$\pi\pi$ and $K\pi$ scattering amplitudes from lattice QCD

Marcus Petschlies

Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Willhelms-Universität Bonn

Hadron 2019 Hadron decays, production and interactions

Guilin Bravo Hotel Aug 20 2019

・ロト ・ 一下・ ・ ヨト ・ ヨ

Outline

1 Introduction

- **(2)** $\pi\pi$ Scattering analysis
- (3) $K\pi$ Scattering analysis

Outlook

LHPC - Cyprus - Bonn connection

- Stefan Meinel, Gumaro Rendon* (U Arizona)
- John W. Negele, Andrew Pochinsky (MIT)
- Luka Leskovec (JLab)
- Sergey Syritsyn (RIKEN BNL & Stony Brook U)
- Constantia Alexandrou, Srijit Paul (U Cyprus & Cyl)
- Giorgio Silvi, Stefan Krieg (FZJ, U Wuppertal)
- M. P. (U Bonn)
- * Lattice 2019

<ロ> (日) (日) (日) (日) (日)

Outline

1 Introduction

- (2) $\pi\pi$ Scattering analysis
- 3 $K\pi$ Scattering analysis

4 Outlook

<ロ> (日) (日) (日) (日) (日)

Motivation — $\pi\pi$ and $K\pi$ scattering

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Motivation — $\pi\pi$ and $K\pi$ scattering

• $\pi\pi$ *P*-wave scattering with *I* = 1, featuring ρ

Motivation — $\pi\pi$ and $K\pi$ scattering

- $\pi\pi$ *P*-wave scattering with I = 1, featuring ρ
- $K\pi$ S- and P-wave scattering with I = 1/2, featuring K^*

・ロト ・ 同ト ・ ヨト ・

• $\pi\gamma^* \rightarrow (\rho \rightarrow \pi\pi)$

constraints on hadronic light-by-light scattering contribution to muon g-2 (dispersive approach)

ヘロト 人間 とくほ とくほ とう

• $\pi\gamma^* \rightarrow (\rho \rightarrow \pi\pi)$

constraints on hadronic light-by-light scattering contribution to muon g-2 (dispersive approach)

• $K\gamma^* \rightarrow (K^*(892) \rightarrow K\pi)$ radiative transition of K^*

- $\pi\gamma^* \rightarrow (\rho \rightarrow \pi\pi)$ constraints on hadronic light-by-light scattering contribution to muon g - 2 (dispersive approach)
- $K\gamma^* \rightarrow (K^*(892) \rightarrow K\pi)$ radiative transition of K^*
- $B
 ightarrow (
 ho
 ightarrow \pi \pi) \ \ell \ ar{
 u}_{\ell}$ constraints on V_{ub} CKM matrix element
- $B \rightarrow (K^*(892) \rightarrow K\pi) \ell \ell$

constraints on new physics models involving Z' gauge bosons, leptoquarks

イロト 不得 トイヨト イヨト 三日

- $\pi\gamma^* \rightarrow (\rho \rightarrow \pi\pi)$ constraints on hadronic light-by-light scattering contribution to muon g - 2 (dispersive approach)
- $K\gamma^* \rightarrow (K^*(892) \rightarrow K\pi)$ radiative transition of K^*
- $B
 ightarrow (
 ho
 ightarrow \pi \pi) \ \ell \ ar{
 u}_{\ell}$ constraints on V_{ub} CKM matrix element
- $B \rightarrow (K^*(892) \rightarrow K\pi) \ell \ell$

constraints on new physics models involving Z' gauge bosons, leptoquarks

- $D \rightarrow (\rho \rightarrow \pi \pi) \ \ell \ \bar{\nu}$
- $D \rightarrow (K^*(892) \rightarrow K\pi) \ell \ell$ $|V_{cd}|, |V_{cs}|$ known to high precision \Rightarrow laboratories for lattice calculation

