| intro | 1 1101 | <br>02 | <br>1101 | ouin |
|-------|--------|--------|----------|------|
|       |        |        |          |      |
|       |        |        |          |      |
|       |        |        |          |      |
|       |        |        |          |      |
|       |        |        |          |      |
|       |        |        |          |      |
|       |        |        |          |      |
|       |        |        |          |      |
|       |        |        |          |      |
|       |        |        |          |      |
|       |        |        |          |      |

Weak decay of the double-beauty tetraquark

E. Hernández, A. Valcarce (Salamanca) & J. Vijande (Valencia) presented by J.-M. Richard

Institut de Physique des Deux Infinis de Lyon Université de Lyon–IP2I-CNRS Villeurbanne, France

#### Guilin, August 2019





JMR

bbūd

| Intro    | First    | FW | SL | NL | TtoT | Sum |
|----------|----------|----|----|----|------|-----|
| Table of | contents |    |    |    |      |     |

- Introduction
- 2 First estimate
- 3 Framework
- 4 Semi-leptonic
- 5 Non-leptonic decays
- Tetraquark to Tetraquark

#### Summary



- $QQ\bar{q}\bar{q}$  bound below  $(Q\bar{q}) + (Q\bar{q})$  if  $M \gg m$  by chromoelectric effect
- Ader et al. (1981), often rediscovered and/or refined (Heller et al, Rosina et al., Valcarce et al., ...)
- $QQ\bar{u}\bar{d}$  also benefits from a favorable chromomagnetic effect
- ccūd
   ccūd
   perhaps below DD\*. Pionic or γ decay
- *bcūd* probably stable
- *bbūd* almost certainly stable
- Confirmed in the "molecular" approach (Manohar & Wise, ...), QCD SR (Narison, Nielsen, ...)
- And several lattice QCD studies

< ロ > < 同 > < 回 > < 回 >

## Intro First FW SL NL TIOT Sum Rough estimate of the lifetime of $T_{bb}$

- Unlike charm, beauty decays with an almost constant lifetime
- $\tau(B^{\pm}) \sim \tau(B^0) \sim \tau(B_s) \sim \tau(\Lambda_b) \sim 1.5 \, \mathrm{ps}$
- More delicate  $\tau(B_c) \sim 0.5 \, \mathrm{ps}$
- One could naively expect  $\tau(T_{bb}) \sim 1.5 \, \mathrm{ps}$
- Faster? Two b quarks
- Longer  $\tau$ ?
  - Average PS for  $T \rightarrow B + c + X$  less than for  $B \rightarrow c + X$
  - After W emission, cq not always color singlet
- KR estimated  $au \sim$  0.4 ps
- Ali et al.  $au \sim$  0.8 ps
- Xing & Zhu: many "gold" channels identified
- A paper (accepted in PRD!!!): purely SL decay!!!  $au \sim$  0.009 ps

< ロ > < 同 > < 回 > < 回 >

| Intro   | First | FW | SL | NL | TtoT | Sum |
|---------|-------|----|----|----|------|-----|
| Framewo | ork   |    |    |    |      |     |

- Constituent quark model for T<sub>bb</sub> and hadrons in final state
- Usual assumptions for SL and NL decays
- 4-body problem for T<sub>bb</sub>: coupled-channel with in each channel

$$\Psi = \sum_{i} \gamma_{i} \left\{ \exp[-a_{i} \mathbf{x}^{2} - b_{i} \mathbf{y}^{2} - \dots + 2 d_{i} \mathbf{x} \cdot \mathbf{y} + \dots] \right.$$
$$\pm \left( \mathbf{x} \leftrightarrow -\mathbf{x} \right) \pm \left( \mathbf{y} \leftrightarrow -\mathbf{y} \right) \right\}$$

- $\bullet \pm$  according to spin-color-isospin
- where  $x = r_2 r_1$ ,  $y = r_4 r_3$ , and  $z \propto r_3 + r_4 r_1 r_2$
- Diagonal and non-diagonal terms to achieve convergence
- Or (Nakamura et al) use diagonal terms in x, y and z
- and diagonal Gaussians in x', y' and z' and in x'', y'' and z''
- where  $x' = r_3 r_1, ... and x'' = r_4 r_1, ...$
- Color mixing  $\bar{3}3$  and  $6\bar{6}$  unless  $m_Q \gg m_q$
- Diquark approximation not accurate

・ロン ・雪 と ・ ヨ と

| Intro | First    | FW    | SL | NL | TtoT | Sum |
|-------|----------|-------|----|----|------|-----|
| Semi- | lentonic | modes |    |    |      |     |



