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Fig. 3. Modulus squared of the K X(3872) scattering amplitude. The solid, dashed, 
and dotted lines represent the results obtained with the cutoff ! = 700, 725, and 
750 MeV, respectively.

is chosen to be the same as the cutoff used to regularize the 
loop D D̄∗ to get the cluster (X(3872) or Zc(3900)). We take 
! ∼ 700 MeV from Refs. [17,39,40] and vary it up to 750 MeV 
to estimate the uncertainties involved in the results.

Using Eqs. (1) and (2), the total amplitude T can be written as 
T = T31 + T32, with

T31 = [1 − t31G0t32G0]− 1 [t31 + t31G0t32],
T32 = [1 − t32G0t31G0]− 1 [t32 + t32G0t31], (21)

and is calculated as a function of the three-body invariant mass, √
s. For a given 

√
s, the two-body amplitudes are obtained at the 

invariant masses s31 and s32 of the relevant subsystem [41].
In Fig. 3 we show the results found for the T -matrix of the K X

system for isospin 1/2 and spin-parity J P = 1− . It can be seen 
from Fig. 3 that a narrow peak appears around 4310 MeV, which 
almost does not vary with the cut-off.

In the last years, the existence of several exotic companions 
of the X(3872) has been claimed experimentally as well as the-
oretically (for reviews, see Refs. [10,42]). Particularly, Zc states, 
with isospin 1, have been reported in the same energy region of 
the X(3872), like the Zc(3900) found by the BESIII [43], or the 
Zc(3894) claimed by the Belle collaboration [44] or the Zc(3886 )
reported by the CLEO collaboration [45]. At the present moment 
it is unclear, given the experimental uncertainties in the masses 
and widths, if all these experimental findings do, or do not, corre-
spond to the manifestation of the same state. Such a discussion is 
beyond the scope of the present work, but it would be interesting 
to study under the same formalism as for K X the existence of K ∗

with hidden charm which could be interpreted as K Zc molecule-
like states. Due to the present experimental uncertainty, we are 
using the name Z to denote the isospin 1 partner of X found in 
Ref. [40], which has a mass around 3872 MeV and width around 
30 MeV. In case of the scattering of K with Z , to obtain reliable 
results, the width, ", of the Z can play a relevant role. In our 
formalism such information can be introduced by replacing the 
mass M of the cluster with M − i"/2 in the expression of the 
form factor. Since "Z ∼ 28 MeV (compatible with the fit to the ex-
perimental data done in Ref. [40] and from the experimental data 
summarized in Ref. [47]) is not too large, and we are interested in 
studying the formation of states below the K Z threshold, we can 
still rely on the FCA formalism to calculate the K Z → K Z ampli-
tude.

In Fig. 4 we show the modulus squared amplitude for K Z
scattering in isospin 1/2 (see Table 1 for the input two body 
t-matrices used in Eq. (21)). A clear signal for the formation of 

Fig. 4. Modulus squared of the K Z scattering amplitude in I = 1/2.

a state around 4292 MeV and a width of 20 MeV is seen. If we 
neglect the width of the Z state, a peak at ∼ 4300 MeV with a 
small width,1 ∼ 1 MeV, is observed. In both cases, the mass of 
the state is about 70 MeV below the K Z threshold (considering Z
as a stable particle). This energy region is well within the range 
of the reliability of the results obtained within the FCA. The re-
sult obtained is also very stable with the cut-off !, as can be 
seen in Fig. 4. Thus we find an isospin 1/2, J P = 1− , state with 
M − i"/2 = 4292 − i10 MeV in the K Z scattering.

The K Z system can also have total isospin 3/2. If a state ap-
pears in this case, it would be associated with an exotic strange 
meson with isospin 3/2 and spin-parity 1− . We have studied this 
configuration of the K Z system but find no state formed in it.

