Boosted Multi-bosons

May 19th, 2019

Qiang Li PKU Shu Li, TDLI/SJTU Yusheng Wu, USTC

23rd Mini-workshop on the frontier of LHC

Direct and Indirect searches

field

tensor

field-strength

aGCs vs VV searches

Citius, Altius, Fortius

CMS Integrated Luminosity Delivered, pp

Pileup Mitigation

PUPPI (PileUp Per Particle Id): based on PF paradigma general framework that determines, per particle, weight for how likely a particle is from PU

Boosted Technique: grooming

Boosted Technique: softdrop

 $\begin{array}{l} - \text{ Undo last stage of C/A clustering, label subjets j1,j2} \\ - \text{ If :} \\ \frac{min(p_{T1},p_{T2})}{p_{T1}+p_{T2}} > z_{cut} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta} \end{array}$

then j is soft dropped else redefine j to be the harder, and iterate

- Recovers (modified) mass drop BDRS tagger for beta=0
 - This case always removes soft radiation entirely (hence the name)

CMS PAS-JME-14-002

Boosted Technique: tagging

N-subjettiness: How likely is a Jet to have "N" subjets

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \left\{ \Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k} \right\}_{s}$$

Boosted Technique: mass decorrelation

- Explore τ_2/τ_1 kinematic dependence

- Use QCD scaling variable $\rho^{DDT} = \log(m_{SD}^2/pT/\mu)$ to get rid of kinematic correlation:

Designing De-correlated Taggers (DDT)

Boosted Technique: Calibration

Extract scale factor, mass scale, and resolution from fit in TTbar Control Region Fit distributions (Puppi 0.35)

Boosted Technique: Validation

jet substructure observables in tt events

groomed momentum fraction PTj2/PTj0

Background Estimations: alpha and 2/3D

- Each event contributing to a 1D/2D gaussian kernel defined by detector scale and res.

Forward folding kernel approach to ensure smooth QCD templates

- 3D templates derived from MC
- Particle-level evts smeared using detector resolution
- same procedure for resonant bkg. (W/Z)

 $P(m_{jj}, m_{jet1}, m_{jet2}) = P_{VV}(m_{jj}) \times P_{cond,1}(m_{jet1}|m_{jj}) \times P_{cond,2}(m_{jet2}|m_{jj})$

WV@13TeV: aTGC

Hadronic W/Z candidate: leading AK8 jet with p T > 200 GeV Invariant mass of the diboson system (M WZ) > 900 GeV Puppi Softdrop mass: 65-105 GeV and N-subjettiness < 0.6

WW sensitive region:[65,85]GeVWZ sensitive region:[85,105]GeVSideband: $[40, 65] \cup [105, 150]GeV$

WV@13TeV: aTGC

Post-fit mWV (upper) and PUPPI SD (lower) mass distributions.

The lower sideband, signal, and upper sideband regions are shown on the left, middle, and right.

WV@13TeV: <u>aTGC</u>

The signal modelling function consists of terms corresp	onding to different contributions:
$F_{WV} = N_{SM}(e^{a_0 x} + e^{a_{corr} x})$	SM contribution
$+\sum_{i} (N_{c_{i},1}.c_{i}^{2}.e^{a_{i,1}x}.\frac{1+Erf((x-a_{0,i})/a_{w,i})}{2})$	pure aTGC term
$+ N_{c_i,2}.c_i.e^{a_{i,2}x})$	SM-aTGC interference
$+\sum_{i\neq j}^{i< j} (N_{c_i,c_j}.c_i.c_j.e^{a_{ij}x})$	aTGC-aTGC interference

W+jets normalization floating freely in the fit. Dominant unc from V-tagging, PDF/Scales

