

1

GPD Measurements at COMPASS

Po-Ju Lin IPN-Orsay CNRS/IN2P3 & DPhN, IRFU, CEA-Saclay

> HADRON 2019 Guilin August 20, 2019

- The COMPASS Experiment
- Deeply Virtual Compton Scattering
- Hard Exclusive Meson Production
- Summary

COMPASS Experiment

Versatile facility with hadron $(\pi^{\pm}, K^{\pm}, p \dots)$ & lepton (polarized μ^{\pm}) beams of energy ~200 GeV

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

COMPASS Setup for GPD Measurements

COMPASS Setup for GPD Measurement

5

CAMERA recoil proton detector surrounding the 2.5m long LH2 target

al will be

in tate

ECALO

+ SIDIS on unpolarized protons

COMPASS Coverage

Proton Picture

'= Ge'

DVCS

The variables measured in the experiment:

$$E_{\ell}, Q^2, x_{Bj} \sim 2\xi / (1+\xi),$$

t (or $\theta_{\gamma^*\gamma}$) and ϕ ($\ell\ell'$ plane/ $\gamma\gamma^*$ plane)

DVCS:
$$l + p \rightarrow l' + p' + \gamma$$

DVCS: the golden channel to investigate the GPDs; Interference with the well-known BH process gives access to more info.

DVCS

The GPDs depends on the following variables:
 x: average longitudinal momentum frac.
 ξ: longitudinal momentum diff.
 t: four momentum transfer
 (correlated to b_⊥ via Fourier transform)
 Q²: virtuality of γ*

Sensible to 4 GPDs, at COMPASS with small $x_B \rightarrow focuses on H$

Transverse Imaging and Pressure Dist.

Azimuthal Dependence

Azimuthal Dependence

Azimuthal Dependence

Azimuthal & x_{Bi} Dependence

Increasing x_{Bi}

Extraction of DVCS Events - 2012 data

 $S_{\text{CS, U}}(\phi) \equiv d\sigma(\mu^{+\leftarrow}) + d\sigma(\mu^{-\rightarrow}) = 2[d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + \text{Im }I]$ $= 2[d\sigma^{BH} + c_0^{DVCS} + c_1^{DVCS} \cos\phi + c_2^{DVCS} \cos\phi + s_1^I \sin\phi + s_2^I \sin 2\phi]$

Extraction of DVCS Events - 2012 data

$$S_{\text{CS, U}}(\phi) \equiv d\sigma(\mu^{+\leftarrow}) + d\sigma(\mu^{-\rightarrow}) = 2[d\sigma^{BH} + d\sigma_{unpol}^{DVCS} + \text{Im } I]$$
$$= 2[d\sigma^{BH} + c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos \phi + s_1^{I} \sin \phi + s_2^{I} \sin 2\phi]$$

$$\begin{array}{l} \mathbf{C_0}^{DVCS} \propto 4(\mathcal{H}\mathcal{H}^* + \tilde{\mathcal{H}}\tilde{\mathcal{H}}^*) + \frac{t}{M^2}\mathcal{E}\mathcal{E}^* \rightarrow & 4 \quad \textit{(Im H)}^2 \\ & \text{small } \mathbf{x}_{\rm Bj} \end{array}$$

Tranverse extension of partons – 2012 data

 $\langle r_{\perp}^2(x_{Bj}) \rangle \approx 2B(x_{Bj})_{\text{At small } x_{Bj}}$

With $\langle x_{Bi} \rangle = 0.056$

Tranverse extension of partons – 2012 data

- KM15 and GK parameterization shows the complete evolution of HERA and COMPASS data
 The transverse size evolution as a function of x_{Bi}
 - \rightarrow Expect at least 3 x_{Bj} bins from 2016-17 data

2016 – 2017 Data First Insight

2016 – 2017 Data First Insight

- > All distributions obtained with μ^- are normalized to the same luminosity of the ones with μ^+
- → Very good agreement between μ^+ and μ^- data observed.

$$\checkmark \quad \mathcal{D}_{CS, U}(\phi) \equiv d\sigma(\mu^{+\leftarrow}) - d\sigma(\mu^{-\rightarrow})$$
$$\mathcal{S}_{CS, U}(\phi) \equiv d\sigma(\mu^{+\leftarrow}) + d\sigma(\mu^{-\rightarrow})$$

2016 – 2017 Data First Insight

(awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. This work is also part of the "Mapping Proton Quark Structure using Petabytes of COMPASS Data" PRAC allocation supported by the National Science Foundation (award number OCI 1713684).

