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HIGHLIGHTS

Focus on isospin light isospin=1 hyperons

We use lowest order Lagrangians and couple channels with 
vector and pseudoscalar mesons.

Fix the parameters of the model using experimental data

Perform a statistical comparison with results from model using 
NLO terms

Find evidences for a possible existence of a light   (mass around 
1400 MeV).

Σ



STRANGENESS -1 (LIGHT) 
HYPERONS:
  is widely accepted a baryon arising from meson-baryon 
multichannel dynamics [very long list of references: Kaiser, Siegel, Weise, NPA 594, 325 
(1995),  Oset, Ramos, NPA 635 (1998) 99, Oller, Meißner, PLB 500, 263 (2001), Jido, Oller, Oset, 
Ramos, Meißner, NPA 725, 181 (2003) Hyodo, Jido, Prog. Part Nucl. Phys. 67, 55 (2012), Hyodo, Weise, 
PRC98 (2018), C. Wang, L. l. Liu and X. H. Guo, PRD 96, (2017), Z. W. Liu, J. M. M. Hall, D. B. Leinweber, 
A. W. Thomas and J. J. Wu, PRD 95, (2017). Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset 
and W. Weise, Nucl. Phys. A 954, 41 (2016).  R. Molina and M. Doring, PRD94 (2016)]  

Efforts from lattice community [Hall, Kamleh, Leinweber, Menadue, Owen, Thomas, 
Young, PRL 114 (2015), Menadue, Kamleh, Leinweber, Mahbub, PRL 108 (2012), Ishii, Doi, Oka, 
Suganuma, PTP Suppl. 168, 598 (2007), Takahashi and Oka, PTP Suppl. 186, 172 (2010) , Hall, 
Kamleh, Leinweber,  Menadue, Owen, Thomas, PRD95 (2017), Gubler, Takahashi and Oka, 
PRD94 (2016), Briceno, Dudek, Young, Rev. Mod. Phys. 90 (2018) ]

Λ(1405)

Well studied, very relevant topic!



STRANGENESS -1 (LIGHT) 
HYPERONS:

Strange meson-baryon dynamics:

Important to understand the properties of hyperons

Possibility of describing   as meson-nucleon resonance 
raises question on the existence of kaonic-nuclear bound states

Useful for studies of interactions of kaons in nuclear medium

Does an isovector partner of   exists?

Λ(1405)

Λ(1405)



STRANGENESS -1 (LIGHT) 
HYPERONS:
Evidences of the existence of a   with mass around 1400 MeV:

A coupled channel study of pseudoscalar-baryon systems, using chiral Lagrangian, based on s-, t-, u-
channel diagrams, by fixing the model parameters using data on different   
processes(Oller, Meißner, PLB 500, 263 (2001)). 1440 − i70 MeV and 1420 − i42 MeV  

Same work was extended later using NLO Lagrangian and by including data on by including data on 
energy shift and width of the 1s-state in kaonic hydrogen+ data on   (Guo, Oller, 
PRC87, 035202 (2013)). Two fits: one corresponding to two  s (1376 − i33 MeV and 1414 − i12) 
and other none (disfavored).

Best fit to data on   included two  s (1413 ± 10) − i(26 ± 5) MeV and 
(1394 ± 20) − i(75 ± 20) MeV, (CLAS Collab, PRC 87, 035206 (2013).)

Theoretical analysis of data on processes:   
seems to require an isospin resonance with mass around 1380 MeV and width around 60 MeV. 
(Wu, Dulat, Zou, PRD 80, 017503 (2009), Wu, Dulat, Zou, PRC 81, 045210 (2010), Gao, Wu, Zou, PRC 
81, 055203 (2010),Xie, Wu, Zou, PRC 90, 055204 (2014), Xie, Geng, PRD 95, 074024 (2017)).

Σ

K−p → K−N, πΣ, πΛ

K−p → ηΛ, π0π0Σ
Σ

γ + p → K+ + Σ±,0 + π∓,0 Σ

K−p → Λπ+π−, γN → K+πΛ, Λp → Λpπ0, Λ+
c → ηπ+Λ



STRANGENESS -1 (LIGHT) 
HYPERONS:
Evidence not found/not reported:  

A partial-wave analysis (s-/p-wave) of S = −1 low-energy data, including differential cross 
sections does not find any evidence for  s around 1400 MeV. But only PB contact 
interactions taken in to account (Sadasivan, Mai, Döring, PLB789 (2019) 329).  