≣ ⊁ ⊀ ≣ ⊁

| Intro | First                                                                                         | FW                              | SL | NL                                                                  | TtoT    | Sum                |
|-------|-----------------------------------------------------------------------------------------------|---------------------------------|----|---------------------------------------------------------------------|---------|--------------------|
|       |                                                                                               |                                 |    |                                                                     |         |                    |
|       |                                                                                               |                                 |    |                                                                     |         |                    |
|       |                                                                                               |                                 |    |                                                                     |         |                    |
| :     |                                                                                               |                                 |    |                                                                     |         |                    |
|       | Final state                                                                                   | Г [10 <sup>-15</sup> GeV]       |    | Final state                                                         | Г[10-   | <sup>15</sup> GeV] |
|       | $B^{*-} D^{*+} \ell^- \bar{\nu}_{\ell}$<br>$\bar{\mu}_{*}^{0} D^{*0} \ell^- \bar{\nu}_{\ell}$ | $\textbf{9.02}\pm\textbf{0.07}$ |    | $B^{*-} D^{*+} \tau^- \bar{\nu}_{\tau}$                             | 1.55    | ± 0.01             |
|       | $B^* D^{**} \ell^- \nu_\ell$ $B^{*-} D^+ \ell^- \bar{\nu}_\ell$                               |                                 |    | $B^* D^{**} \tau^- \nu_{\tau}$ $B^{*-} D^+ \tau^- \bar{\nu}_{\tau}$ |         |                    |
|       | ${\bar{B^{*}}^{0}} D^{0} \ell^{-} ar{ u}_{\ell}$                                              | $3.59\pm0.03$                   |    | $ar{B^*}^0 D^0 	au^- ar{ u}_	au$                                    | 0.727 : | ± 0.005            |
|       | $B^- D^{*+} \ell^- ar{ u}_\ell$                                                               |                                 |    | $B^- D^{*+} 	au^- ar u_	au$                                         |         | o o o <del>7</del> |





bbūd

| Intro       | First | FW | SL | NL | TtoT | Sum |
|-------------|-------|----|----|----|------|-----|
| <b>KI</b> I |       |    |    |    |      |     |

### Non leptonic decays



| Final state                         | Г [10 <sup>-15</sup> GeV] | Final state                     | Γ [10 <sup>-15</sup> GeV]         |  |
|-------------------------------------|---------------------------|---------------------------------|-----------------------------------|--|
| $B^{*-} D^{*+} D^{-}_{s}$           | $4.00 \pm 0.06$           | $B^{-}_{-}D^{*+}_{s}D^{*-}_{s}$ | $3.15 \pm 0.05$                   |  |
| $ar{B^{*}}^{0} D^{*0} D^{-}_{s}$    |                           | $ar{B^0}  {D^*}^0  {D^*_s}^-$   | 0.10 ± 0.00                       |  |
| $B^{*-} D^{*+} D^{*-}_{s}$          | $650 \pm 0.09$            | $B^{-} D^{+} D^{*-}_{s}$        | 1 20 + 0 02                       |  |
| $ar{B^{*}}^{0}  D^{*0}  D^{*-}_{s}$ | 0.00 ± 0.00               | $ar{B^0}D^0D_s^{*-}$            | 1.20 ± 0.02                       |  |
| $B^{*-} D^{+} D^{-}_{s}$            | $257 \pm 0.04$            | $B^{*-} D^{*+} \rho^{-}$        | $\textbf{3.57} \pm \textbf{0.09}$ |  |
| $ar{B^*}^0$ $D^0$ $D^s$             | 2.07 ± 0.04               | $B^{*-} D^{*+} \pi^{}$          | $\textbf{1.28} \pm \textbf{0.03}$ |  |
| $B^{*-} D^+ D^{*-}_s$               | 2 22 - 0 02               | $B^{*-} D^+  ho^-$              | $1.70\pm0.04$                     |  |
| $\bar{B^{*}}^{0} D^{0} D^{*-}_{s}$  | $2.52 \pm 0.05$           | $B^{*-}D^+\pi^-$                | $\textbf{0.70} \pm \textbf{0.02}$ |  |
| $B^- D^{*+} D^s$                    | 2 78 + 0.05               | $B^- D^{*+}  ho^-$              | $\textbf{2.01} \pm \textbf{0.05}$ |  |
| $\bar{B^0} D^{*0} D^s$              | $2.78 \pm 0.03$           | $B^- D^{*+} \pi^-$              | $\textbf{0.77} \pm \textbf{0.03}$ |  |

121

< ∃⇒

# $T_{bb} \rightarrow T_{bc}$ transitions

For completeness (as sometimes considered as possibly important) Namely  $T_{bb}(1^+)$  decaying with  $T_{bc}(J^P = 0^+)$  in the final state.

SL

NL

TtoT





- Fist comprehensive study of the decay of the  $T_{bb}^{-}$  tetraquark beyond simple guess-by-analogy estimations.
- Total width  $\Gamma\approx 87\times 10^{-15}\,\text{GeV},$
- Lifetime  $\tau \approx$  7.6 ps
- The promising final states are, for SL

• 
$$\bar{B}^{*-} D^{*+} I^- \bar{\nu}_{\ell}$$
  
•  $\bar{B}^{*0} D^{*0} \ell^- \bar{\nu}_{\ell}$ 

and, for NL

• 
$$B^{*-}D^{*+}\rho^{-}$$

- SL mode  $T^0_{bc} \ell^- \nu_\ell$  relevant but not dominant
- Hopefully will help for experimental tracking
- Some rare but trigger friendly modes: J/ψBK or baryon-antibaryon stressed in the literature

bbūd