First measurement of near-threshold J/ψ photoproduction and search for the LHCb P_c^+ states at Given the Comparison of the test of t

Sean Dobbs

Florida State U. [For the GlueX Collaboration]

> HADRON 2019 August 18, 2019

J/ψ Photoproduction Near Threshold

- Threshold production is experimentally clean, ideal for studying J/ψ+N interaction
 - Probes distributions of high-x gluons in proton, trace anomaly, ...
 Kharzeev et al., NPA 661, 568 (1999)
 Brodsky et al., PLB 498, 23 (2001)
- Experimentally little-explored
- 1970's dual-arm spectrometer measurements at SLAC and Cornell

_J/ψ

p |

٦g

р

higher-twist

J/ψ Photoproduction Near Threshold

- Threshold production is experimentally clean, ideal for studying J/ψ+N interaction
 - Probes distributions of high-x gluons in proton, trace anomaly, ...
 Kharzeev et al., NPA 661, 568 (1999)
 Brodsky et al., PLB 498, 23 (2001)
- Experimentally little-explored
- 1970's dual-arm spectrometer measurements at SLAC and Cornell

_J/ψ

p |

leading-twist

٦g

р

higher-twist

LHCb Pc States

- Many "exotic" hadrons with cc-bar content have been observed in recent years
 - Most interesting: charged exotics Strongly implies multiquark content, but what type?
- In 2015, LHCb identified two (J/ ψ p) states in an amplitude analysis of the decay $\Lambda_b \rightarrow K^- J/\psi$ p
 - One narrow, one wide
 - Preferred J = 3/2 and 5/2 with opposite parity

LHCb, PRL 115 072001 (2015)

S. Dobbs — HADRON 2019 — Aug. 18, 2019 — J/ψ Photoproduction and Search for LHCb P_c⁺ States

LHCb Pc States

- In 2019, LHCb identified three narrow (J/ψ p) states in a fit of the mass spectrum with a 9x larger sample
 - Near mass thresholds
 - No spin-parity identification
- Many possible descriptions, including:
 - Tightly-bound or "molecular" multiquark states
 - Hadrocharmonia
 - Cusps, triangle singularities, or other kinematic effects

State	M [MeV $]$	$\Gamma [$ MeV $]$	(95% CL)
$P_c(4312)^+$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+}_{-} ^{3.7}_{4.5}$	(< 27)
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$	(< 49)
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-} {}^{5.7}_{-1.9}$	(< 20)

LHCb, PRL 122, 222001 (2019)

LHCb P_c States & J/ ψ Photoproduction

- Look in different production mechanism: coupling of $J/\psi+p$ resonances to photon
 - Kinematic effects from decay will not be reproduced
 - P_c's produced at $E(\gamma) \approx 9.5 10.3 \text{ GeV}$
 - Assuming VMD, primary uncertainty is $B(P_c \rightarrow J/\psi p)$

Theory papers:

Wang, Liu, and Zhao, PRD 92, 034022 (2015). Kubarovsky and Voloshin, PRD 92, 031502 (2015). Karliner and Rosner, PLB 752, 329 (2016). Hiller Blin et al. (**JPAC**), PRD 94, 034002 (2016). and many more...

The GlueX Experiment

Luminosity for $E_{\gamma} > 8 \text{ GeV}$

• 2016: 10 pb⁻¹

Data currently analyzed

- 2017: 45 pb⁻¹
- 2018: ≈150 pb⁻¹ in spring & fall, GlueX Phase-I is now finished!

The GlueX Experiment

Luminosity for $E_{\gamma} > 8$ GeV

• 2016: 10 pb⁻¹

Data currently analyzed

- 2017: 45 pb⁻¹
- 2018: ≈150 pb⁻¹ in spring & fall, GlueX Phase-I is now finished!

The GlueX Experiment

Luminosity for $E_{\gamma} > 8$ GeV

• 2016: 10 pb⁻¹

Data currently analyzed

- 2017: 45 pb⁻¹
- 2018: ≈150 pb⁻¹ in spring & fall, GlueX Phase-I is now finished!

J/ψ Photoproduction at GlueX: Mass Spectrum

Reconstruct and kinematically fit exclusive reaction

- Calculate J/ ψ cross sections normalized by non-resonant e+e-

J/ψ Photoproduction at GlueX: Mass Spectrum

Reconstruct and kinematically fit exclusive reaction

- Calculate J/ ψ cross sections normalized by non-resonant e+e-

J/ψ Photoproduction at GlueX: Normalization

- Calculate J/ ψ cross sections normalized by non-resonant e+e-
 - Events in normalization region about 50% pions
 - Extract e+e- non-resonant yield from p(track)/E(cal) distribution

J/ψ Photoproduction at GlueX: Normalization

- Calculate J/ ψ cross sections normalized by non-resonant e+e-
 - Events in normalization region about 50% pions
 - Extract e+e- non-resonant yield from p(track)/E(cal) distribution

J/ψ @ GlueX: Cross sections vs. theory

- First J/ψ cross section measurement at threshold
 - 27% normalization uncertainty
- Higher-order contributions needed to describe nearthreshold behavior (Brodsky et al.)
- Gluonic contribution to the nucleon mass is large (Kharzeev et al., Y. Hatta et al., Phys. Rev. D 100, 014032 (2019))
- SLAC points calculated from measured $d\sigma/dt$ and dipole t-dependence
- Cornell horizontal error bars illustrate acceptance

J/ψ @ GlueX: Search for P_c states

- No evidence of Pc states!
- Model-dependent upper limits at 90% CL (assuming J^P=3/2⁻):
 - Br(P_c(4312) → J/ψ p) < 4.6%
 - $Br(P_c(4440) \rightarrow J/\psi p) < 2.3\%$
 - Br(P_c(4457) → J/ψ p) < 3.8%
 [ULs scale as (2J+1)]
- Disfavors hadrocharmonium and some molecular models.
 Pc's could preferentially couple to other channels?
 - Need consistent picture with Λ_b decays.

A.N. Hiller Blin, et al., PRD 94, 034002 (2016).

J/ψ @ GlueX: Unbinned E(γ) vs. t

- Points: GlueX data in J/ψ mass region
- JPAC model: 5% $P_c(4440)$, $J^P = 3/2^-$

- More sensitive search will come from fitting E(γ) vs. t dependence
- Distribution not corrected for beam spectrum or acceptance
- No clear evidence for s-channel production
- Fit requires detailed study of backgrounds and beam energy calibration

Summary

- GlueX has measured J/ ψ photoproduction near threshold
 - First determination of σ_{total} shape for $E_{\gamma} < 12 \text{ GeV}$
 - No evidence for P_c states, determined model-dependent upper limits on $B(P_c^+ \rightarrow J/\psi p)$ of less than a few percent
- Further analyses are ongoing with additional data
 - > 1500 J/ ψ on tape, will be able to measure d σ / dE dt
 - Unbinned fits will allow more sensitive searches for P_c states
 - GlueX has large acceptance and large data volume, will be able to search for more charm-quark hadrons
 - High-intensity run starts this Fall!

Backup Slides

S. Dobbs — HADRON 2019 — Aug. 18, 2019 — Photoproduction and Search for LHCb $P_{c}{}^{\scriptscriptstyle +}$ States

J/ψ @ GlueX: Background Rejection

J/ψ @ GlueX: t-slope

Measurements near threshold

- Cornell at ~11 GeV 1.25 ± 0.20 GeV⁻²
- GlueX at 10–11.8 GeV
 1.67 ± 0.35 GeV⁻²
- SLAC at 19 GeV
 2.9 ± 0.3 GeV⁻²