Comparing the results of the K X and K Z systems in isospin 
1/2, it can be concluded that both interactions result in formation 
of a state in the same energy region. However, the D D̄∗ system 
can reorganize itself in different isospin configurations during the 
scattering with kaon, while conserving the total isospin of the 
three-body system producing transitions between the configura-
tions K X and K Z , and due to the similar mass of X and Z , the 
state found around 4300 MeV should have sizable internal K X
and K Z structures. Such a possibility can be studied by treating 
K X and K Z as coupled channels, as done in Ref. [41] for the state 
N∗(1910), which can be considered as a molecular state with im-
portant N f0(980) and Na0(980) components in its wave function. 
In such a case the t31, t32 and G0 appearing in Eq. (21) are matri-
ces in the coupled channel space2:

t31 =
[

(t31)11 (t31)12
(t31)21 (t31)22

]
,

t32 =
[

(t32)11 (t32)12
(t32)21 (t32)22

]
,

G0 =
[

(G0)11 0
0 (G0)22

]
, (22)

1 The origin of this small width, even though the peak position lies below the K Z
and K D D̄∗ thresholds, comes from the intermediate open channels, like, π Ds D̄∗ , 
which are implicitly considered in our formalism through the input K D amplitude 
in isospin 1. This amplitude is obtained by solving the Bethe–Salpeter equation con-
sidering K D and π Ds as coupled channels. In fact, if the coupling to two-body open 
channels is switched off when getting the K D , K D̄∗ amplitudes in isospin 1, we in-
deed find a zero width state in the T -matrix.

2 Note that Eq. (21), when written in a matrix form in terms of the matrices 
given in Eq. (22), represent a more compact notation for writing the set of coupled 
equations (3)–(12) given in Ref. [41].
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where the element (11) represents K X → K X , the element (12)

K X → K Z , and so far so on. As done earlier, these t-matrices can 
be written as

(t31)i j = ωi→ j
31 · t31,

(t32)i j = ωi→ j
32 · t32. (23)

The weight vectors ω31 and ω32 related to these processes can 
be found in Table 1 (without including the normalization factor 
discussed in Eq. (16 )). Using this Table, for example, the element 
(12) of the t31 and t32 matrices is given by

(t31)12 = ωK X→K Z
31 · t31

=
√

M X M Z

mD

√
3

4
(t I=1

K D − t I=0
K D ),

(t32)12 = ωK X→K Z
32 · t32

= −
√

M X M Z

mD̄∗

√
3

4
(t I=1

K D̄∗ − t I=0
K D̄∗).

In such an approach, the Faddeev partitions T31 and T32 ap-
pearing in Eq. (21) are also matrices in the coupled channel space, 
such that Eq. (21) becomes a matrix equation and the T -matrix for 
the system is given by

T = T31 + T32 =
[

T11 T12
T21 T22

]
, (24)

with T11 (T22) being the T -matrix for the K X → K X (K Z → K Z ) 
transition considering the coupled channel effect.

We have studied the effect of coupling the K X and K Z systems 
and, thus, allowing the transitions between them. The modulus 
squared amplitudes obtained for both systems, by solving the scat-
tering equations within a coupled channel approach, are shown in 
Fig. 5 for the case in which the width of Z is neglected (see the 
footnote 1 for the origin of the width found for the peaks) and in 
Fig. 6 considering !Z = 28 MeV. As can be seen from these two 
figures, the consideration of the nonzero width of the Z state has 
an impact on the results, especially on the K X amplitude, even if 
the peak position remains almost unaltered.

Taking into account the width of Z when coupling K X and K Z , 
the mass and width of the state found in the K X configuration can 
now be written as M − i!/2 = (4308 ± 1) − i(8 ± 1) MeV, and of 
the K Z configuration is M − i!/2 = (4306  ± 1) − i(9 ± 1) MeV. We 
also find that, at the peak position, the magnitude of the squared 
amplitude obtained when the three-body system is rearranged as 
K Z is around 200 times bigger than that found when the system 
rearranges itself as K X . Notice that the coupled channel scattering 
has shifted the peak positions in the uncoupled K X and K Z am-
plitudes such that now a peak is obtained, basically, at the same 
energy in both cases. Our findings, thus, imply that a K ∗ meson 
around 4307 MeV should be observed in experimental investiga-
tions.

In summary, we have studied the K D D̄∗ systems where the 
D D̄∗ is treated as a cluster forming X(3872) or Zc(3900). We find 
that this dynamics leads to the generation of a new state of molec-
ular nature (see Fig. 1) which corresponds to a K ∗ meson with 
hidden charm and important K -X and K -Zc components in its 
wave function. The mass of the state is (4307 ± 2) MeV with a 
width of (9 ± 2) MeV. Interestingly, a recent study [46 ] solving the 
Schrödinger equation for the D D̄∗ K system, but with a very differ-
ent dynamics than the one used here, found a state with a mass 
of 4317 MeV.