- $\pi\gamma^* \rightarrow (\rho \rightarrow \pi\pi)$ constraints on hadronic light-by-light scattering contribution to muon g - 2 (dispersive approach)
- $K\gamma^* \rightarrow (K^*(892) \rightarrow K\pi)$ radiative transition of K^*
- $B
 ightarrow (
 ho
 ightarrow \pi \pi) \ \ell \ ar{
 u}_{\ell}$ constraints on V_{ub} CKM matrix element
- $B \rightarrow (K^*(892) \rightarrow K\pi) \ell \ell$

constraints on new physics models involving Z' gauge bosons, leptoquarks

- $D \to (\rho \to \pi \pi) \ \ell \ \bar{\nu}$
- $D \rightarrow (K^*(892) \rightarrow K\pi) \ell \ell$ $|V_{cd}|, |V_{cs}|$ known to high precision \Rightarrow laboratories for lattice calculation

Scattering amplitudes to convert finite-volume \rightarrow infinite-volume transition amplitudes (Lellouch-Lüscher factor [Commun.Math.Phys. 219 (2001) 31-44])

Motivation — $K\pi$ scattering with I = 1/2

- $K_0^*(700) \ I(J^P) = 1/2(0^+)$ (or κ , $K_0^*(800)$) needs confirmation
- $K\pi$ scattering excludes above 825 MeV [Cherry, Pennington, Nucl.Phys. A688 (2001) 823-841]
- reported in production channels $J/\psi \rightarrow K^+\pi^-K^-\pi^+$ and $D \rightarrow K\pi\pi$ from BES and E791 [Bugg, Eur.Phys.J. A25 (2005) 107-114, Phys.Lett. B632 (2006) 471-474]

Motivation — $K\pi$ scattering with I = 1/2

- $K_0^*(700) I(J^P) = 1/2(0^+)$ (or κ , $K_0^*(800)$) needs confirmation
- $K\pi$ scattering excludes above 825 MeV [Cherry, Pennington, Nucl.Phys. A688 (2001) 823-841]
- reported in production channels $J/\psi \rightarrow K^+\pi^-K^-\pi^+$ and $D \rightarrow K\pi\pi$ from BES and E791 [Bugg, Eur.Phys.J. A25 (2005) 107-114, Phys.Lett. B632 (2006) 471-474]

(日)

LQCD methods now enable study of quark mass dependence towards physical pion mass [Wilson et al., Phys.Rev.Lett. 123 (2019) no.4, 042002; Brett et al., Nucl. Phys. B932 (2018), p. 29-51]

• Discretized, finite-volume Euclidean space, reduced rotational symmetry

・ロト ・日 ・ ・ ヨ ・ ・

• Discretized, finite-volume Euclidean space, reduced rotational symmetry

 Lattice Hamiltonian with real, discrete spectrum (Maiani-Testa No-Go Theorem [Phys.Lett. B245 (1990) 585-590])

イロト イヨト イヨト イ

• Discretized, finite-volume Euclidean space, reduced rotational symmetry

- Lattice Hamiltonian with real, discrete spectrum (Maiani-Testa No-Go Theorem [Phys.Lett. B245 (1990) 585-590])
- Lattice simulations allow /require variation of
 - quark masses / pion mass
 - Lattice volume L³
 - Lattice spacing (discretization artifacts)

・ロト ・ 一 ト ・ ヨト ・

• Discretized, finite-volume Euclidean space, reduced rotational symmetry

- Lattice Hamiltonian with real, discrete spectrum (Maiani-Testa No-Go Theorem [Phys.Lett. B245 (1990) 585-590])
- Lattice simulations allow /require variation of
 - quark masses / pion mass
 - Lattice volume L³
 - Lattice spacing (discretization artifacts)
- QCD-unstable states (e.g. ρ , K^* ...)
- Lüscher Quantization condition: lattice spectrum → scattering amplitudes

$$\det \left[\mathcal{M}^{-1} \left(\boldsymbol{E}^*, \vec{\boldsymbol{P}}, \boldsymbol{L} \right) + T \left(\boldsymbol{E}^* \right) \right] = 0$$

Marcus Petschlies (HISKP)