A study of S=-1 coupled systems including constraints from photoproduction date from 
CLAS does not discuss isovector states (Mai, Meißner, EPJA 51, 30 (2015)).  

 A different analysis of photoproduction data reports finding of a cusp around   
threshold (Roca, Oset, Phys. Rev. C 88, 055206 (2013).)  

Σ

K̄N



MODEL
In a previous work, PB-VB coupled channel calculations( Khemchandani,  Martinez 
Torres, Nagahiro and Hosaka, PRD 85, 114020 (2012), we found  s deep in the 
complex plane (1427 − i145 MeV, 1438 − i198 MeV). 

But no constraints were made using experimental data. 

Only PB  contact interactions taken into account.

We now include more sources (s-, u-channel)

Importance of s-, u-channel diagrams also brought forward by Ramos, Feijoo Magas 
in NPA 954, 58 (2016). 

VB channels do not have large weights in the wave functions but may affect the pole 
position (some VB thresholds close to PB thresholds, eg  ).

Σ

KΞ, ρΛ



MODEL
Consider all meson-baryon channels with strangeness -1 composed of pseudoscalar and 
vector mesons   as 
coupled channels.

Consider a  contact interaction, s-, t-, and u-channel diagrams for VB channels and latter 
three for  PB channels.  

K̄N, KΞ, πΣ, ηΛ, πΛ, ηΣ, K̄*N, K*Ξ, ρΣ, ωΛ, ϕΛ, ρΛ, ωΣ, ϕΣ

Vector meson-baryon dynamics and generation of resonances
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The purpose of this work is to study vector meson-octet baryon interactions with the aim to find

dynamical generation of resonances in such systems. For this, we consider s-, t-, u -channel diagrams

along with a contact interaction originating from the hidden local symmetry Lagrangian. We find the

contribution from all these sources, except the s channel, to be important. The amplitudes obtained by

solving coupled channel Bethe-Salpeter equations for systems with total strangeness zero, show the

generation of one isospin 3=2, spin 1=2 resonance and three isospin 1=2 resonances: two with spin 3=2 and
one with spin 1=2. We identify these resonances with !ð1900ÞS31, N#ð2080ÞD13, N

#ð1700ÞD13, and

N#ð2090ÞS11, respectively.

DOI: 10.1103/PhysRevD.83.114041 PACS numbers: 14.20.Gk, 11.10.St, 11.30.Ly

I. INTRODUCTION

Recent interests in hadron physics have been largely
motivated by experimental observations of new states in
the resonance region which are not easily explained by the
conventional constituent quark model. The strong interac-
tions among the ground state mesons and baryons not only
affect their properties but also, in some cases, generate
resonances dynamically (examples of some of the recent
related works are Refs. [1–10]). Therefore, it is of great
importance to investigate these dynamical aspects based on
reliable hadron-hadron interactions.

In a quark picture, an energy of several hundred MeV
which is a typical scale of one quanta of orbital excitation
is sufficient to create a "qq pair, making multiquark com-
ponents in a hadron. If they further develop color singlet
clusters of ground state hadrons near their threshold, they
may form a loosely bound or resonant state provided that
sufficiently strong attraction is available. This is what we
expect microscopically for the dynamical generation of
resonances. A spin zero configuration of "qq forms a
JP ¼ 0% pseudoscalar meson, and is the basic building
block of, for instance, #ð1405Þ [11–13]. Similarly, the
JP ¼ 1% configuration giving a vector meson could also
be an element of certain baryon resonances as indicated in
Refs. [14–19]. However, while the pseudoscalar meson-
baryon interaction is well dictated by the low energy
theorems of spontaneously broken chiral symmetry, the
interaction of vector mesons and baryons are not fully
studied. This is one of the issues that we would like to
discuss in this paper.

