22% VH, 21% H $\rightarrow \tau\tau$	1	≈20%
3ℓ	WH leptonic	\approx 80% WH, up to 19% H $\rightarrow \tau \tau$	2	
4ℓ	ZH leptonic	85–90% ZH, up to 14% H $\rightarrow \tau\tau$	2	
$H \rightarrow \tau \tau$, Section 3.4				
	0-iet	\approx 70–98% ggH, 29% H \rightarrow WW in e μ	4	
ell.eth.Uth.ThTh	VBF	\approx 35-60% VBF, 42% H \rightarrow WW in e4	4	≈10–20%
-1.1 - 10 1 10 - 11 - 11	Boosted	\approx 48–83% ggH, 43% H \rightarrow WW in e μ	4	
VH production with	$H \rightarrow bb$, Section 3.5	00 / 1		
Z(VV)bb	ZH leptonic	\approx 100% VH, 85% ZH	1	
W(lv)bb	WH leptonic	≈100% VH. ≈97% WH	2	
	Low $-v_{T}(V)$ ZH leptonic	$\approx 100\%$ ZH, of which $\approx 20\%$ geZH	2	pprox 10%
Z(ℓℓ)bb	High- $p_{T}(V)$ ZH leptonic	$\approx 100\%$ ZH, of which $\approx 36\%$ eeZH	2	
Boosted H Production	n with H \rightarrow bb. Section 3.6	6100% 211, 61 Which 100% 80	-	
$H \rightarrow bb$	$v_{\rm T}({\rm H})$ bins	≈72–79% ggH	6	≈10%
ttH production with	$H \rightarrow leptons$, Section 3.7.1			
	2/ss	WW / <i>TT</i> ≈ 4.5. ≈5% tH	10	
	3/	WW : $\tau\tau$: ZZ \approx 15 : 4 : 1 \approx 5% tH	4	
	4/	WW $\cdot \tau \tau \cdot ZZ \approx 6 \cdot 1 \cdot 1 \approx 3\%$ tH	1	
$H \rightarrow WW, \tau\tau, ZZ$	1/+27	06% ttU with U $\rightarrow \tau\tau \sim 6\%$ tU	1	
	$2\ell_{rr} \pm 1\pi$	$77 \cdot WW \sim 5 \cdot 4 \sim 5\% tH$	2	
	$2\ell s s + 1 t_h$	$11 \cdot 1000 \sim 514, \sim 570 \text{ m}$	2	
ALL man developmentials	$S_{\ell+1}t_h$	$tt: WW: ZZ \approx 11:7:1, \approx 5\%$ th	1	
un production with	$H \rightarrow bb$, Section 5.7.2	~ 82 07% 441	6	
$H \rightarrow bb$	$t \rightarrow jets$	$\sim 65.05\%$ ttH with H \rightarrow bb, up to 20% H \rightarrow WW	18	
$H \rightarrow DD$	$t\bar{t} \rightarrow 1\ell + jets$	$\approx 05-95\%$ ttH with H \rightarrow bb, up to 20% H \rightarrow vv w	18	
C 1 (11	$tt \rightarrow 2\ell + jets$	$\approx 84-96\%$ ttH with H \rightarrow bb	3	
Search for $H \rightarrow \mu \mu$,	Section 3.8	56 069/ 11 1 409/ WDF	15	a.1.09/
<u>µµ</u>	S/B bins	50–90% ggH, 1–42% VBF	15	≈1-2%
Search for invisible H	decays, Section 3.9	F00/ 1/DE 100/ 11		
	VBF	52% VBF, 48% ggH	1	
$H \rightarrow invisible$	$ggH + \ge 1$ jet	80% ggH, 9% VBF	1	
	VH hadronic	54% VH, 39% ggH	1	
	ZH leptonic	\approx 100% ZH, of which 21% ggZH	1	

Combination Results

- Signal strengths & cross sections
- Couplings in kappa framework
- Constraints on BSM models