HADRON2019 8 / 29

Outline

Introduction

- **2** $\pi\pi$ Scattering analysis
- 3 $K\pi$ Scattering analysis

4 Outlook

Lüscher formalism

Infinite-volume scattering amplitudes \Leftarrow finite-volume lattice spectrum

Lattice irreducible operator basis for variational analysis ρ , $\pi\pi$ isospin-1 Correlation matrix of 2-point functions

$$\begin{split} C_{ij}(t, \vec{P}) &= \langle O_i(t, \vec{P}) \ O_j(0, \vec{P})^{\dagger} \rangle \\ O_{\bar{q}q} &= \sum_{\vec{x}} e^{i \vec{P} \cdot \vec{x}} \vec{u}(\vec{x}) \Gamma d(\vec{x}), \quad \Gamma = \gamma_i, \gamma_0 \gamma_i \\ O_{\pi\pi} &= \frac{1}{\sqrt{2}} (\pi^+(\vec{p}_1) \pi^0(\vec{p}_2) - \pi^+(\vec{p}_2) \pi^0(\vec{p}_1)) \\ O_{K\bar{K}} &= K^+(\vec{p}_1) \bar{K}^0(\vec{p}_2), \quad \vec{p}_1 + \vec{p}_2 = \vec{P} \end{split}$$

HADRON2019

11 / 29

Lattice irreducible operator basis for variational analysis ρ , $\pi\pi$ isospin-1 Correlation matrix of 2-point functions

$$egin{aligned} & F_{ij}(t,\,ec{P}) = \langle O_i(t,\,ec{P}) \; O_j(0,\,ec{P})^\dagger
angle \ & O_{ar{q}q} = \sum_{ec{x}} e^{iec{P}\cdotec{x}} ar{u}(ec{x}) \Gamma d(ec{x}), \quad \Gamma = \gamma_i, \gamma_0 \gamma_i \ & O_{\pi\pi} = rac{1}{\sqrt{2}} (\pi^+(ec{p}_1)\pi^0(ec{p}_2) - \pi^+(ec{p}_2)\pi^0(ec{p}_1)) \ & O_{Kar{K}} = K^+(ec{p}_1)ar{K}^0(ec{p}_2), \quad ec{p}_1 + ec{p}_2 = ec{P} \end{aligned}$$

・ロト ・ 日 ・ ・ 目 ・ ・

Lattice irreducible operator basis for variational analysis ρ , $\pi\pi$ isospin-1 Correlation matrix of 2-point functions

$$egin{aligned} & G_{ij}(t,\,ec{P}) = \langle O_i(t,ec{P}) \; O_j(0,ec{P})^\dagger
angle \ & O_{ar{q}q} = \sum_{ec{x}} e^{iec{P}\cdotec{x}} ar{u}(ec{x}) \Gamma d(ec{x}), \quad \Gamma = \gamma_i, \gamma_0 \gamma_i \ & O_{\pi\pi} = rac{1}{\sqrt{2}} (\pi^+(ec{p}_1)\pi^0(ec{p}_2) - \pi^+(ec{p}_2)\pi^0(ec{p}_1)) \ & O_{Kar{K}} = K^+(ec{p}_1) ar{K}^0(ec{p}_2), \quad ec{p}_1 + ec{p}_2 = ec{P} \end{aligned}$$

・ロ・・ 日本・ ・ 田 ・ ・

Quark propagators from numerically solving the lattice Dirac equation

 $DS = \eta$, huge sparse linear system

Solve the Generalized Eigenvalue Problem

$$\sum_{j} C_{ij}(t) u_{j}^{n} = \lambda_{n}(t, t_{0}) \sum_{j} C_{ij}(t_{0}) u_{j}^{n}$$
$$\lambda_{n}(t, t_{0}) \propto e^{-E_{n} t} \quad \text{for large } t$$

Lattice irreducible operator basis for variational analysis ρ , $\pi\pi$ isospin-1

・ロト ・ 日 ・ ・ 目 ・ ・

Lattice irreducible operator basis for variational analysis ρ , $\pi\pi$ isospin-1

Lattice irreducible operator basis for variational analysis ρ , $\pi\pi$ isospin-1

$\vec{P}\left[\frac{2\pi}{L}\right]$	$LG(\vec{P})$	Irrep Λ	l
(0, 0, 0)	O_h	T_1^-	$1^{-}, 3^{-}, \dots$
(0, 0, 1)	C_{4v}	A_2^-	$1^{-}, 3^{-}, \ldots$
(0, 0, 1)	C_{4v}	E	1-,3-,
(0, 1, 1)	C_{2v}	B_1^-	$1^{-}, 3^{-}, \dots$
(0, 1, 1)	C_{2v}	B_2^-	$1^{-}, 3^{-}, \ldots$
(0, 1, 1)	C_{2v}	B_3^-	$1^{-}, 3^{-}, \dots$
(1, 1, 1)	C _{3v}	A_2^-	1-,3-,
(1, 1, 1)	C_{3v}	E^{-}	$1^{-}, 3^{-}, \dots$

 $\pi\pi$ I = 1 elastic *P*-wave phase shift [Phys.Rev. D96 (2017) no.3, 034525]

 $N_f = 2 + 1$ isotropic, clover-improved Wilson [K. Orginos et al.]