Fig. 5. Modulus squared of the K X and K Z scattering amplitudes in I = 1/2. These 
results have been obtained by solving scattering equations while treating K X and 
K Z as coupled channels and considering !(Z) = 0 MeV.

Fig. 6. Modulus squared of the K X and K Z scattering amplitudes in I = 1/2. These 
results have been obtained by solving scattering equations while treating K X and 
K Z as coupled channels and considering !(Z) = 28 MeV. A cusp related to the 
three-body K D D̄∗ threshold is observed in the K X → K X amplitude.
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results have been obtained by solving scattering equations while treating K X and 
K Z as coupled channels and considering !(Z) = 28 MeV. A cusp related to the 
three-body K D D̄∗ threshold is observed in the K X → K X amplitude.
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ent dynamics than the one used here, found a state with a mass 
of 4317 MeV.
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116 X.-L. Ren et al. / Physics Letters B 785 (2018) 112–117
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(t31)12 = ωK X→K Z
31 · t31

=
√

M X M Z

mD

√
3

4
(t I=1

K D − t I=0
K D ),

(t32)12 = ωK X→K Z
32 · t32

= −
√

M X M Z

mD̄∗

√
3

4
(t I=1

K D̄∗ − t I=0
K D̄∗).

In such an approach, the Faddeev partitions T31 and T32 ap-
pearing in Eq. (21) are also matrices in the coupled channel space, 
such that Eq. (21) becomes a matrix equation and the T -matrix for 
the system is given by

T = T31 + T32 =
[

T11 T12
T21 T22

]
, (24)

with T11 (T22) being the T -matrix for the K X → K X (K Z → K Z ) 
transition considering the coupled channel effect.

We have studied the effect of coupling the K X and K Z systems 
and, thus, allowing the transitions between them. The modulus 
squared amplitudes obtained for both systems, by solving the scat-
tering equations within a coupled channel approach, are shown in 
Fig. 5 for the case in which the width of Z is neglected (see the 
footnote 1 for the origin of the width found for the peaks) and in 
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figures, the consideration of the nonzero width of the Z state has 
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the K Z configuration is M − i!/2 = (4306  ± 1) − i(9 ± 1) MeV. We 
also find that, at the peak position, the magnitude of the squared 
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D D̄∗ is treated as a cluster forming X(3872) or Zc(3900). We find 
that this dynamics leads to the generation of a new state of molec-
ular nature (see Fig. 1) which corresponds to a K ∗ meson with 
hidden charm and important K -X and K -Zc components in its 
wave function. The mass of the state is (4307 ± 2) MeV with a 
width of (9 ± 2) MeV. Interestingly, a recent study [46 ] solving the 
Schrödinger equation for the D D̄∗ K system, but with a very differ-
ent dynamics than the one used here, found a state with a mass 
of 4317 MeV.

Fig. 5. Modulus squared of the K X and K Z scattering amplitudes in I = 1/2. These 
results have been obtained by solving scattering equations while treating K X and 
K Z as coupled channels and considering !(Z) = 0 MeV.

Fig. 6. Modulus squared of the K X and K Z scattering amplitudes in I = 1/2. These 
results have been obtained by solving scattering equations while treating K X and 
K Z as coupled channels and considering !(Z) = 28 MeV. A cusp related to the 
three-body K D D̄∗ threshold is observed in the K X → K X amplitude.
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⟨K X;1/2,1/2|t31|K X;1/2,1/2⟩

= 1
4
(3t I= 1

K D + t I= 0
K D )

≡ ωK X→K X
31 · t31, (7)

where,

ωK X→K X
31 ≡ 1

4

(
3 1

)
,

t31 ≡
(

t I= 1
K D

t I= 0
K D

)

. (8)

Similarly,

⟨K X;1/2,1/2|t32|K X;1/2,1/2⟩
≡ ωK X→K X

32 · t32 (9)

with

ωK X→K X
32 = ωK X→K X

31 ,

t32 ≡
(

t I= 1
K D̄∗

t I= 0
K D̄∗

)

. (10)

In general, we can write

⟨K Cb; I, Iz|t31|K Ca; I, Iz⟩ = ωK Ca→K Cb
31 · t31,

⟨K Cb; I, Iz|t32|K Ca; I, Iz⟩ = ωK Ca→K Cb
32 · t32. (11)