Signal strength measurements

• The number of signal events in each analysis category *k* is expressed as

$$n_k^{\text{signal}} = \mathcal{L}_k \sum_i \sum_f (\sigma \times B)_{if} (\epsilon \times A)_k^{if}$$

Integrated luminosity Efficiency x Acceptance

 Parameters scale cross sections and BRs relative to SM

$$\mu_{i} = \frac{\sigma_{i}}{\sigma_{i}^{\text{SM}}} \qquad \mu^{f} = \frac{\text{BR}^{f}}{\text{BR}_{\text{SM}}^{f}} \qquad \mu_{i}^{f} \equiv \frac{\sigma_{i} \cdot \text{BR}^{f}}{(\sigma_{i} \cdot \text{BR}^{f})_{\text{SM}}} = \mu_{i} \times \mu^{f}$$

Overall signal strength Assume SM BR and Relative Production XS

 Most constrained interpretation: single signal strength modifier which scales all prod. and decay modes assuming SM relative composition

 $\mu = 1.17^{+0.10}_{-0.10} = 1.17^{+0.06}_{-0.06} \text{ (stat.) } ^{+0.06}_{-0.05} \text{ (sig. th.) } ^{+0.06}_{-0.06} \text{ (other sys.)}$

- Systematically dominated, similar weight of theoretical and experimental uncertainties
- ~2σ agreement with respect to SM prediction

Production Signal Strengths

Production process	Best fit value		Uncer	tainty
			stat.	syst.
ggH	1.22	$^{+0.14}_{-0.12} \\ (^{+0.11}_{-0.11})$	$^{+0.08}_{-0.08} \\ (^{+0.07}_{-0.07})$	$^{+0.12}_{-0.10} \\ (^{+0.09}_{-0.08})$
VBF	0.73	$^{+0.30}_{-0.27}$ $(^{+0.29}_{-0.27})$	$^{+0.24}_{-0.23}$ $(^{+0.24}_{-0.23})$	$^{+0.17}_{-0.15} \\ ^{+0.16}_{(-0.15)}$
WH	2.18	$^{+0.58}_{-0.55}$ $(^{+0.53}_{-0.51})$	$^{+0.46}_{-0.45} \\ (^{+0.43}_{-0.42})$	$^{+0.34}_{-0.32} \\ (^{+0.30}_{-0.29})$
ZH	0.87	$^{+0.44}_{-0.42} \\ (^{+0.43}_{-0.41})$	$^{+0.39}_{-0.38}$ $\binom{+0.38}{-0.37}$	$^{+0.20}_{-0.18} \\ (^{+0.19}_{-0.17})$
ttH	1.18	$^{+0.30}_{-0.27}$ $\binom{+0.28}{-0.25}$	$^{+0.16}_{-0.16} \\ (^{+0.16}_{-0.15})$	$^{+0.26}_{-0.21} \\ ^{+0.23}_{-0.20})$

 Most or all inclusive production mode signal strengths will be systematically limited with full Run2 dataset

Decay Signal Strengths

 All inclusive decay mode signal strengths except H->µµ will be systematically limited with full Run2 dataset

Per Production x Decay Mode

- Most generic parametrization giving different signal strength to each prod. and decay combination
- Certain signal strengths restricted due to low background expectation
- Suitable for reinterpretation

Signal strength ratios

- Normalize the rate for any particular channel to a reference process using ratios of cross sections and branching ratios
- Motivation:
 - No assumptions on relative cross sections or BRs
 - Measured values independent of SM prediction and inclusive theory uncertainties
 - Cancellation of common systematic uncertainties in ratios
- Choose reference process as one measured with the smallest systematic uncertainty: gg→H→ZZ

Simplified Template Cross Sections

- A common framework recommended by LHCHXSWG (arXiv:1610.07922)
- Maximize sensitivity at the cost of some theory dependence, all analysis techniques maintained
- Can serve as input to BSM interpretations, e.g. for determining Wilson coefficients, etc.
- Several stages proposed