Label	a / fm	L/fm	m_{π}/MeV	$m_K/{ m MeV}$	$m_{\pi} L$
C13	0.11403 (77)	3.649 (25)	pprox 317	pprox 530	5.865 (32)

 $\pi\pi$ I = 1 elastic *P*-wave phase shift [Phys.Rev. D96 (2017) no.3, 034525]

 $N_f = 2 + 1$ isotropic, clover-improved Wilson [K. Orginos et al.]

Label	a / fm	L/fm	m_{π}/MeV	$m_K/{ m MeV}$	$m_{\pi} L$
C13	0.11403 (77)	3.649 (25)	pprox 317	pprox 530	5.865 (32)

BWI
$$\Gamma_{I}(s) = \frac{g_{\rho\pi\pi}^{2} k^{3}}{6\pi s}$$

BWII $\Gamma_{II}(s) = \frac{g_{\rho\pi\pi}^{2} k^{3}}{6\pi s} \frac{1 + (k_{R}r_{0})^{2}}{1 + (k_{R}r_{0})^{2}}$

 $\pi\pi$ I = 1 elastic *P*-wave phase shift [Phys.Rev. D96 (2017) no.3, 034525]

 $N_f = 2 + 1$ isotropic, clover-improved Wilson [K. Orginos et al.]

Label	a / fm	L/fm	m_{π}/MeV	m_K/MeV	$m_{\pi} L$
C13	0.11403 (77)	3.649 (25)	pprox 317	≈ 530	5.865 (32)

<ロ> (日) (日) (日) (日) (日)

Probing non-resonant background contributions

Model	$\frac{\chi^2}{dof}$	$am_{ ho}$	g _{ρππ}		
NR I	0.586	0.4600(19)(13)	5.74 (17) (14)	$A = 0.16(31)(18)^{\circ}$	
NR II	0.488	0.4602(19)(13)	5.84 (21) (20)	$A = -2.9(2.7)(3.4)^{\circ}$	$a^{-2}B = 19.2 (16.6) (20.1)^{\circ}$
NR III	0.552	0.4601 (19) (13)	5.74 (16) (13)	$aa_{1}^{-1} = -19.8(27.4)(98.1)$	

const (NR I), linear (NR II) and $\delta_1^{NR}(s) = \operatorname{arccot} \left(2a_1^{-1}/\sqrt{s-s_{\text{thresh}}}\right)$ (NR III)

Marcus Petschlies (HISKP)

Comparison of ρ resonance parameters for $N_f = 2 + 1$, 2 + 1 + 1 quark flavors

Marcus Petschlies (HISKP)

HADRON2019 15 / 29

Comparison of ρ resonance parameters for $N_f = 2 + 1$, 2 + 1 + 1 quark flavors

 $g_{\rho\pi\pi}$

Outline

Introduction

- (2) $\pi\pi$ Scattering analysis
- (3) $K\pi$ Scattering analysis

4 Outlook

$K\pi$ interpolators and diagrams

$$\begin{aligned} \mathcal{K}_{i}^{*+}(p) &= \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}}\overline{s}(x)\gamma_{i}u(x), \quad \mathcal{K}_{ti}^{*+}(p) = \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}}\overline{s}(x)\gamma_{t}\gamma_{i}u(x) \\ \mathcal{K}_{0}^{+}(p) &= \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}}\overline{s}(x)u(x) \end{aligned}$$

$$\mathcal{O}_{\mathcal{K}\pi}\left(ec{p}_{1},ec{p}_{2}
ight) = \sqrt{rac{2}{3}}\,\pi^{+}(ec{p}_{1})\,\mathcal{K}^{0}(ec{p}_{2}) - \sqrt{rac{1}{3}}\,\pi^{0}(ec{p}_{2})\,\mathcal{K}^{+}(ec{p}_{1})$$