It is known that the theory of the hidden local symmetry
(HLS) [20] can accommodate vector mesons consistently
with the chiral symmetry. In fact, the HLS model has been

shown to share many important aspects of low energy
dynamics. Furthermore, a recent holographic approach to
QCD has derived the extended HLS model where an
infinite series of the vector mesons emerges as a conse-
quence of the dynamics in the extra fifth dimension
[21,22]. This HLS model forms the basis of our study
The vector meson-octet baryon interaction has been

studied within the HLS by assuming a vector meson ex-
change in the t channel [19] [Fig. 1(a)] as the lowest order
amplitude and several baryon resonances have been found
as a result of solving the Bethe-Salpeter equation in the
coupled channel formalism. However, in Ref. [19] all
the states are found to be spin 1=2-3=2 degenerate since
the leading order interaction obtained from the t-channel
exchange is spin independent. This latter finding is differ-
ent fromwhat one would expect from the interaction of two
particles of similar mass and nonzero spin, just as for the
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FIG. 1. Diagrammatical representation of the vector meson-
baryon interaction via a (a) t-channel exchange, (b) contact term,
(c) s-channel, and (d) u -channel exchange. The double lines in
these diagrams represent the vector mesons.
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MODEL

PB Lagrangian:

  

   .   =0.8, 

  

ℒPB = ⟨B̄iγμ∂μB + B̄iγμ[Γμ, B]⟩ − MB⟨B̄B⟩ +
1
2

D′ �⟨B̄γμγ5{uμ, B}⟩ +
1
2

F′ �⟨B̄γμγ5[uμ, B]⟩

uμ = iu†∂μUu†, Γμ =
1
2 (u†∂μu + u∂μu†), U = u2 = exp (i

P
fP ) D′�

F′ � = 0.46

scattering in the systems. Toward the end of the same section, we discuss the idea of carrying

out a �
2-fit, the parameters of the fit, and the data to be considered in the fit. In Sec. III we

discuss the details on the results of the fits obtained. The properties of the resonances found

in our study are also given in Sec. III, by categorizing them in di↵erent subsections on the

basis of their spins and isospins. Finally, we present a summary of the work.

II. FORMALISM

The problem of hadron scattering gets typically more and more complex as the energy

region to be scanned involves opening of more and more thresholds to possible coupled

channels. To study hyperon resonances arising from hadron dynamics, with mass up to about

2 GeV, we implement a nonperturbative unitarization method by treating crossed-channel

dynamics perturbatively as developed in Refs. [3, 42, 43]. There is a connection with this

method and solving the Bethe-Salpeter equation for contact interactions [2, 44]. We take into

account pseudoscalar- and vector-baryon channels, motivated by the fact that the thresholds

of these channels are spread over the energy ranging from 1.25-2.2 GeV, and some of them lie

close enough to couple to each other, for exampleK⌅, K̄⇤
N . The pseudoscalar meson-baryon

interaction diagrams are deduced from the lowest order, O(p), Lagrangian [1–3, 45–48],

LPB = hB̄i�
µ
@µB+B̄i�

µ[�µ, B]i�MBhB̄Bi+
1

2
D

0
hB̄�

µ
�5{uµ, B}i+

1

2
F

0
hB̄�

µ
�5[uµ, B]i, (1)

where uµ = iu
†
@µUu

†, and

�µ =
1

2

�
u
†
@µu+ u@µu

†�
, U = u

2 = exp

✓
i
P

fP

◆
, (2)

with fP representing the pseudoscalar decay constant, and P (B) denoting the matrices of

the octet meson (baryon) fields:

P =

0

BBB@

⇡
0 + 1p

3
⌘

p
2⇡+

p
2K+

p
2⇡�

�⇡
0 + 1p

3
⌘

p
2K0

p
2K�

p
2K̄0 �2p

3
⌘

1

CCCA
, B =

0

BBB@

1p
6
⇤+ 1p

2
⌃0 ⌃+

p

⌃� 1p
6
⇤�

1p
2
⌃0

n

⌅� ⌅0
�

q
2
3⇤

1

CCCA
.
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MODEL
VB Lagrangian:

 

 D=2.4, F=0.82

 

ℒVB = − g{⟨B̄γμ [Vμ
8 , B]⟩ + ⟨B̄γμB⟩⟨Vμ

8 ⟩ +
1

4M (F⟨B̄σμν [Vμν
8 , B]⟩ + D⟨B̄σμν {Vμν

8 , B}⟩)
+⟨B̄γμB⟩⟨Vμ

0 ⟩ +
C0

4M
⟨B̄σμνV

μν
0 B⟩}

ℒV0BB = − g{⟨B̄γμB⟩⟨Vμ
0 ⟩ +

C0

4M
⟨B̄σμνV

μν
0 B⟩},

Vμν = ∂μVν − ∂νVμ + ig [Vμ, Vν]

momentum in the lth channel and Aij, Bij, Cij are isospin coe�cients for di↵erent processes.