	Electron channel			Muon channel			
	Pre-fit	Post-fit	Scale factor	Pre-fit	Post-fit	Scale-factor	
W+jets	2421	3036 ± 123	1.25 ± 0.05	4319	4667 ± 182	1.08 ± 0.04	
tī	1491 ± 324	1127 ± 119	0.76 ± 0.08	2632 ± 570	1978 ± 202	0.75 ± 0.08	
Single top quark	271 ± 39	242 ± 26	0.89 ± 0.10	509 ± 69	449 ± 43	0.88 ± 0.08	
Diboson	314 ± 314	267 ± 102	0.85 ± 0.32	$\frac{552 \pm 552}{2}$	465 ± 162	0.84 ± 0.29	
Total expected	4497	$\frac{4672\pm201}{}$	1.04 ± 0.04	8012	7559 ± 319	0.94 ± 0.04	
Data		4691			7568		

WV@13TeV: aTGC

Parametrization	arametrization aTGC		Observed limit	Run I limit	
	$c_{\rm WWW}/\Lambda^2 ({\rm TeV}^{-2})$	[-1.44, 1.47]	[-1.58, 1.59]	[-2.7, 2.7]	
EFT	$c_{\rm W}/\Lambda^2 ({\rm TeV}^{-2})$	[-2.45, 2.08]	[-2.00, 2.65]	[-2.0, 5.7]	
	$c_{\rm B}/\Lambda^2~({\rm TeV}^{-2})$	[-8.38, 8.06]	[-8.78, 8.54]	[-14, 17]	
	$\lambda_{\rm Z}$	[-0.0060, 0.0061]	[-0.0065, 0.0066]	[-0.011, 0.011]	
LEP	Δg_1^Z	[-0.0070, 0.0061]	[-0.0061, 0.0074]	[-0.009, 0.024]	
	$\Delta \kappa_Z$	[-0.0074, 0.0078]	[-0.0079 <i>,</i> 0.0082]	[-0.018, 0.013]	

VBS WV@13TeV: aQGC

Puppi AK8 Jet

tau21<0.55, PT>200 GeV

- WV with $W \rightarrow \ell \nu$ and $V \rightarrow J$
- ${\boldsymbol{\mathsf{ZV}}}$ with ${\boldsymbol{\mathsf{Z}}}{\rightarrow}\ell\ell$ and ${\boldsymbol{\mathsf{V}}}{\rightarrow}{\boldsymbol{\mathsf{J}}}$
- boosted V reconstruction
- tight VBS selections:
 - $m_{jj} > 800 \text{ GeV}, \Delta \eta_{jj} > 4.0$
 - · centrality requirements
- very large **QCD bkg** ($\mathcal{O}(\alpha^4 \alpha_{s}^2)$ and $\mathcal{O}(\alpha^2 \alpha_{s}^4)$)
 - global fit of m_{VV} distribution
 - reducible bkg measured in m_V sidebands

VBS WV@13TeV: aQGC

Sideband Region

40GeV<mv<65GeV 105GeV<mv<150GeV

Signal Region

Final state	WV	ZV		
Data	347	47		
V+jets	187 ± 21	41.2 ± 6.1		
top	120 ± 18	0.16 ± 0.04		
SM QCD VV	28 ± 10	6.4 ± 2.2		
SM EW VV	17 ± 2	2.4 ± 0.4		
Total bkg.	352 ± 21	50.1 ± 5.9		
$f_{T2}/\Lambda^4 = -0.5, -2.5 \text{ TeV}^{-4}$	22 ± 1	7.6 ± 0.6		
$m_{H_5} = 500 \text{ GeV}, s_H = 0.5$	40 ± 1	4.3 ± 0.1		

