

Implication of Chiral Symmetry on Neutral Weak Pion Production off a Nucleon

DE-LIANG YAO 姚德良

Hunan University

XVIII International Conference on Hadron Spectroscopy and Structure 16-21 August, 2019, Guilin, China

In collaboration with L. Alvarez-Ruso, A. H. Hiller-Blin and M. J. Vicente-Vacas

Phys. Rev. D98 (2018) 076004, Phys. Lett. B794(2019)109-113

De-Liang Yao (Hunan Univ.)

Weak Pion Production off the Nucleon

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ HADRON2019 1 / 20

CONTENTS

Introduction

- Why single pion production?
- Experimental data
- Status of theoretical studies

2 Systematical anslysis in BChPT

- Basics and calculation
- \bullet The inclusion of Δ resonance
- Numerical Results
 - Inputs
 - Cross sections

Summary and Outlook

WHY SINGLE PION PRODUCTION?

Two types of processes: Charged-Current (CC) & Neutral-Current (NC) induced.

 \Box Important contribution to the inclusive neutrino-nuclei (νA) cross section

[Formaggio, Zeller, Rev. Mod. Phys. (2012)]

- **RES**: Predominantly $\Delta(1232)$ excitation $\Longrightarrow \Delta \to \pi N$ (99.4%)
- Prediction by NUANCE generator

WHY SINGLE PION PRODUCTION?

Oscillation experiments (e.g. T2K)

► survival probability of ν_{μ} : $P(\nu_{\mu}) = 1 - \sin^2 2\theta_{\mu\tau} \cdot \sin^2 \frac{\Delta m_{23}L}{E_{\nu}}$

Source of experimental uncertainties

CC 1*π*:

Solution \mathbb{C}^{\otimes} CCQE-like events: misiden. of pion solution to be subtracted for a good E_{ν}

EXPERIMENTAL DATA

イロト イヨト イヨト イヨト

[Formaggio, Zeller, Rev. Mod. Phys. (2012)]

```
De-Liang Yao (Hunan Univ.)
```

EXPERIMENTAL DATA

De-Liang Yao (Hunan Univ.)

Weak Pion Production off the Nucleon

HADRON2019 6 / 20

STATUS OF THEORETICAL STUDIES

Isobar Models

 ${}^{\tiny \mbox{\tiny ISS}}$ Δ and heavier resonances \rightarrow nucleon-to-resonance form factors:

[e.g., Llewellyn Smith, Phys. Rep. 3 (1972)] [Fogli and Nardulli, Nucl. Phys. B160 (1979)] [Rein and Sehgal, Ann. Phys. (1981)]

- Real form factor from quark models
- $\bullet\,$ Conserved vector current $\to\,$ related to electromagnetic ones extracted from electron scattering data
- PCAC \rightarrow off-diagonal Goldberger-Treiman (GT) relation for the axial couplings
- Nonresonant mechanisms

[Fogli and Nardulli, Nucl. Phys. B160 (1979)] [Bijtebier, Nucl. Phys. B21 (1970)] [Alevizos et al., J. Phys. G 3(1977)]

□ Hernandez-Nieves-Valverde (HNV) Model

- $\label{eq:alpha} \Delta \mbox{ resonances } \& \mbox{ non-resonant terms} \rightarrow \mbox{ constrained by chiral symmetry at threshold} \mbox{ [Hernandez, Nieves and Valverde, Phys. Rev. D (2007)]}$
- Final state interaction: imposing Watson's theorem [Alvarez-Ruso et al., Phys. Rev. D 93 (2016)]
- Unphysicsal spin-1/2 components: adding new contact terms

[Hernandez and Nieves, Phys. Rev. D (2017)]

イロト イヨト イヨト イヨト

STATUS OF THEORETICAL STUDIES

Other Models:

- Dynamical model: coupled-channel Lippmann Schwinger equation
 - Fulfilling Watson's theorem
 - PCAC \rightarrow partially constrain the axial current in terms of πN scattering amplitude fitted to data [Nakamura, Kamano and Sato, Phys. Rev. D (2015)]
- ${\it I\!\!S\!\!S}$ Chiral effective model with $\pi,\,N,\,\Delta$ together with $\sigma,\,\rho,\,\omega$
 - Power counting only for tree diagrams

[Serot and Zhang, Phys. Rev. C (2012)]

```
🕸 etc.
```

Low energy regime: Chiral symmetry + Power counting + Perturbative Unitarity

- Baryon Chiral Perturbation Theory (BChPT)
 - Low-Energy theorems (axial only) at threshold using heavy baryon formalism

[Bernard, Kaiser and Meißner, Phys. Lett. B (1994)]

 ${\it \blacksquare}$ Our work: One-loop analyses in relativistic BChPT with explicit $\Delta {\sf s}$

[DLY, Alvarez-Ruso, Hiller-Blin and Vicent-Vacas, Phys. Rev. D (2018)]

イロト イポト イヨト イヨト

[DLY, Alvarez-Ruso and Vicent-Vacas, Phys. Lett. B (2019)]