Simplified Template Cross Sections

- Separate th. uncs. in SM predictions from exp. and th. uncs. in the measurements
- Results quoted for a common simplified fiducial volume
- One parameter for each cross section, with floating ratios
 of the decay BRs

Combination Results

- Signal strengths & cross sections
- Couplings in kappa framework
- Constraints on BSM models

Couplings – *k* framework

- LO coupling modifier/kappa framework to probe deviations from SM
 - Assumptions: only **one CP-even** Higgs state with m_H=125 GeV and **negligible width**
- Parameter scale cross sections and partial widths relative to SM

$$\kappa_{j}^{2} = \sigma_{j} / \sigma_{j}^{\text{SM}} \qquad \kappa_{j}^{2} = \Gamma_{j} / \Gamma_{j}^{\text{SM}}$$

$$\sigma_{i} \cdot \text{BR}^{f} = \frac{\sigma_{i}(\vec{\kappa}) \cdot \Gamma^{f}(\vec{\kappa})}{\Gamma_{\text{H}}} \qquad \frac{\text{Total width determined as}}{\Gamma_{\text{H}} = \frac{\kappa_{H}^{2} \cdot \Gamma_{H}^{\text{SM}}}{1 - \text{BR}_{\text{BSM}}}}$$

$$\text{Where} \qquad \kappa_{H}^{2} = \sum_{j} \text{BR}_{\text{SM}}^{j} \kappa_{j}^{2}$$

Coupling Parameterization

- No assumptions about loops (κ_q and κ_v free parameters)
- Assumption about total width: No BSM decays

Gluon fusion and H-> $\gamma\gamma$ scaled by κ_g and κ_γ

- No assumptions about loops (κ_q and κ_v free parameters)
- Assumption about total width: No BSM decays

- No assumptions about loops (κ_q and κ_v free parameters)
- Assumption about total width: $|\kappa_v| < 1$

|κ_v| < 1 imposed - typically the case in BSM models that affect Higgs couplings

BR_{inv} > 0, BR_{undet} > 0
BR_{inv}: Scales signal normalisation in
direct H→invisible searches
BR_{undet}: Represents branching ratio
to any final state not directly
detected by analyses

- No assumptions about loops (κ_q and κ_v free parameters)
- Assumption about total width: $|\kappa_v| < 1$

Constraint on Total Width

- Assuming κ_ν < 1, but allowing for BSM decays, set constraint on total Higgs width
- Performed by making total width a parameter of the model (instead of a function of other κ's), and making κ_b a function of other κ's and total width

$$\begin{split} \frac{\Gamma_{\rm H}}{\Gamma_{\rm H}^{\rm SM}} &= \frac{\kappa_{\rm H}^2}{1 - ({\rm BR_{undet.} + BR_{inv.}})} \\ &= \frac{0.58 \cdot \kappa_{\rm b}^2 + 0.22 \cdot \kappa_{\rm W}^2 + 0.08 \cdot \kappa_{\rm g}^2 + \\ &+ 0.06 \cdot \kappa_{\tau}^2 + 0.026 \cdot \kappa_{Z}^2 + 0.029 \cdot \kappa_{\rm c}^2 + \\ &+ 0.0023 \cdot \kappa_{\gamma}^2 + 0.0015 \cdot \kappa_{Z\gamma}^2 + \\ &+ 0.00025 \cdot \kappa_{\rm s}^2 + 0.00022 \cdot \kappa_{\mu}^2 \end{split}$$

Couplings: Resolved loops

• Assume SM structure in ggH and Hyy loops, i.e. no contribution from new particles

$$\kappa_{\rm g}{}^2 = 1.04\cdot\kappa_{\rm t}^2 + 0.002\cdot\kappa_{\rm b}^2 - 0.038\cdot\kappa_{\rm t}\kappa_{\rm b}$$