VBS WV@13TeV: aQGC

March 2019	ATLAS		Channel	Limits		∫ Ldt	Vs
f 1A4		-	WVY	[-1.3e+02, 1.3e+02]	-	20.2 fb1	8 TeV
M,0 //1			WVY	[-7.7e+01, 8.1e+01]		19.3 fb ⁻¹	8 TeV
			Zy	[-7.1e+01, 7.5e+01]		19.7 fb ⁻¹	8 TeV
	F		Zy	[-7.6e+01, 6.9e+01]		20.2 fb ⁻¹	8 TeV
			Wy	[-7.7e+01, 7.4e+01]		19.7 fb ⁻¹	8 TeV
	Н		ss WW	[-6.0e+00, 5.9e+00]		35.9 fb ⁻¹	13 TeV
	H		WZ	[-8.8e+00, 8.6e+00]		35.9 fb ⁻¹	13 TeV
			γγ→WW	[-2.8e+01, 2.8e+01]		20.2 fb ⁻¹	8 TeV
	H		γγ→WW	[-4.2e+00, 4.2e+00]		24.7 fb ⁻¹	7,8 TeV
	1		WV ZV	[-6.6e-01, 6.6e-01]		35.9 fb ⁻¹	13 TeV
f /A4			WVY	[-2.1e+02, 2.1e+02]		20.2 fb ⁻¹	8 TeV
'M,1 // K		- Contract (1997)	WVY	[-1.3e+02, 1.2e+02]		19.3 fb ⁻¹	8 TeV
			ZY	[-1.9e+02, 1.8e+02]		19.7 fb ⁻¹	8 TeV
			Zγ	[-1.5e+02, 1.5e+02]		20.2 fb ⁻¹	8 TeV
	-	-	Wy	[-1.2e+02, 1.3e+02]		19.7 fb ⁻¹	8 TeV
	H		ss WW	[-8.7e+00, 9.1e+00]		35.9 fb ⁻¹	13 TeV
	H		WZ	[-8.2e+00, 8.9e+00]		35.9 fb ⁻¹	13 TeV
	H		γγ→WW	[-1.1e+02, 1.0e+02]		20.2 fb ⁻¹	8 TeV
			γγ→WW	[-1.6e+01, 1.6e+01]		24.7 fb ⁻¹	7,8 TeV
			WV ZV	[-1.9e+00, 2.0e+00]		35.9 fb ⁻¹	13 TeV
f 144			WVY	[-5.7e+01, 5.7e+01]		20.2 fb ⁻¹	8 TeV
M,2 //1			Zγ	[-3.2e+01, 3.1e+01]		19.7 fb ⁻¹	8 TeV
			ZY	[-2.7e+01, 2.7e+01]		20.2 fb ⁻¹	8 TeV
			WY	[-2.6e+01, 2.6e+01]		19.7 fb ⁻¹	8 TeV
6 / 1 4			WVY	[-9.5e+01, 9.8e+01]		20.2 fb ⁻¹	8 TeV
M,3 //	F		Zy	[-5.8e+01, 5.9e+01]		19.7 fb ⁻¹	8 TeV
			Zγ	[-5.2e+01, 5.2e+01]		20.2 fb ⁻¹	8 TeV
			Wy	[-4.3e+01, 4.4e+01]		19.7 fb ⁻¹	8 TeV
f /A4		-	WVy	[-1.3e+02, 1.3e+02]		20.2 fb ⁻¹	8 TeV
M.4 77			Wγ	[-4.0e+01, 4.0e+01]		19.7 fb ⁻¹	8 TeV
f. /A4			WVY	[-2.0e+02, 2.0e+02]		20.2 fb ⁻¹	8 TeV
M.5 77%			WY	[-6.5e+01, 6.5e+01]		19.7 fb ⁻¹	8 TeV
f /A4		-	WY.	[-1.3e+02, 1.3e+02]		19.7 fb ⁻¹	8 TeV
T _{M,6} /A		as WW	[-1.2e+01, 1.2e+01]		35.9 fb ⁻¹	13 TeV	
			WV ZV	[-1.3e+00, 1.3e+00]		35.9 fb ⁻¹	13 TeV
f /A ⁴			Wγ	[-1.6e+02, 1.6e+02]		19.7 fb ⁻¹	8 TeV
'M,7	H		ss WW	[-1.3e+01, 1.3e+01]		35.9 fb ⁻¹	13 TeV
1 1			wv zv	[-3.3e+00, 3.3e+00]	1	35.9 fb ⁻¹	13 TeV
16 19	-200 0	200		400	600	2011	800
	200 0	200		400	000		000
				aOGC Limits	@95	% C I	[TeV ⁻⁴
				udado Linno	000	10 U.L	[

1 1

-

Most Stringent limits.