In Table 1, we give the weight vectors ω31 and ω32 for the dif-
ferent transitions studied in this Letter. The K D , K D̄∗ t-matrices 
appearing in Eqs. (8) and (10) are obtained by solving the Bethe–
Salpeter equation in a coupled channel approach, using a kernel 
obtained from a Lagrangian based on heavy-quark spin symmetry. 
As mentioned earlier, these coupled channel interactions generate 
the resonances D∗

s0(2317) and D∗
s1(2460). A normalization factor √

Ma Mb/mD(D∗) is included, with Ma , Mb being the masses re-
lated to the clusters in the initial and final states, respectively, in 
the definition of t31 and t32. The origin of this factor, as explained 
in Refs. [37,38], lies in relating the S-matrix of the three-body 
system with the scattering of one particle on a cluster of the re-
maining two: considering a box of volume V in which the plane 
wave states are normalized to unity, the S-matrix related to the 
process K + (c1 + c2) → K + (c1 + c2), with c1 and c2 being the 
particles forming the cluster C , is given by

S K+(c1+c2) = δpK , p′
K
δpc1

, p′
c1

δpc2
, p′

c2

− i
(2π)4

V
δ(4)(P − P ′)

( 3∏

i= 1

√
Ni

2Ei

)

×

⎛

⎝
3∏

j= 1

√
N j

2E ′
j

⎞

⎠ T K+(c1+c2), (12)

where P = pK + pc1 + pc2 (P ′ = p′
K + p′

c1
+ p′

c2
) is the initial (fi-

nal) four-momentum, the index i ( j) represents the particles in the 
initial (final) state, Ni is a normalization factor (1 for mesons and 
2Mi for baryons of mass Mi ), Ei and pi (E ′

i and p′
i ) correspond 

to the energy and 3-momentum, respectively, of the particle i in 
the initial (final) state, and T K+(c1+c2) is the T -matrix related to 
the process. However, for a process K + C → K + C , the S-matrix 
associated with it would be related to the T -matrix as

S K+C = δpK , p′
K
δpC , p′

C
− i

(2π)4

V
δ(4)(P − P ′)

×
( 2∏

i= 1

√
Ni

2Ei

)⎛

⎝
2∏

j= 1

√
N j

2E ′
j

⎞

⎠ T K+C . (13)

This issue related to the normalization of the fields, as shown in 
Refs. [37,38], can be solved by substituting t31, t32 and G0 appear-
ing in Eq. (2) by

t31 →
√

2EC

NC

√
2E ′

C

NC

√
Nc1

2Ec1

√
Nc1

2E ′
c1

t31,

t32 →
√

2EC

NC

√
2E ′

C

NC

√
Nc2

2Ec2

√
Nc2

2E ′
c2

t32,

G0 →
√

NC

2EC

√
NC

2E ′
C

G0. (14)

Since all the particles involved are mesons, and using in Eq. (14)
the non-relativistic approximation of the energy Ei ∼ Mi for heavy 
mesons of mass Mi , we have

t31 → MC

Mc1

t31, t32 → MC

Mc2

t32,

G0 → 1
2MC

G0. (15)

The normalization factors in t31 and t32 can be reabsorbed in the 
weight vectors ω31 and ω32 of Eq. (11),

ωK Ca→K Cb
31 →

√
Ma Mb

mD
ωK Ca→K Cb

31 ,

ωK Ca→K Cb
32 →

√
Ma Mb

mD̄∗
ωK Ca→K Cb

32 . (16)

The loop function G0, in Eq. (2), represents the Green’s function 
of the K meson propagating in the (D D̄∗)I cluster, and can be 
expressed as (including the normalization factor of Eq. (15))

⟨K Ca; I, Iz|G0|K Ca; I, Iz⟩

= 1
2Ma

∫
d3q

(2π)3

Fa(q)

q02 − q2 − m2
K + iϵ

, (17)

where mK represents the mass of the kaon and q0 is the on-shell 
energy of the kaon in the center-of-mass frame of the kaon and 
the cluster:

q0 = s + m2
K − M2

a

2
√

s
, (18)

with 
√

s being the total energy. Note, that a form factor Fa(q) is 
introduced in Eq. (17), which is related to the wave function of 
the cluster in terms of its internal D D̄∗ structure. We calculate 
this form factor following Refs. [37,38] as

Fa(q) = 1
N

∫

|p|, |p− q|<$

d3 p fa(p) fa(p − q), (19)

fa(p) = 1
ωD(p)ωD̄∗(p)