The coe�cients Bij, Cij, for isospin 0 and 1, are listed in Tables. A1, A2, A3, and A4 in the

Appendix, where we also give the amplitudes in Eqs. (3), (4), and (5) projected on s-wave.

We refer the reader to Ref. [2] for the constants, Aij, related to the contact interactions. It

must be added here that we consider an octet baryon exchange in the s- and u-channel, thus,

the 1/2� states eventually found in the complex plane can be interpreted as those arising

from the dynamics in the system.

For the vector-baryon amplitudes, we follow the previous work [50], where the problem

was studied in detail, using a Lagrangian based on hidden local symmetry, and it was found

that s-, t-, and u-channel diagrams and a contact interaction arising from two vector field

terms give comparable contributions, and must all be considered. We take the following

Lagrangian from Ref. [50]:

LVB= �g

(
hB̄�µ [V

µ
8 , B]i+hB̄�µBihV

µ
8 i+

1

4M

�
F hB̄�µ⌫ [V

µ⌫
8 , B]i+DhB̄�µ⌫ {V

µ⌫
8 , B}i

�
(6)

+hB̄�µBihV
µ
0 i+

C0

4M
hB̄�µ⌫V

µ⌫
0 Bi

)
,

where the subscript 8 (0) denotes the octet (singlet) part of the wave function of the vector

meson (relevant in the case of ! and �), V µ⌫ represents the tensor field of the vector mesons,

V
µ⌫ = @

µ
V

⌫
� @

⌫
V

µ + ig [V µ
, V

⌫ ] , (7)

and V
µ is the SU(3) matrix for the (physical) vector mesons,

V
µ =

1

2

0

BBB@

⇢
0 + !

p
2⇢+

p
2K⇤+

p
2⇢� �⇢

0 + !
p
2K⇤0

p
2K⇤�

p
2K̄⇤0

p
2�

1

CCCA

µ

. (8)

In Eq.(6), the coupling g is related to the vector meson decay constant, fv through the

7



MODEL

PBVB Lagrangian:

 ℒPBVB =
−igPBVB

2fv (F′�⟨B̄γμγ5 [[P, Vμ], B]⟩ + D′�⟨B̄γμγ5 {[P, Vμ], B}⟩)



MODEL

All amplitudes are projected on s-wave and used as an input in the 
equation T= V+VGT

   Must be 
regularized, Subtraction constants

this unitarization procedure can be applied by matching algebraically (not numerically) the

unitarized result with the perturbative one order by order, as explained, e.g., in Refs. [3, 43]

or in chapter 10 of Ref. [57]. This is the method that we are using here where V also contains

the u-channel exchange of the lightest 1/2+ octet of baryons. Either way, the so called on-shell

factorization has been remarkably successful in understanding, reproducing and predicting

the properties of many of the resonances observed in nature, like �(600), f0(980), a0(980),

⇤(1405), etc., proving its reliability in a study like the one at hand.

With the lowest order amplitudes discussed in this section we solve the Bethe-Salpeter

equation in its on-shell factorized form and make a �
2-fit to the data. The parameters of the

fit are:

1. The subtraction constants required to calculate the loop integrals with the dimensional-

regularization method

G(
p
s) = i2M

Z
d
4
q

2⇡4

1

(P̃ � q)2 �M2 + i✏

1

q2 �m2 + i✏
(12)

=
2M

16⇡2

(
a(µ) + ln

M
2

µ2
+

m
2
�M

2 + s

2s
ln

m
2

M2

+
q̃
p
s

h
ln
�
s�

�
M

2
�m

2
�
+ 2q̃

p
s
�
+ ln

�
s+

�
M

2
�m

2
�
+ 2q̃

p
s
�

� ln
�
�s+

�
M

2
�m

2
�
+ 2q̃

p
s
�
� ln

�
s�

�
M

2
�m

2
�
+ 2q̃

p
s
�i
)
,

where P̃ is the total four-momentum, M (m) is the mass of the propagating baryon

(meson), and q̃ = �
1/2(s,M2

,m
2)/2

p
s, a(µ) is the subtraction constant at a regular-

ization scale µ = 630 MeV. In line with the discussions on the on-shell factorization

form of the Bethe-Salpeter equation, the implementation of coupled channel unitarity

relates the imaginary part of the inverse of the T -matrix to the phase space for the

corresponding elastic transition. In this way, when implementing a dispersion relation

for the inverse of the T -matrix with a constant subtraction, it is expected to have one