Couplings: Resolved loops

Assume SM structure in ggH and Hγγ loops, i.e. no contribution from new particles

Couplings vs. mass

Perform two parameter
 (M, ε) fit where

SM given by: $M = v = 246 \text{ GeV}, \epsilon = 0$

 Can visualize result in terms of absolute coupling modifiers vs particle mass

$$\kappa_{F,i} = v \frac{m_{F,i}^{\epsilon}}{M^{1+\epsilon}} \quad \kappa_{V,i} = v \frac{m_{V,i}^{2\epsilon}}{M^{1+2\epsilon}}$$

Higgs boson couplings follow closely SM predictions over the full explored mass range

Vector boson vs. fermion couplings

- Scale all fermionic couplings and all bosonic couplings to the Higgs boson by the same modifier
- Only consider κ_Fκ_V>0 (negative relative sign already strongly disfavored since run 1 at ~5σ
- Per-channel model shows complementary constraints from the different analyses

Sensitivity to κ_F predominantly from $H \rightarrow$ fermions channels

Test symmetry of fermion couplings

- In MSSM / 2HDM Type II [κ_v, κ_d, κ_u], ratio of down-type (b, τ, μ) and uptype (t) fermion couplings is tested with ~10% precision
- No enhancement observed wrt SM, i.e. consistent with alignment limit
- In 2HDM Lepton-Specific $[\kappa_{v}, \kappa_{l}, \kappa_{q}]$, ratio of lepton (τ, μ) and quark couplings (t, b) would be enhanced at large tan β
- Also good agreement with SM

Couplings modifier ratios

 Analogous to signal strength ratios, measure ratios of coupling modifiers given a reference κ:

 $\kappa_{gZ} = \kappa_g \kappa_Z / \kappa_H$

- Assume κ_{gZ} >0 and λ_{Zg} >0 without loss of generality
- Evaluate λ_{tg} and λ_{WZ} <o subject to constraint $\lambda_{tg} \lambda_{WZ}$ >o, to probe interference in ggZH production but not tH

No assumption on total width

Combination Results

- Signal strengths & cross sections
- Couplings in kappa framework
- Constraints on BSM models

- Interpret Higgs coupling strength results in terms of BSM model parameters
 - Complementary to the limits obtained from direct searches for new physics
- Consider different types of 2HDMs and the hMSSM under certain assumptions
 - Higgs boson identified as the light CP-even neutral scalar, exhibiting only SM production and decay modes
 - Neglect corrections of the ggF production and diphoton decay rates from SUSY partners as well as effects breaking the universality of down-type fermion coupling

	2HDM				hMSSM
	Type I	Type II	Type III	Type IV	
$\kappa_{ m V}$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$rac{s_{ m d}+s_{ m u} aneta}{\sqrt{1+ an^2eta}}$
κ _u	$\cos(\alpha) / \sin(\beta)$	$\cos(\alpha) / \sin(\beta)$	$\cos(\alpha) / \sin(\beta)$	$\cos(\alpha) / \sin(\beta)$	$S_{\rm u} \frac{\sqrt{1 + \tan^2 \beta}}{\tan \beta}$
κ _d	$\cos(\alpha) / \sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha) / \sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$s_{\rm d}\sqrt{1+\tan^2\beta}$
κ_{l}	$\cos(\alpha) / \sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha) / \sin(\beta)$	$s_{\rm d}\sqrt{1+\tan^2\beta}$

 $-\sin(\alpha)/\cos(\beta)$

 $\cos(\alpha) / \sin(\beta)$

 $s_{\rm d}\sqrt{1+\tan^2\beta}$

 $\cos(\alpha) / \sin(\beta)$

 κ_{l}

 $-\sin(\alpha)/\cos(\beta)$

- Indirect constraints provide complementary information compared to direct searches
- Possible to interpret in other MSSM benchmark models