$K\pi$ interpolators and diagrams

$$\begin{aligned} \mathcal{K}_{i}^{*+}(p) &= \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \overline{s}(x)\gamma_{i}u(x), \quad \mathcal{K}_{ti}^{*+}(p) = \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \overline{s}(x)\gamma_{t}\gamma_{i}u(x) \\ \mathcal{K}_{0}^{+}(p) &= \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \overline{s}(x)u(x) \end{aligned}$$

$$O_{K\pi}\left(ec{p}_{1},ec{p}_{2}
ight) = \sqrt{rac{2}{3}}\,\pi^{+}(ec{p}_{1})\,\mathcal{K}^{0}(ec{p}_{2}) - \sqrt{rac{1}{3}}\,\pi^{0}(ec{p}_{2})\,\mathcal{K}^{+}(ec{p}_{1})$$

*ロト *部ト * ヨト * ヨ

$K\pi$ system lattice irreducible representations

$\vec{P}\left[\frac{2\pi}{L}\right]$	Little Group (<i>LG^P</i>)	irrep $(\Lambda^{\vec{P},r})$	spin content	dimension
(0,0,0)	O_h	A_{1g}	J=0,4,	1
(0,0,0)	O_h	T_{1u}	J=1,3,	3
(0, 0, 1)	C_{4v}	$A_1(A_2)$	J=0,1,	1
(0, 0, 1)	C_{4v}	E	J=1,2,	2
(0, 1, 1)	C_{2v}	$A_1(B_3)$	J=0,1,	1
(0,1,1)	C_{2v}	B_1	J=1,2,	1
(0,1,1)	C_{2v}	B_2	J=1,2,	1
(1, 1, 1)	C_{3v}	$A_1(A_2)$	J=0,1,	1
(1, 1, 1)	C_{3v}	E	J=1,2,	2

[Leskovec, Prelovsek, Phys. Rev. D85 (2012), p. 114507]

・ロト ・四ト ・ヨト ・ヨ

$K\pi$ system lattice irreducible representations

$\vec{P}\left[\frac{2\pi}{L}\right]$	Little Group (<i>LG^P</i>)	irrep (Λ ^{P̃,r})	spin content	dimension
(0,0,0)	O_h	A_{1g}	J=0,4,	1
(0,0,0)	O_h	T_{1u}	J=1,3,	3
(0, 0, 1)	C_{4v}	$A_1(A_2)$	J=0,1,	1
(0, 0, 1)	C_{4v}	E	J=1,2,	2
(0, 1, 1)	C_{2v}	$A_1(B_3)$	J=0,1,	1
(0,1,1)	C_{2v}	B_1	J=1,2,	1
(0,1,1)	$C_{2\nu}$	B_2	J=1,2,	1
(1, 1, 1)	C_{3v}	$A_1(A_2)$	J=0,1,	1
(1,1,1)	C_{3v}	E	J=1,2,	2

[Leskovec, Prelovsek, Phys. Rev. D85 (2012), p. 114507]

$$\vec{P}_{K\pi} = \frac{2\pi}{L} (0,0,1), \quad \Lambda = A_1: \\ \left(\left(\mathbf{K}_{00}^{\ell=0} \right)^{-1} - w_{0,0}^{\vec{P}_{K\pi}} \right) \left(\left(\mathbf{K}_{0,0}^{\ell=1} \right)^{-1} - w_{0,0}^{\vec{P}_{K\pi}} - 2w_{2,0}^{\vec{P}_{K\pi}} \right) - 3(w_{1,0}^{\vec{P}_{K\pi}})^2 = 0$$

・ロト ・四ト ・ヨト ・ヨ

$K\pi$ leading *P*-wave only

Label	$N_L^3 \times N_t$	a (fm)	L (fm)	m_{π} (MeV)	m_K (MeV)	N _{config}
C13	$32^3 \times 96$	0.11403(77)	3.65	317(2)	527(4)	896
D6	$48^3 \times 96$	0.08766(79)	4.21	178(2)	514(5)	328

"Inverse Lüscher" approach:

▲□ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲

"Inverse Lüscher" approach:

 choose a parametrization for the K matrix

イロト イヨト イヨト イ

"Inverse Lüscher" approach:

- choose a parametrization for the K matrix
- given K-matrix parameter set + Quantization condition ⇒ predict the finite-volume lattice spectrum

<ロト < 同ト < 三ト <

"Inverse Lüscher" approach:

- choose a parametrization for the K matrix
- given K-matrix parameter set + Quantization condition ⇒ predict the finite-volume lattice spectrum
- fit *K*-matrix model parameters to lattice spectrum

<ロト < 同ト < 三ト <

"Inverse Lüscher" approach:

- choose a parametrization for the K matrix
- given K-matrix parameter set + Quantization condition ⇒ predict the finite-volume lattice spectrum
- fit *K*-matrix model parameters to lattice spectrum
- recover phase shifts, investigate *T*-matrix poles

<ロト < 同ト < 三ト <

"Inverse Lüscher" approach:

- choose a parametrization for the K matrix
- given K-matrix parameter set + Quantization condition ⇒ predict the finite-volume lattice spectrum
- fit *K*-matrix model parameters to lattice spectrum

・ロト ・ 同ト ・ ヨト ・

- recover phase shifts, investigate *T*-matrix poles
- probe systematic uncertainty from dependence on chosen parametrization

Combined S- and P-wave analysis - (I) Chung's parametrization

Single *K*-matrix pole: [Chung et al., Annalen Phys. 4 (1995), p. 404-430]

$$K_{00}=\frac{g^2(s)}{m_R^2-s}$$

$$g(s) = g^0 B^\ell(q, q_R) \sqrt{\rho_{00}}$$

[Aston et al., Nucl. Phys. B296 (1988), p. 493-526]

Combined S- and P-wave analysis — (I) Chung's parametrization

Single K-matrix pole: [Chung et al., Annalen Phys. 4 (1995), p. 404-430]

$$K_{00}=\frac{g^2(s)}{m_R^2-s}$$

$$g(s) = g^0 B^\ell(q,q_R) \sqrt{
ho_{00}}$$

S-wave poles:

 $m_{\pi} = 317 \,\mathrm{MeV}: \ (1.11 \pm 0.03) \,\mathrm{GeV} \ , \ (-0.14 \pm 0.04) \,\mathrm{GeV}$

 $m_{\pi} = 178 \, {\rm MeV}$:

$$(1.37 \pm 0.27) \, {
m GeV} \,, \, (-0.39 \pm 0.19) \, {
m GeV}$$

[Aston et al., Nucl. Phys. B296 (1988), p. 493-526]

Combined S- and P-wave analysis — (II) parametrizations with Adler zero Bugg's parametrization:

$$\hat{\mathcal{K}}_{00}^{(\ell=0)} = rac{g^2(s)}{m_R^2 - s}$$

 $g(s) = g^0 \sqrt{(s - s_A)} \sqrt{
ho_{00}} \, k^\ell \,, \quad s_A \approx m_K^2 - m_\pi^2/2$

[Bugg, Phys. Rev. D81 (2010), p. 014002]

・ロト ・部 ト ・ ヨト ・ ヨト

Combined S- and P-wave analysis — (II) parametrizations with Adler zero Bugg's parametrization:

$$\hat{K}_{00}^{(\ell=0)} = rac{g^2(s)}{m_R^2 - s}$$

 $g(s) = g^0 \sqrt{(s - s_A)} \sqrt{
ho_{00}} \, k^\ell \,, \quad s_A \approx m_K^2 - m_\pi^2/2$

[Bugg, Phys. Rev. D81 (2010), p. 014002]

Conformal mapping:

$$(\mathcal{K}_{00}^{(\ell)})^{-1} = \cot \delta_{\ell}(s) = \frac{\sqrt{s}}{2k^{2\ell+1}}F(s)\sum_{n}B_{n}\omega^{n}(s)$$

$$F(s) = 1/(s - s_{A}) \quad \text{for } S \text{ wave}$$

$$\omega(y) = \frac{\sqrt{y} - \alpha\sqrt{y_{0} - y}}{\sqrt{y} + \alpha\sqrt{y_{0} - y}}, \quad y(s) = \left(\frac{s - \Delta_{K\pi}}{s + \Delta_{K\pi}}\right)^{2}$$

$$\Delta_{K\pi} = m_{K}^{2} - m_{\pi}^{2}$$

[Peláez, Rodas, Phys. Rev. D93.7 (2016), p. 074025]