1
Ma − ωD(p) − ωD̄∗(p)

, (20)

where N = Fa(q = 0) is the normalization factor, and ωD (p) =√
m2

D + p2, ωD̄∗(p) =
√

m2
D̄∗ + p2. The upper integration limit $
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where,
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In Table 1, we give the weight vectors ω31 and ω32 for the dif-
ferent transitions studied in this Letter. The K D , K D̄∗ t-matrices 
appearing in Eqs. (8) and (10) are obtained by solving the Bethe–
Salpeter equation in a coupled channel approach, using a kernel 
obtained from a Lagrangian based on heavy-quark spin symmetry. 
As mentioned earlier, these coupled channel interactions generate 
the resonances D∗

s0(2317) and D∗
s1(2460). A normalization factor √
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the definition of t31 and t32. The origin of this factor, as explained 
in Refs. [37,38], lies in relating the S-matrix of the three-body 
system with the scattering of one particle on a cluster of the re-
maining two: considering a box of volume V in which the plane 
wave states are normalized to unity, the S-matrix related to the 
process K + (c1 + c2) → K + (c1 + c2), with c1 and c2 being the 
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Fig. 3. Modulus squared of the K X(3872) scattering amplitude. The solid, dashed, 
and dotted lines represent the results obtained with the cutoff ! = 700, 725, and 
750 MeV, respectively.

is chosen to be the same as the cutoff used to regularize the 
loop D D̄∗ to get the cluster (X(3872) or Zc(3900)). We take 
! ∼ 700 MeV from Refs. [17,39,40] and vary it up to 750 MeV 
to estimate the uncertainties involved in the results.

Using Eqs. (1) and (2), the total amplitude T can be written as 
T = T31 + T32, with

T31 = [1 − t31G0t32G0]− 1 [t31 + t31G0t32],
T32 = [1 − t32G0t31G0]− 1 [t32 + t32G0t31], (21)

and is calculated as a function of the three-body invariant mass, √
s. For a given 

√
s, the two-body amplitudes are obtained at the 

invariant masses s31 and s32 of the relevant subsystem [41].
In Fig. 3 we show the results found for the T -matrix of the K X

system for isospin 1/2 and spin-parity J P = 1− . It can be seen 
from Fig. 3 that a narrow peak appears around 4310 MeV, which 
almost does not vary with the cut-off.

In the last years, the existence of several exotic companions 
of the X(3872) has been claimed experimentally as well as the-
oretically (for reviews, see Refs. [10,42]). Particularly, Zc states, 
with isospin 1, have been reported in the same energy region of 
the X(3872), like the Zc(3900) found by the BESIII [43], or the 
Zc(3894) claimed by the Belle collaboration [44] or the Zc(3886 )
reported by the CLEO collaboration [45]. At the present moment 
it is unclear, given the experimental uncertainties in the masses 
and widths, if all these experimental findings do, or do not, corre-
spond to the manifestation of the same state. Such a discussion is 
beyond the scope of the present work, but it would be interesting 
to study under the same formalism as for K X the existence of K ∗

with hidden charm which could be interpreted as K Zc molecule-
like states. Due to the present experimental uncertainty, we are 
using the name Z to denote the isospin 1 partner of X found in 
Ref. [40], which has a mass around 3872 MeV and width around 
30 MeV. In case of the scattering of K with Z , to obtain reliable 
results, the width, ", of the Z can play a relevant role. In our 
formalism such information can be introduced by replacing the 
mass M of the cluster with M − i"/2 in the expression of the 
form factor. Since "Z ∼ 28 MeV (compatible with the fit to the ex-
perimental data done in Ref. [40] and from the experimental data 
summarized in Ref. [47]) is not too large, and we are interested in 
studying the formation of states below the K Z threshold, we can 
still rely on the FCA formalism to calculate the K Z → K Z ampli-
tude.

In Fig. 4 we show the modulus squared amplitude for K Z
scattering in isospin 1/2 (see Table 1 for the input two body 
t-matrices used in Eq. (21)). A clear signal for the formation of 

Fig. 4. Modulus squared of the K Z scattering amplitude in I = 1/2.

a state around 4292 MeV and a width of 20 MeV is seen. If we 
neglect the width of the Z state, a peak at ∼ 4300 MeV with a 
small width,1 ∼ 1 MeV, is observed. In both cases, the mass of 
the state is about 70 MeV below the K Z threshold (considering Z
as a stable particle). This energy region is well within the range 
of the reliability of the results obtained within the FCA. The re-
sult obtained is also very stable with the cut-off !, as can be 
seen in Fig. 4. Thus we find an isospin 1/2, J P = 1− , state with 
M − i"/2 = 4292 − i10 MeV in the K Z scattering.