Summary

- Wide range of combination results with 36/fb 13 TeV CMS data
- Direct observation of all main production and decay modes
- Direct confirmation of **coupling to all 3rd** generation quarks and charged leptons
- Higgs physics is an important indirect probe for BSM physics: so far no deviations from SM observed
- Much more data ahead, stay tuned

Future sensitivity (CMS-PAS-FTR-18-011)

 Most coupling uncertainties will reach ~4-6% precision with 300/fb and 2-4% after 3000/fb

 κ_{ν}

 κ_W

κ₇

κ_a

К_t

κ_b

K_τ

κ_u

0

Backup

Coupling Deviations in BSM

- How well do we need to measure Higgs couplings?
- Typical effect on coupling from heavy particle M or new physics at scale M:

$$\Delta \sim \left(\frac{\upsilon}{M}\right)^2 \sim 5\% \text{ (M)} \sim 1 \text{ TeV}$$

Han et al., hep-ph/0302188 Gupta et al., arXiv:1206.3560

.

Typical sizes of coupling modifications:

arXiv:1310.8361

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

Statistics

• Workhorse of the combination is the **profile likelihood ratio**, **Λ**

 $\vec{\alpha} = \text{Set of POIs at some}$ fixed values to be tested $\vec{\theta} = \text{Nuisance parameters}$ $\Lambda(\vec{\alpha}) = \frac{L(\vec{\alpha}, \vec{\theta}(\vec{\alpha}))}{L(\vec{\alpha}, \vec{\theta})}$ Values of $\vec{\theta}$ that maximise the likelihood given the fixed values of $\vec{\alpha}$ being tested (conditional estimate)
Values of $\vec{\alpha}$ and $\vec{\theta}$ that globally maximise the likelihood (unconditional estimate)

- Exploit the asymptotic limit:
 - Test statistics $q(\vec{\alpha}) = -2 \ln (\Lambda(\vec{\alpha}))$ is assumed to follow a χ^2 distribution with $\vec{\alpha}$ degrees of freedom
 - To determine a confidence-level (CL) interval for a single parameter α , we only need to find the values of α where $q(\alpha) = \text{the } \chi^2$ critical value for that CL, e.g. 1D 68% CL at $q(\alpha) = 1.00$
An example of breaking down of uncertainties

- For this, and other key measurements, break uncertainty down into 4 components:
 - statistical, experimental, background theory, signal theory
- All ~4300 NPs assigned to one of these groups
- Each component determined by fixing successive group of NPs to best-fit values θ and repeating NLL scan

Higgs rates & couplings

Signal parameterization

Signal strengths, µ

Parameters scale cross sections and **BRs relative to SM**

$$\mu_i = \frac{\sigma_i}{\sigma_i^{\rm SM}} \qquad \mu^f = \frac{{\rm BR}^f}{{\rm BR}_{\rm SM}^f}.$$

Scaling of generic i \rightarrow H \rightarrow f process

$$\mu_i^f \equiv \frac{\sigma_i \cdot \mathbf{BR}^f}{(\sigma_i \cdot \mathbf{BR}^f)_{\mathrm{SM}}} = \mu_i \times \mu^f$$

Couplings,
$$\kappa$$

Parameters scale cross sections and
partial widths relative to SM
 $\kappa_j^2 = \sigma_j / \sigma_j^{SM}$ $\kappa_j^2 = \Gamma_j / \Gamma_j^{SM}$
 $\sigma_i \cdot BR^f = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$,
Total width determined as
 $\Gamma_H = \frac{\kappa_H^2 \cdot \Gamma_H^{SM}}{1 - BR_{BSM}}$
Where
 $\kappa_H^2 = \sum_j BR_{SM}^j \kappa_j^2$

P

þ

Higgs production processes

Usual suspects:

• Rare processes:

H

Couplings: Relative Sign of κ_t and κ_W

- Mild preference (~2σ) for κ_tκ_W < o, which enhances tH prod.
- Driven by excess in ttH categories of H->γγanalysis

Compatibility of the fit results with SM

Parameterization	<i>p</i> -value ($q_{\rm SM}$)	DOF	Parameters of interest
Global signal strength	6.28% (3.46)	1	μ
Production processes	9.87% (9.27)	5	$\mu_{ m ggH},\mu_{ m VBF},\mu_{ m WH},\mu_{ m ZH},\mu_{ m ttH}$
Decay modes	53.8% (5.05)	6	$\mu^{\gamma\gamma},\mu^{\rm ZZ},\mu^{ m WW},\mu^{ au au},\mu^{ m bb},\mu^{\mu\mu}$
$\sigma_i \mathcal{B}^f$ products	61.2% (21.5)	24	$ \begin{array}{l} \sigma_{\rm ggH} \mathcal{B}^{\rm bb}, \ \sigma_{\rm ggH} \mathcal{B}^{\tau\tau}, \ \sigma_{\rm ggH} \mathcal{B}^{\mu\mu}, \ \sigma_{\rm ggH} \mathcal{B}^{\rm WW}, \ \sigma_{\rm ggH} \mathcal{B}^{ZZ}, \\ \sigma_{\rm ggH} \mathcal{B}^{\gamma\gamma}, \ \sigma_{\rm VBF} \mathcal{B}^{\tau\tau}, \ \sigma_{\rm VBF} \mathcal{B}^{\mu\mu}, \ \sigma_{\rm VBF} \mathcal{B}^{\rm WW}, \ \sigma_{\rm VBF} \mathcal{B}^{ZZ}, \\ \sigma_{\rm VBF} \mathcal{B}^{\gamma\gamma}, \ \sigma_{\rm WH} \mathcal{B}^{\rm bb}, \ \sigma_{\rm WH} \mathcal{B}^{\rm WW}, \ \sigma_{\rm WH} \mathcal{B}^{ZZ}, \ \sigma_{\rm WH} \mathcal{B}^{\gamma\gamma}, \\ \sigma_{\rm ZH} \mathcal{B}^{\rm bb}, \ \sigma_{\rm ZH} \mathcal{B}^{\rm WW}, \ \sigma_{\rm ZH} \mathcal{B}^{ZZ}, \ \sigma_{\rm HH} \mathcal{B}^{\tau\tau}, \\ \sigma_{\rm ttH} \mathcal{B}^{\rm WW}, \ \sigma_{\rm ttH} \mathcal{B}^{ZZ}, \ \sigma_{\rm ttH} \mathcal{B}^{\rm bb} \end{array} $
Ratios of σ and \mathcal{B} relative to $gg \rightarrow H \rightarrow ZZ$	32.3% (11.5)	10	$ \begin{split} &\mu_{\rm ggH}^{ZZ}, \mu_{\rm VBF} / \mu_{\rm ggH}, \mu_{\rm WH} / \mu_{\rm ggH}, \mu_{\rm ZH} / \mu_{\rm ggH}, \mu_{\rm ttH} / \mu_{\rm ggH}, \\ &\mu^{\rm WW} / \mu^{ZZ}, \mu^{\gamma\gamma} / \mu^{ZZ}, \mu^{\tau\tau} / \mu^{ZZ}, \mu^{\rm bb} / \mu^{ZZ}, \mu^{\rm bb} / \mu^{\mu\mu} \end{split} $
Simplified template cross sections with branching fractions relative to \mathcal{B}^{ZZ}	21.2% (14.4)	11	$ \begin{array}{l} \sigma_{\rm ggH} \mathcal{B}^{\rm ZZ}, \sigma_{\rm VBF} \mathcal{B}^{\rm ZZ}, \sigma_{\rm H+V(qq)} \mathcal{B}^{\rm ZZ}, \sigma_{\rm H+W(\ell\nu)} \mathcal{B}^{\rm ZZ}, \\ \sigma_{\rm H+Z(\ell\ell/\nu\nu)} \mathcal{B}^{\rm ZZ}, \sigma_{\rm ttH} \mathcal{B}^{\rm ZZ}, \mathcal{B}^{\rm bb} / \mathcal{B}^{\rm ZZ}, \mathcal{B}^{\tau\tau} / \mathcal{B}^{\rm ZZ}, \\ \mathcal{B}^{\mu\mu} / \mathcal{B}^{\rm ZZ}, \mathcal{B}^{\rm WW} / \mathcal{B}^{\rm ZZ}, \mathcal{B}^{\gamma\gamma} / \mathcal{B}^{\rm ZZ} \end{array} $