・ロット (雪) (日) (日) (日)

Combined S- and P-wave analysis — (II) parametrizations with Adler zero

Combined S- and P-wave analysis - (II) parametrizations with Adler zero

S- and P-wave T-matrix poles

$m_{\pi} [\mathrm{MeV}]$	Model	T-matrix Poles [GeV]	χ^2/dof
317	Conformal Mapping	S-wave: $(0.841, -0.329) \pm (0.149, 0.081)$ P-wave: $(0.895, -0.00250) \pm (0.006, 0.00021)$	0.758
	Bugg's parametrization	S-wave: $(0.840, -0.342) \pm (0.077, 0.044)$ P-wave: $(0.895, -0.00250) \pm (0.006, 0.00021)$	0.757
178	Conformal mapping	S-wave: $(0.712, -0.440) \pm (0.040, 0.081)$ P-wave: $(0.872, -0.013) \pm (0.008, 0.001)$	1.01
	Bugg's parametrization	S-wave: $(0.711, -0.297) \pm (0.074, 0.029)$ P-wave: $(0.872, -0.013) \pm (0.008, 0.001)$	1.39

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Outline

Introduction

- (2) $\pi\pi$ Scattering analysis
- 3 $K\pi$ Scattering analysis

・ロト ・四ト ・ヨト ・ヨ

• $\pi\pi$ @ $m_{\pi} = 178 \,\mathrm{MeV}$

- $\pi\pi$ @ $m_{\pi} = 178 \,\mathrm{MeV}$
- coupled channel analysis $\pi\pi K\bar{K}$ and $K\pi K\eta$

▲□▶ ▲□▶ ▲ □▶ ▲ □

- $\pi\pi$ @ $m_{\pi} = 178 \,\mathrm{MeV}$
- coupled channel analysis $\pi\pi K\bar{K}$ and $K\pi K\eta$
- \bullet resonant transition amplitudes ($~``1 \rightarrow 2"$)
- resonance form factors

・ロト ・ 一下・ ・ ヨト ・ ヨ

- $\pi\pi$ @ $m_{\pi} = 178 \,\mathrm{MeV}$
- coupled channel analysis $\pi\pi K\bar{K}$ and $K\pi K\eta$
- \bullet resonant transition amplitudes ($~``1 \rightarrow 2"$)
- resonance form factors
- reduction of statistical uncertainty

- $\pi\pi$ @ $m_{\pi} = 178 \,\mathrm{MeV}$
- coupled channel analysis $\pi\pi K\bar{K}$ and $K\pi K\eta$
- \bullet resonant transition amplitudes ($~``1 \rightarrow 2"$)
- resonance form factors
- reduction of statistical uncertainty
- $K\pi\pi$ interpolators, 3-particle quantization

・ロト ・ 一 ト ・ ヨト ・

Acknowlegements — The Machines

National Energy Research Scientific Computing Center, Cori @ NERSC

Gauss-Center for Supercomputing, SuperMUC @ LRZ Munich

Thank you very much for your attention.

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

$$C_{L}\left(x_{4}-y_{4},\vec{P}\right)=\int_{L}d^{3}x\int_{L}d^{3}y\,\mathrm{e}^{i\vec{P}(\vec{x}-\vec{y})}\left[\left\langle 0\,|\,\mathrm{T}\,\mathcal{A}(x)\,\mathcal{B}^{\dagger}(y)\,|\,0\right\rangle\right]_{L}$$