The K Z system can also have total isospin 3/2. If a state ap-
pears in this case, it would be associated with an exotic strange 
meson with isospin 3/2 and spin-parity 1− . We have studied this 
configuration of the K Z system but find no state formed in it.

Comparing the results of the K X and K Z systems in isospin 
1/2, it can be concluded that both interactions result in formation 
of a state in the same energy region. However, the D D̄∗ system 
can reorganize itself in different isospin configurations during the 
scattering with kaon, while conserving the total isospin of the 
three-body system producing transitions between the configura-
tions K X and K Z , and due to the similar mass of X and Z , the 
state found around 4300 MeV should have sizable internal K X
and K Z structures. Such a possibility can be studied by treating 
K X and K Z as coupled channels, as done in Ref. [41] for the state 
N∗(1910), which can be considered as a molecular state with im-
portant N f0(980) and Na0(980) components in its wave function. 
In such a case the t31, t32 and G0 appearing in Eq. (21) are matri-
ces in the coupled channel space2:

t31 =
[

(t31)11 (t31)12
(t31)21 (t31)22

]
,

t32 =
[

(t32)11 (t32)12
(t32)21 (t32)22

]
,

G0 =
[

(G0)11 0
0 (G0)22

]
, (22)

1 The origin of this small width, even though the peak position lies below the K Z
and K D D̄∗ thresholds, comes from the intermediate open channels, like, π Ds D̄∗ , 
which are implicitly considered in our formalism through the input K D amplitude 
in isospin 1. This amplitude is obtained by solving the Bethe–Salpeter equation con-
sidering K D and π Ds as coupled channels. In fact, if the coupling to two-body open 
channels is switched off when getting the K D , K D̄∗ amplitudes in isospin 1, we in-
deed find a zero width state in the T -matrix.

2 Note that Eq. (21), when written in a matrix form in terms of the matrices 
given in Eq. (22), represent a more compact notation for writing the set of coupled 
equations (3)–(12) given in Ref. [41].



R E S U LT S

DD

K
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In Fig. 2 we show the modulus squared three-body amplitude, |TR|2, for the process DDK !

DDK for total isospin I = 1/2 and I23 = 0, as a function of the energy of the three-body

system,
p
s, and the invariant mass

p
s23 of one of the DK subsystems. As can be seen, a peak at

FIG. 2. Modulus squared of the TR-matrix related to the process DDK ! DDK in the (I, I23) = (1/2, 0)

configuration.

p
s = 4140 MeV is found when the invariant mass of the DK subsystem in isospin 0 is ⇠ 2318

MeV, which corresponds to the mass of the D⇤
s0(2317) formed in the subsystem. This result

is in line with the one found in Ref. [44], in which the two body D � D⇤
s0(2317) system was

studied without explicitly considering the three-body dynamics involved. Note that in Ref. [44]

two descriptions were taken into account for D⇤
s0(2317): as a compact cs̄ state and as a DK

bound state. In both cases, predictions for the existence of a D � D⇤
s0 state were made. However,

as mentioned by the authors, the uncertainty involved in the former description is larger than in

the latter case. In the present work, we have considered that the properties of D⇤
s0(2317) are

predominantly understood in terms of the DK and Ds⌘ interactions, as indicated from recent

lattice studies and theoretical calculations [43, 68–70].

The result shown in Fig. 2 implies that a state with charm 2, strangeness +1, and isospin 1/2 is

formed as a consequence of the dynamics involved in the system. It is interesting to notice that the

DD pair alone do not form a bound state, but adding a Kaon to the system binds it and produces an

10

I=1/2, 4140 MeV
Wu, Liu, Geng, Hiyama, Valderrama, Gaussian Expansion 
 Method, arxiv: 1906.11995 [hep-ph].

Phys. Rev. D99, 
076017 (2019)
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Figure 6: Modulus squared of the KX and KZ scattering amplitudes
in I = 1/2. These results have been obtained by solving scattering
equations while treating KX and KZ as coupled channels and con-
sidering �(Z) = 28 MeV. A cusp related to the three-body KDD̄⇤

threshold is observed in the KX ! KX amplitude.

where the DD̄⇤ is treated as a cluster forming X(3872)
or Zc(3900). We find that this dynamics leads to the
generation of a new state of molecular nature (see
Fig. 1) which corresponds to a K⇤ meson with hidden
charm and important K-X and K-Zc components in
its wave function. The mass of the state is (4307 ± 2)
MeV with a width of (9 ± 2) MeV. Interestingly, a re-
cent study [46] solving the Schrödinger equation for the
DD̄⇤K system, but with a very different dynamics than
the one used here, found a state with a mass of 4317
MeV.