Couplings, SM loops	45.6% (5.71)	6	κ_Z , κ_W , κ_t , κ_τ , κ_b , κ_μ
Couplings vs. mass	16.8% (3.57)	2	M, ϵ
Couplings, BSM loops	18.5% (11.3)	8	κ_Z , κ_W , κ_t , κ_τ , κ_b , κ_μ , κ_γ , κ_g
Couplings, BSM loops and decays including $H \rightarrow$ invisible channels	32.4% (11.5)	10	κ_Z , κ_W , κ_t , κ_τ , κ_b , κ_μ , κ_γ , κ_g , \mathcal{B}_{inv} , \mathcal{B}_{undet}
Ratios of coupling modi- fiers	18.1% (11.4)	8	$\kappa_{\mathrm{gZ}}, \lambda_{\mathrm{WZ}}, \lambda_{\gamma Z}, \lambda_{\mathrm{tg}}, \lambda_{\mathrm{bZ}}, \lambda_{\tau Z}, \lambda_{\mu Z}, \lambda_{Z\mathrm{g}}$
Fermion and vector cou- plings	16.9% (3.55)	2	$\kappa_{\mathrm{F}}, \kappa_{\mathrm{V}}$
Fermion and vector cou- plings, per decay mode	76.7% (8.2)	12	$ \begin{array}{l} \kappa_{\rm F}^{\rm bb}, \kappa_{\rm F}^{\tau\tau}, \kappa_{\rm F}^{\mu\mu}, \kappa_{\rm F}^{\rm WW}, \kappa_{\rm F}^{ZZ}, \kappa_{\rm F}^{\gamma\gamma}, \kappa_{\rm V}^{\rm bb}, \kappa_{\rm V}^{\tau\tau}, \kappa_{\rm V}^{\mu\mu}, \kappa_{\rm V}^{\rm WW}, \kappa_{\rm V}^{ZZ}, \\ \kappa_{\rm V}^{\gamma\gamma} \end{array} $
Up vs. down-type cou- plings	25.5% (4.06)	3	$\lambda_{\mathrm{Vu}}, \lambda_{\mathrm{du}}, \kappa_{\mathrm{uu}}$
Lepton vs. quark cou- plings	27.2% (3.91)	3	$\lambda_{\mathrm{lq}}, \lambda_{\mathrm{Vq}}, \kappa_{\mathrm{qq}}$

Per Production x Decay Mode

Coupling from differential cross sections

 Combined differential cross sections using H->γγ, H4l and boosted H->bb
 arXiv:1812.06504

Coupling from differential cross sections

 Higgs pT distribution is sensitive to couplings, in particular, low pT region sensitive to k_bk_c deviations

Coupling from differential cross sections

 EFT-based parametrisation in κ_b, κ_t and c_g, where c_g is direct Higgs-gluon coupling in heavy top limit.

arXiv:1705.05143

Higgs @ LHC

• Very rich program thanks to m_H~125 GeV

Because couplings affect both Higgs boson production and decay, the best constraints come only from a combined analysis of all accessible channels.

Higgs decay modes

bb, ττ: high BR, but low s/b, important to probe Higgs to fermion couplings