LEPTONIC AND HADRONIC PARTS

Physical channels (3 for CC & 4 for NC)

Amplitude structure:

- ${\it \ensuremath{\,{\rm \tiny IM}}}$ One-boson approximation and $k^2 \ll M_B^2$
- so Leptonic part L_{ν} is well-known; Hadronic part H_{μ} needs to be investigated.

$$=i(2\pi)^{4}\delta^{(4)}(k_{1}+p_{1}-k_{2}-p_{2}-q)\frac{iN^{2}}{M_{B}^{2}}\underbrace{\langle\ell'|J_{\nu}(0)|\ell\rangle\langle\pi N'|J_{\mu}(0)|N\rangle}_{L^{\mu}}$$

イロト イヨト イヨト イヨー

Basics and calculation

CONVENIENT ISOSPIN DECOMPOSITION

□ Isospin even (+), isospin odd (-), isoscalar (0)

 $\langle \pi^b N' | J^a_\mu(0) | N \rangle = \chi^\dagger_f \left[\delta^{ba} H^+_\mu + i \epsilon^{bac} \tau^c H^- + \tau^b H^0_\mu \right] \chi_i$

The physical amplitudes constructed from the isospin amplitudes

 $H_{\mu}(\text{physical process}) = a_{+}H_{\mu}^{+} + a_{-}H_{\mu}^{-} + a_{0}H_{\mu}^{0}$

	Physical Process	a_+	a_{-}	a_0
NC	$Z^0 p o p \pi^0$	1	0	1
	$Z^0 n ightarrow n \pi^0$	1	0	$^{-1}$
	$Z^0 n ightarrow p \pi^-$	0	$-\sqrt{2}$	$\sqrt{2}$
	$Z^0 p \rightarrow n \pi^+$	0	$\sqrt{2}$	$\sqrt{2}$
сс	$W^+p \rightarrow p\pi^+ / W^-n \rightarrow n\pi^-$	1	$^{-1}$	0
	$W^+n \rightarrow n\pi^+ / W^-p \rightarrow p\pi^-$	1	1	0
	$W^+n \rightarrow p\pi^0 / W^-p \rightarrow n\pi^0$	0	$\sqrt{2}$	0

The CC and NC amplitudes are related to each other For CC, $H^{\pm}_{\mu} = \sqrt{2}\cos\theta_C (V^{\pm}_{\mu} - A^{\pm}_{\mu})$, $H^0_{\mu} = 0$. For NC, $H^{\pm}_{\mu} = (1 - 2\sin^2\theta_W)V^{\pm}_{\mu} - A^{\pm}_{\mu}$, $H^0_{\mu} = (-2\sin^2\theta_W)V^0_{\mu}$

THE LAGRANGIAN

- Covariant baryon chiral perturbation theory in SU(2) case.
- Nucleonic Lagrangian

Purely mesonic Lagrangian [Gasser and Leutwyler, Ann. Phys. (1984)] [Gasser et al., Nucl. Phys. B307 (1988)]

$$\mathcal{L}_{\pi} = \frac{F^2}{4} \operatorname{Tr}[\Delta_{\mu} U (\Delta^{\mu} U)^{\dagger} + \chi U^{\dagger} + U \chi^{\dagger}] + \sum_{j=3,4,6} \ell_j \mathcal{O}_j^{(4)}$$

□ Electro-weak interactions enter through external fields [c.f. Scherer and Schindler, 2011, Springer] Iso Charged weak bosons W^{\pm} :

$$r_{\mu} = 0, \quad l_{\mu} = -\frac{g}{\sqrt{2}} (V_{ud} W^{+}_{\mu} \tau_{+} + h.c.)$$

Solution Neural weak boson Z^0 :

$$r_{\mu} = e \tan(\theta_W) Z_{\mu}^0 \frac{\tau_3}{2}, \quad l_{\mu} = -\frac{g}{\cos(\theta_W)} Z_{\mu}^0 \frac{\tau^3}{2} + e \tan(\theta_W) Z_{\mu} \frac{\tau_3}{2},$$
$$v_{\mu}^{(s)} = \frac{e \tan(\theta_W)}{2} Z_{\mu}^0$$

[Fettes et al Ann. Phys. (2000)]

The hadronic amplitude

D Tree diagrams up through $O(p^3)$:

All possible loop diagrams at $O(p^3)$:

89 diagrams & wave function renormalization & EOMS

De-Liang Yao (Hunan Univ.)