Beam Charge-spin Difference

GPDs in Hard Exclusive Meson Production

Quark contribution

Gluon contribution at the same order in α_s

4 chiral-even GPDs: helicity of parton unchanged

$$H^q(x, \xi, t)$$
 $E^q(x, \xi, t)$ For Vector Meson $\widetilde{H}^q(x, \xi, t)$ $\widetilde{E}^q(x, \xi, t)$ For Pseudo-Scalar Meson

+ 4 chiral-odd or transversity GPDs: helicity of parton changed (not possible in DVCS)

$$\begin{array}{ll} \mathbf{H}_{\mathsf{f}}^{q}(x,\,\xi,\,\mathrm{t}) & \mathbf{E}_{\mathsf{f}}^{q}(x,\,\xi,\,\mathrm{t}) \\ \widetilde{\mathbf{H}}_{\mathsf{f}}^{q}(x,\,\xi,\,\mathrm{t}) & \widetilde{\mathbf{E}}_{\mathsf{f}}^{q}(x,\,\xi,\,\mathrm{t}) & \overline{\mathbf{E}}_{\mathsf{f}}^{q}=\mathbf{2} \ \widetilde{\mathbf{H}}_{\mathsf{f}}^{q}+\mathbf{E}_{\mathsf{f}}^{q} \end{array}$$

- Universality of GPDs, quark flavor filter
- Ability to probe the chiral-odd GPDs.
- Additional non-perturbative term from meson wave function
- In addition to nuclear structure, provide insights into reaction mechanism

Exclusive π^0 Production on Unpolarized Proton

$$e p \rightarrow e \pi^{0} p \frac{d^{2}\sigma}{dt d\phi_{\pi}} = \frac{1}{2\pi} \left[\left(\frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt} \right) + \epsilon \cos 2\phi_{\pi} \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{\pi} \frac{d\sigma_{LT}}{dt} \right]$$

$$\frac{d\sigma_L}{dt} = \frac{4\pi\alpha}{k'} \frac{1}{Q^6} \left\{ \left(1 - \xi^2\right) \left| \langle \tilde{H} \rangle \right|^2 - 2\xi^2 \operatorname{Re} \left[\langle \tilde{H} \rangle^* \langle \tilde{E} \rangle \right] - \frac{t'}{4m^2} \xi^2 \left| \langle \tilde{E} \rangle \right|^2 \right\}$$
Leading twist expected be dominant
But measured as \approx only a few % of $\frac{d\sigma_T}{dt}$

The other contributions arise from coupling between chiral-odd (quark helicity flip) GPDs to the twist-3 pion amplitude

$$\frac{d\sigma_T}{dt} = \frac{4\pi\alpha}{2k'} \frac{\mu_\pi^2}{Q^8} \left[\left(1 - \xi^2 \left(|\langle H_T \rangle|\right)^2 - \frac{t'}{8m^2} \left(\langle \bar{E}_T \rangle\right)^2 \right] \right]$$
$$\frac{\sigma_{LT}}{dt} = \frac{4\pi\alpha}{\sqrt{2}k'} \frac{\mu_\pi}{Q^7} \xi \sqrt{1 - \xi^2} \frac{\sqrt{-t'}}{2m} \operatorname{Re}\left[\langle H_T \rangle \langle \tilde{E} \rangle \right]$$
$$\sigma_{TT} = \frac{4\pi\alpha}{4\pi\alpha} \frac{\mu_\pi^2}{Q^7} t' \left(1 - \xi^2 \left(\langle \bar{E}_T \rangle\right)^2 \right)$$

 $\frac{1}{dt} = \frac{1}{k'} \frac{r_{\pi}}{Q^8} \frac{1}{16m^2} |\langle E_T \rangle|$

A large impact of \overline{E}_{τ} can be identified: $\succ \sigma_{\tau\tau}$ contribution \succ The dip at small |t| of σ_{τ}

2012 Exclusive π^0 Prod. on Unpolarized Proton

$$e p \rightarrow e \pi^{0} p \frac{d^{2}\sigma}{dt d\phi_{\pi}} = \frac{1}{2\pi} \left[\left(\frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt} \right) + \epsilon \cos 2\phi_{\pi} \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{\pi} \frac{d\sigma_{LT}}{dt} \right]$$

A dip at small t would indicate a large impact of $\overline{E_T}$

2012 Exclusive $\boldsymbol{\omega}$ Prod. on Unpolarized Proton

> GPD by DVCS and HEMP in COMPASS Sum and difference of DVCS x-sections with polarized μ + and μ -

- \rightarrow Transverse extension of partons as a function of x_{Bi}
- \rightarrow Im $\mathcal{H}(\xi,t)$ and Re $\mathcal{H}(\xi,t)$ for D-term and pressure distribution

HEMP of π^0 , ρ , ω , ϕ , J/ ψ → Universality of GPDs - Transverse GPDs - Flavor Decomposition

FUT OF

Results on 2016-17 data are coming!