More can be found from the twiki

Limits also set on (d-)charged Higgs

WWW: SM and BSM

Recent updates on SM measurement from both <u>ATLAS</u> (3.3sigma, 79.8fb-1) and <u>CMS</u> (0.6sigma, 35.9fb-1) Direct search for WWW resonance on going, inspired by <u>the model</u>

Future: Deep AK8

DeepAK8

CMS-DP-2017-049

CMS

(13 TeV)

Future: <u>Deep Flavor</u>

Future: <u>Deep Learning on WLWL scattering</u>

More details can be found from talk by <u>Junho Lee (PKU)</u>

WW scattering: Phys. Rev. D 99, 033004 (2019) ZZ scattering and aQGC: to appear soon

Summary

Over the last year(s) many developments happened: deep \rightarrow deeper \rightarrow deepest

Indirect and Direct searches: rich results ahead, new idea welcome!

Background estimation

Signal peaks in both m_{wv} and m_{jet}

 $P_{sig}\left(m_{WV}, m_{jet} \middle| \theta(M_X)\right) = P_{WV}(m_{WV} \middle| \theta_1(M_X)) \times P_j(m_{jet} \middle| \theta_2(M_X))$

Fit both dimensions

double crystal-ball functions, for LP additional exponential is used for m_{iet} mass tail

Interpolate using polynomials as a function of the resonance mass hypothesis (M_x)

Non-resonant background: W+jets

Conditional probability of m_{WV} as function of m_{jet}:

 $P_{W+jets}(m_{WV}, m_{jet}) = P_{WV}(m_{WV}|m_{jet}, \theta_1) \times P_j(m_{jet}|\theta_2)$

- P_{WV} templates created using kernel method starting from particle level, clustering as for reconstructed jets
- Determine scale and resolution as function of true jet p_T (encode uncertainties by varying those)
- Populate templates as sums of 2D gaussian templates in bins of m_{iet}
- Smoothen mWV from 2.5 TeV as function of mWV fitting exponential from 2 TeV to avoid empty bins

4

Background estimation

Resonant background: W+V

Conditional probability of m_{WV} as function of m_{jet}:

 $P_{W+V}(m_{WV}, m_{jet}|\theta) = P_{WV}(m_{WV}|\theta_1) \times P_j(m_{jet}|\theta_2(m_{WV}))$

- P_{WV} templates created using kernel method as for W+jets (1D)
- Smoothen m_{WV} from 1.2 TeV as function of m_{WV} fitting exponential
- m_{jet} template described by W and top mass peaks

5

CMS-B2G-17-001 CMS-EXO-17-001

Mass Decorrelation

In some cases, the new taggers have inconvenient behavior for practical use

- Tagger outputs can sculpt background distributions
 - Do not want to look for peaks on top of peaks

Aim to make NN outputs mass-independent through decorrelation procedures

W+jets Z+jets

77.3 fb⁻¹ (13 TeV)

200 m_{jet1} [GeV]

27

B2G-18-002

QCD Pythia8

The key feature of our approach is that the application of the substructure requirement preserves the shape of the soft-drop jet mass distribution. Improving on the decorrelation procedure proposed in Ref. [62], we apply a DDT (designed decorrelated tagger) transformation of N_2^1 to $N_2^{1,DDT}$. It is defined as $N_2^{1,DDT}(\rho, p_T) \equiv N_2^1(\rho, p_T) - X_{(5\%)}(\rho, p_T)$, where $X_{(5\%)}$ is derived from the simulated N_2^1 distribution and illustrated in Fig. 2] We require events to pass

Adversarial Training

- Version of DeepAK8 applies an adversarial network to penalize the machine for accurately predicting the jet mass
 - Slight loss in performance

CMS-DP-2018-046