So far there is no experimental data available on K⇤

states in the energy region investigated in the present
work [47], so the result found here is a prediction
for a K⇤ meson with hidden charm and of molecular
three-body nature. Such state can be found at facilities,
such as BEPC, in processes with final states, such as
K̄0D+

s D
�. We hope that our work encourages such

experimental investigations.
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threshold is observed in the KX ! KX amplitude.

where the DD̄⇤ is treated as a cluster forming X(3872)
or Zc(3900). We find that this dynamics leads to the
generation of a new state of molecular nature (see
Fig. 1) which corresponds to a K⇤ meson with hidden
charm and important K-X and K-Zc components in
its wave function. The mass of the state is (4307 ± 2)
MeV with a width of (9 ± 2) MeV. Interestingly, a re-
cent study [46] solving the Schrödinger equation for the
DD̄⇤K system, but with a very different dynamics than
the one used here, found a state with a mass of 4317
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So far there is no experimental data available on K⇤

states in the energy region investigated in the present
work [47], so the result found here is a prediction
for a K⇤ meson with hidden charm and of molecular
three-body nature. Such state can be found at facilities,
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Figure 1. Decay mechanisms of the K⇤
R state predicted in Ref [29] to the J/ K⇤ channel. The

vertex X ! J/ ⇢(!) on the diagram (b) involves yet another triangular loop, as shown in Fig. 3
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Figure 2. Main two-body decay channels for the K⇤
R state found in the theoretical investigation

of Ref [29].

2 Theoretical Framework

The coupled channel calculation of Ref. [29] shows that the rescattering of a Kaon with the

D and D̄⇤, which cluster to form X(3872) in isospin 0 and Zc(3900) in isospin 1, generates

a I(JP ) = 1/2(1�) K⇤ state with a mass around 4307 MeV, which is below the KDD̄⇤

threshold, thus, it is a bound state. When considering the width of Zc(3900), which is

around 28 MeV, a width close to 18 MeV is found for the K⇤(4307) state. A K⇤ state

with such an internal structure can naturally decay to three-body channels, like J/ ⇡K,

since the state itself is obtained as a consequence of the three-body dynamics involved in

the KDD̄⇤ system. However, it can also decay to two-body channels. In this latter case,

due to the nature found for K⇤(4307) in Ref. [29], such a decay mechanism can proceed

through triangular loops (see Fig. 1) and we can have as main decay channels J/ K⇤(892),

D̄D⇤
s , D̄

⇤D⇤
s , and D̄Ds (see Fig. 2). In order to avoid confusion between K⇤(4307) and

K⇤(892) and to simplify the notation, we shall, henceforth, denote the former as K⇤
R
and

the latter as K⇤.

From the results of Ref. [29], the coupling of K⇤
R

to KZc(3900) is around 4 times

bigger than that to KX(3872), thus, when calculating the decay width of K⇤
R

(which is

proportional to the squared coupling of K⇤
R
to KZc or KX), the contribution arising from

– 3 –

Γa ∼ 7 MeV, Γb ∼ Γc ∼ 0.5 MeV,
Γd ∼ 1 MeV

JHEP 1905, 103 (2019) 
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involving the isospin breaking is via triangle diagrams such
as those shown in Fig. 1. These processes conserve isospin
and therefore should be the dominant ones compared to the
ones that violating isospin. In the following, we explain how
to calculate the two diagrams shown in Fig. 1.

R++(k0)

D+
s0(k1)

D+(k2)

⌘(q)

D+
s (p1)

D⇤+(p2)

R++(k0)

D+
s0(k1)

D+(k2)

K0(q)

D+(p1)

D⇤+
s (p2)

(a) (b)

FIG. 1: Diagrams representing the decay of the R
++ state to D

+
s
D
⇤+

and D
+

D
⇤+
s

.