Backup Slides

COMPASS⁺⁺/AMBER

A new QCD facility at the M2 beam line of the CERN SPS

Letter of Intent - Draft 1.0: https://arXiv.org/abs/1808.0084

Expected to start at 2022

- Unique beam line with polarised μ^{\pm} and high-intensity **Pion** beam
- Possible high-intensity antiproton and Kaon beams, provided by RFseparation technique
- With upgraded apparatus \geq

Proposed physics goals

Proton Radius Meson PDF – gluon PDF **Proton spin structure** 3D imaging (TMDs and GPDs) Hadron spectroscopy Anti-matter cross section

	Physics	Beam	Beam	Trigger	Beam		Earliest	Hardware
Program	Goals	Energy [GeV]	Intensity [s ⁻¹]	Rate [kHz]	Туре	Target	start time, duration	Additions
μp	Precision					high-		active TPC,
elastic	proton-radius	100	4 · 10 ⁶	100	μ^{\pm}	pressure	2022	SciFi trigger,
scattering	measurement					H2	1 year	silicon veto,
Hard								recoil silicon,
exclusive	GPD E	160	$2 \cdot 10^{7}$	10	μ^{\pm}	NH_3^{\uparrow}	2022	modified
reactions							2 years	PT magnet
Input for								
Dark Matter	production	20-280	5 · 10 ⁵	25	р	LH2,	2022	LHe
Search	cross section					LHe	1 month	target
								target spectr .:
p-induced	Heavy quark	12, 20	$5 \cdot 10^{7}$	25	\overline{p}	LH2	2022	tracking,
Spectroscopy	exotics						2 years	calorimetry
		100	- 7					
Drell-Yan	Pion PDFs	190	7.10	25	π^{\pm}	C/W	2022	
							1-2 years	
								"active
Drell-Yan	Kaon PDFs &	~ 100	108	25-50	K^{\pm}, \overline{p}	NH_3^{\uparrow} ,	2026	absorber",
(RF)	Nucleon TMDs					C/W	2-3 years	vertex det.
	Kaon polarisa-						non-exclusive	
Primakoff	bility & pion	~ 100	5 · 10 ⁶	>10	K-	Ni	2026	
(RF)	life time						1 year	
Prompt							non-exclusive	
Photons	Meson gluon	≥ 100	5 · 10 ⁶	10-100	K [±]	LH2,	2026	hodoscope
(RF)	PDFs				π^{\pm}	Ni	1-2 years	
K-induced	High-precision							recoil TOF,
Spectroscopy	strange-meson	50-100	5 - 106	25	<u>K</u> -	LH2	2026	forward
(RF)	spectrum						1 year	PID
	Spin Density							
Vector mesons	Matrix	50-100	5.106	10-100	K^{\pm}, π^{\pm}	from H	2026	30
(RF)	Elements					to Pb	1 year	

Possible RPD for COMPASS++/AMBER

A recoil proton detector (RPD) is mandatory to ensure the exclusivity. A Silicon detector is included *between* the target surrounded by the modified MW cavity *and* the polarizing magnet

A technology developed at JINR for NICA for the BM@N experiment

No possibility for ToF \rightarrow PID of p/ π with dE/dx Momentum and trajectory measurments $|t|_{min} \sim 0.1 \text{ GeV}$

π^0 Background

COMPASS

 π^0 are one of the main background sources for excl. photon events.

Two possible case:

• Visible (both γ detected \rightarrow subtracted)

the DVCS photon after all exclusivity cuts is combined with all detected photons below the DVCS threshold: 4,5,10 GeV in ECAL0, 1, 2

- Invisible (one γ lost \rightarrow estimated by MC)
 - Semi-inclusive LEPTO 6.1
 - Exclusive HEPGEN π⁰
 (Goloskokov-Kroll model)

Comparing the two components to the data allows the determination of their relative normalisation. The sum of the 2 components is normalized to the visible π^0 contamination in the M_{yy} peak

GPD H Global Analysis

KM15 K Kumericki and D Mueller <u>arXiv:1512.09014v1</u> **GK** S.V. Goloskokov, P. Kroll, EPJC53 (2008), EPJA47 (2011) ³³

GPD E Global Analysis

GK S.V. Goloskokov, P. Kroll, EPJC53 (2008), EPJA47 (2011) ³⁴

ϕ Dep. of BH+DVCS with Unpol Target

$$\frac{d^{4}\sigma(\ell p \rightarrow \ell p\gamma)}{dx_{B}dQ^{2}d|t|d\phi} = d\sigma^{BH} + \left(d\sigma^{DVCS}_{unpol} + P_{\ell} d\sigma^{DVCS}_{pol}\right) + \left(e_{\ell}\operatorname{Re} I + e_{\ell}P_{\ell}\operatorname{Im} I\right) \qquad \gamma^{*} \gamma_{u-1} + \zeta^{*} \gamma_{v-1} +$$

Exclusive $\boldsymbol{\omega}$ Production on Unpolarized Proton

COMPASS Acceptance of ϕ for DVCS

Results of 2012 Data

- **Global Fit MSW (grey band):** fit of CFF in the PARTON framework at LO and LT, using a GPD parametrization that only involves valence and sea quarks.
- VGG Model : with valence and sea quarks only.
- **GK Model** : includes also gluons.

Nice manifestation of gluons or NLO effect

Dominance of $Im\mathcal{H}$ (with respect of $Re\mathcal{H}$ and other CFF) at small x_B