Weak Pion Production off the Nucleon

Necessity of the Δ resonance

- △ is strongly coupled to the final πN system
 BR(Δ → πN) ≃ 99.4%
 Close to πN threshold: Δ = m_Δ m_N ~ 300 MeV
 Strategy: the δ-counting [Pascalutsa and Phillips, Phys. Rev. C67 (2012)]
 hierachy of scales: M_π ~ p ≪ Δ ≪ Λ ~ 4πF_π
 expanding parameter: δ = Δ/Λ ~ M_π/Δ ~ p/Δ → 1/p m_Δ = 1/p m_N Δ ~ p^{-1/2}
 Counting rule:
 chiral order D = 4L + ∑_k kV^(k) 2L_π I_N 1/2 I_Δ
 only trees of O(p^{3/2}) and O(p^{5/2})
 - No loop diagrams with explicit Δ up through $O(p^3)$
- The width effect

$$\frac{1}{m_{\Delta}^2 - s_{\Delta}} \to \frac{1}{m_{\Delta}^2 - im_{\Delta}\Gamma_{\Delta}(s_{\Delta}) - s_{\Delta}}$$

Energy dependent width $\Gamma_{\Delta}(s_{\Delta})$ calculated in the same scheme

[Gegelia et al, Phys. Lett. B(2016)]

イロト イポト・イラト イ

Inputs

NUMERICAL SETTINGS

Data for neutrino-induced single pion production off nucleons are very rare Values of the leading order constants

イロト イボト イヨト イヨ

LOW ENERGY CONSTANTS BEYOND LO

Most of the LECs (16 out of 23) are previously determined from other processes or observables

	LEC	Value	Source		
$\mathcal{L}_{\pi\pi}^{(4)}$	$\bar{\ell}_6$	16.5 ± 1.1	$\langle r^2 angle_\pi$ [Gasser, Leutwyler 1984]		
	\tilde{c}_1	-1.00 ± 0.04			
\tilde{c}_2	\tilde{c}_2	1.01 ± 0.04	πN scattering (AL		
$\mathcal{L}_{\pi N}^{(2)}$	\tilde{c}_3	-3.04 ± 0.02	11 Scattering [Alarcon et al. 2013 & Chen et al. 2013]		
71.1 V	\tilde{c}_4	2.02 ± 0.01			
	\tilde{c}_6	1.35 ± 0.04	u and u to the set of pressed		
	$ ilde{c}_7$	-2.68 ± 0.08	μ_p and μ_n [Bauer et al. 2012 & PDG2016]		
	d_{1+2}^{r}	0.15 ± 0.20			
${\cal L}_{\pi N}^{(3)}$	d_3^r	-0.23 ± 0.27	πN scattering [Alarcon et al. 2013 & Chen et al. 2013]		
	$d_5^{\breve{r}}$	0.47 ± 0.07			
	d_{14-15}^{r}	-0.50 ± 0.50			
	d_{18}^{r}	-0.20 ± 0.80			
	$\tilde{d_6^r}$	-0.70	/m ² \		
	d_7^r	-0.47	$\langle T_E \rangle N$ [Fuchs et al. 2014]		
	d_{22}^{r}	0.96 ± 0.03	$\langle r_A^2 angle_N$ [Yao et al. 2017]		
$\mathcal{L}^{(2)}_{\pi N\Delta}$	b_1	$(4.98 \pm 0.27)/m_N$	$\Gamma^{ ext{em}}_{\Delta}$ [Bernard et al 2012]		
The remaining unknown LECs $ ightarrow$ set to natural size					

 $d_j^r = 0.0 \pm 1.0 \text{ GeV}^{-2} , \quad j \in \{1, 8, 9, 14, 20, 21, 23\}$

De-Liang Yao (Hunan Univ.)

Weak Pion Production off the Nucleon

Cross sections for $CC1\pi$

 \square Fairly good agreement with the ANL data for most of the channels except for $\nu_\mu n \to \mu^- n \pi^+$

De-Liang Yao (Hunan Univ.)

Weak Pion Production off the Nucleon

HADRON2019 16 / 20

Cross sections for $CC1\pi$

- Order by order

 - ${\it \ensuremath{\mathbb{R}}}$ Next-order effects could still be relevant (especially loops that πN can be put on-shell)

De-Liang Yao (Hunan Univ.)

Cross sections for $NC1\pi$

- ❑ The O(p³) ChPT calculation produces considerably larger cross sections with respect to the HNV model in all reaction channels
- Nuwro and GIENE results agree with the ChPT ones with ∆ contribution

Non-resonant contribution is sizeable, not accounted by Nuwro and GIENE

De-Liang Yao (Hunan Univ.)

Weak Pion Production off the Nucleon

HADRON2019 18 / 20

SUMMARY AND OUTLOOK

- **\Box** Systematically study the weak single pion production off the nucleon for the first time within covariant BChPT up to $O(p^3)$ with explicit Δs
 - \blacksquare The Δ -mechanism contributes significantly to all production channels
 - so $NC1\pi$: Non-resonant contribution is sizeable which is not implemented in events generators like NuWro and GIENE
 - Provide a well-founded low energy benchmark for phenomenological models aimed at the description of weak pion production in the broad kinematic range of interest for current and future neutrino-oscillation expriments

□ Future application and improvement

- Applied to study various low-energy theorems
- Applied to study electro-pion production for which there exists a wealth of experimental data and more LECs can be determined
- 🕸 etc

イロト イヨト イヨト イヨト

メロト メポト メヨト メヨト