In order to calculate the Feynman diagrams shown in Fig. 2,
we need to determine the relevant vertices. For the vertex of
R
++

D
⇤
s0D, since the R

++ is a bound state of D
⇤
s0D, this cou-

pling can be determined by the Weinberg compositeness con-
dition. In the present work, we adopt the method developed in
Refs. [51–67]. In this framework, the interacting Lagrangian
between R, Ds0, and D can be written as [51, 52]

R++(k0)

D+
s0(2317)(k1)

D+(k2)

R++(k0)

FIG. 2: Self-energy of the R
++ state.

LR(x) = gRDs0D(x)RT (x)
Z

dy�R(y2)Ds0(x + !Dy)

⇥ D(x � !Ds0 y) + H.c., (1)

where !i = mi/(mi + mj) is a kinematical parameter with mi

and mj being the masses of the involved mesons. In the La-
grangian, an e↵ective correlation function �(y2) is introduced
to reflect the distribution of the two constituents, D

+
s0(2317)

and D
+, in the hadronic molecular R

++ state. The introduced
correlation function also serves the purpose of making the
Feynman diagrams ultraviolate finite. Here we choose the
Fourier transformation of the correlation function in terms of
a Gaussian form,

�(p
2) ⌘ exp(�p

2
E
/⇤2) (2)

with ⇤ ⇠ 1.0 GeV [51–67] being the size parameter which
characterizes the distribution of the molecular components in-
side the molecule.

The coupling constant gRDs0D in Eq. (1) could be deter-
mined by the compositeness conditions [51, 52], where the
renormalization constant of the composite particle should be
zero, i.e.,

ZR++ ⌘ 1 � ⌃R++ (m2
R++

) = 0, (3)

with ⌃R++ (m2
R++

) being the derivative of the mass operator of
the R

++. The concrete forms of the mass operator of the R
++

corresponding to diagram Fig. 2 is

⌃R++ (k0) =
g

2
RDs0D

16⇡2

Z 1

0
d↵

Z 1

0
d�

1
z2 exp{� 1

⇤2

⇥ [�2k
2
0!

2
Ds0
+ ↵m

2
Ds0
+ �(�k

2
0 + m

2
D

) +
�2

M

4z
]}, (4)

where z = 2 + ↵ + �, � = �4!Ds0 k0 � 2�k0, and k
2
0 = m

2
R++

with k0, mR++ denoting the four-momenta and mass of the R
++,

respectively. Here, we set mR++ = mDs0 +mD � Eb with Eb the
binding energy of R

++, k1, and mDs0 are the four-momenta and
mass of the Ds0, and mD is the mass of the D, respectively.

In the present work, we calculate the two-body decay
width of the R

++ via the triangle diagrams shown in Fig. 1.
To evaluate the diagrams, in addition to the Lagrangian of
Eq. (1), the following e↵ective Lagrangian terms, responsi-
ble for the interactions between heavy-light pseudoscalar and
vector mesons are needed as well [33]

LPP⇤� = igtr(P⇤µu
µ
P
† � Pu

µ
P
⇤†
µ ), (5)

where P = (D0,D+,D+
s
) and P

⇤ = (D⇤0,D⇤+,D⇤+
s

), u
µ is the

axial vector combination of the pseudoscalar-meson fields and
its derivatives,

u
µ = i(u†@µu � u@µu†), (6)

where u
2 = U = exp(i

p
2�
f0

), f0=92.4 MeV, and the
pseudoscalar-meson octet � are represented by the 3⇥3 matrix

� =
p

2

0
BBBBBBBBBBB@

⇡0
p

2
+
⌘p
6

⇡+ K
+

⇡� � ⇡0
p

2
+
⌘p
6

K
0

K
�

K̄
0 � 2p

6
⌘

1
CCCCCCCCCCCA
. (7)

From Eqs.( 5-7), one can obtain the Lagrangian for the ver-
tices ⌘D+D

⇤+,K0
D
+

D
⇤+
s

, and D
⇤+⇡+D

0,

L⌘D+D⇤+ = �
igp
3 f0

(D⇤+µ @
µ⌘D+ � D

+@µ⌘D⇤+µ ), (8)

LK0D+D
⇤+
s
= �
p

2ig

f0
D
+@µK0

D
⇤+
sµ , (9)

LD⇤+⇡+D0 = �
p

2ig

f0
D

0@µ⇡+D
⇤+
µ . (10)

The coupling constant g can be determined from the strong
decay width �(D⇤+ ! D

0⇡+) = 56.46±1.22 keV together with
the branching ratio BR(D⇤+ ! D

0⇡+) = (67.7 ± 0.5)% [68].
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