$$\begin{split} C_L \left(x_4 - y_4, \vec{P} \right) &= \int\limits_L d^3 x \int\limits_L d^3 y \, \mathrm{e}^{i \vec{P}(\vec{x} - \vec{y})} \, \left[\langle 0 \, | \, \mathrm{T} \, \mathcal{A}(x) \, \mathcal{B}^{\dagger}(y) \, | \, 0 \rangle \right]_L \\ &= L^6 \sum\limits_n \langle 0 \, | \, \mathcal{A}(0) \, | \, E_n, \vec{P}, L \rangle \, \langle E_n, \vec{P}, L \, | \, \mathcal{B}^{\dagger}(0) \, | \, 0 \rangle \, \mathrm{e}^{-E_n \, (x_4 - y_4)} \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$= L^{3} \int \frac{dP_{4}}{2\pi} e^{iP_{4}(x_{4}-y_{4})} \left[C_{\infty}(P) + A^{*}(P) \left[\mathcal{M}^{-1}(P,L) + T(P) \right]^{-1} B^{*}(P) \right] \right]$$

$$\begin{split} C_L\left(x_4 - y_4, \vec{P}\right) &= \int\limits_L d^3x \int\limits_L d^3y \, \mathrm{e}^{i\vec{P}(\vec{x} - \vec{y})} \, \left[\langle 0 \, | \, \mathrm{T}\,\mathcal{A}(x)\,\mathcal{B}^{\dagger}(y) \, | \, 0 \rangle \right]_L \\ &= L^6 \sum\limits_n \langle 0 \, | \, \mathcal{A}(0) \, | \, E_n, \vec{P}, L \rangle \, \langle E_n, \vec{P}, L \, | \, \mathcal{B}^{\dagger}(0) \, | \, 0 \rangle \, \mathrm{e}^{-E_n \, (x_4 - y_4)} \end{split}$$

$$= L^{3} \int \frac{dP_{4}}{2\pi} e^{iP_{4}(x_{4}-y_{4})} \left[C_{\infty}(P) + A^{*}(P) \left[\mathcal{M}^{-1}(P,L) + T(P) \right]^{-1} B^{*}(P) \right]$$

$$\mathcal{M}_{\ell m;\ell'm'}(P,L) = \left[\frac{1}{L^3}\sum_{\vec{k}} -\int \frac{d^3k}{(2\pi)^3}\right] \frac{4\pi Y_{\ell m}(\hat{k}^*) Y_{\ell'm'}^*(\hat{k}^*)}{2\omega_k 2\omega_{P-k} (E-\omega_k-\omega_{P-k}+i\epsilon)} \left(\frac{k^*}{q^*}\right)^{\ell+\ell'}$$
$$\mathbf{0} = \det\left[\mathcal{M}^{-1}\left(E_n,\vec{P};L\right) + T(E_n)\right]$$

Lüscher Quantization Condition

Motivation - CKM matrix element V_{ub}

• precision of V_{ub} limited by tension between

- exclusive *B*-decay, $B
 ightarrow \pi \, l \, ar{
 u}$ and
- inclusive *B*-decays, $B \rightarrow X_u \, I \, \bar{\nu}$
- $B
 ightarrow (
 ho
 ightarrow \pi \pi) \, / \, ar{
 u}$ sensitive probe for transition $b
 ightarrow u \, / \, ar{
 u}$
- experiment: Babar and Belle Collaborations
- needs matrix element $\langle \pi\pi \mid \bar{u} \, \Gamma \, b \mid B \rangle$ from lattice QCD

▲□▶ ▲□▶ ▲ □▶ ▲ □

Motivation - $\pi\gamma ightarrow \pi\pi$ and muon g-2 @ HLbL

$$\begin{split} \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(M_{\pi}^{2},q_{1}^{2},q_{2}^{2}) &= \mathcal{F}_{vs}(q_{1}^{2},q_{2}^{2}) + (q_{1}\leftrightarrow q_{2}) \\ \mathcal{F}_{vs}(s,0) &= f_{\pi^{0}\gamma}(s) = f_{\pi^{0}\gamma}(0) + \frac{s}{12\pi^{2}}\int_{(2M_{\pi})^{2}}^{\infty} ds' \, \frac{q_{\pi}^{3}(s') \, \left(F_{\pi}^{V}(s')\right)^{*} \, f_{\ell=1}(s')}{s'^{3/2} \, (s'-s)} \\ \mathcal{F}_{\gamma\pi\to\pi\pi} &= \sum_{\text{odd } \ell} \, f_{\ell} \, P_{\ell}' \end{split}$$

[Colangelo et al. 2014, Hoferichter et al. 20012, 2014]

Marcus Petschlies (HISKP)

イロト イヨト イヨト イ