10



MODEL

Parameters:

14 subtraction constants

decay constants (one for pseudoscalars, one for vectors)

PBVB coupling



MODEL
DATA:

Total cross sections on (175 data points) (Landolt and Börsntein, 
Numerical data and Functional Relationships in Science and Technology, 
Group I, Volume 12, Sub-volume a, Total-Cross Sections for reactions of 
high energy physics)

Kaonic hydrogen (Siddharta collaboration) ∆E = 283±36±6 eV and Γ = 
549±89±22 eV (M. Bazzi et al., PLB 704, 113 (2011))

Cross section ratios near threshold

Thus, the average value for the decay constant of the pseudoscalars, fP , to be used in

Eqs. (A.1), (A.2), (A.3), and another one for the vectors, fv, to be used in vector-baryon

amplitudes, account for two additional parameters in the fit.

3. Finally, the coupling at the pseudoscalar-baryon–vector-baryon vertex, gPBV B in

Eq. (11), is treated as a parameter to be fitted, whose value can be approximately

estimated using Eq. (9). One gets gPBV B ⇠ 3.5 by taking an average value for mv ⇠

850 MeV, fv ⇠ 170 MeV. However, this value could be smaller if hadronic structure

is taken into account by using a form factor. Note that if the pion decay constant ⇠

93 MeV is used, instead of the vector decay constant, in Eq. (9), then gPBV B ⇠ 6 (as

in Refs. [37, 54, 55]). We, thus, allow gPBV B to vary between 1 and 6 in the fitting

procedure.

The experimental data considered for the fit are:

1. The total cross sections of the processes: K
�
p ! K

�
p, K̄

0
n, ⌘⇤, ⇡

0⇤ ⇡
0⌃0

, ⇡
±⌃⌥,

from the respective thresholds to about 30-50 MeV above the threshold [61–67].

2. The energy level shift and width of the 1s state of the kaonic hydrogen measured by

the SIDDHARTA collaboration [68]: �E = 283± 36± 6 eV and � = 549± 89± 22 eV.

We use the relation between the energy shift and width of the 1s state of the kaonic

hydrogen and the K
�
p scattering length, as obtained in Ref. [69]

�E � i
�

2
= �2↵3

µ
2
aK�p [1 + 2↵µ(1� ln↵)aK�p] , (13)

where

aK�p = �
tK�p

4⇡
p
sth

Mp, (14)

with Mp being the proton mass and
p
sth denoting the K

�
p threshold energy.

12

3. The following ratios of the cross section at the threshold, taken from Refs. [70, 71],

� =
�(K�

p ! ⇡
+⌃�)

�(K�p ! ⇡�⌃+)
= 2.36± 0.12,

Rc =
�(K�

p ! charged particles)

�(K�p ! all)
= 0.664± 0.033, (15)

Rn =
�(K�

p ! ⇡
0⇤)

�(K�p ! all neutral states)
= 0.189± 0.015,

where, following Ref. [31], a conservative 5 % relative error bar is assigned to the value

of �, Rc to include the di↵erent experimental measurements.

III. RESULTS AND DISCUSSIONS

To fit the data, the �
2 per degree of freedom, �2

d.o.f, is calculated as [31, 49, 72–74],

�
2
d.o.f =

NP
k=1

nk

N(
NP
k=1

nk � np)

NX

k=1

�
2
k

nk
, (16)

where N is the number of di↵erent data sets, nk represents the number of data points in the

kth data set, np is the number of free parameters, and the �2 for the kth data set is obtained

as

�
2
k =

nkX

i=1

(ythk;i � y
exp
k;i )

2

�2
k;i

, (17)

with y
exp
k;i (ythk;i) representing the ith experimental (theoretical) point of the kth data set and

�
2
k;i the standard deviation associated with it. In this context, we should mention that the

values of �E and � from the SIDDHARTA collaboration are considered as two data points

of the same data set.

In the fitting procedure, we find that two types of solutions exist, which correspond to

�
2
d.o.f ⇠ 1. A �

2
d.o.f value of the order of 1 is the expected value for such a quantity when

13
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 -fit

 

N is no. of different data sets,   is the no. of data points in the nth 
data set,   is the number of parameters

                                               has mean 0, with st deviation 1.

χ2

nk
np
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d.o.f, is calculated as [31, 49, 72–74],

�
2
d.o.f =

NP
k=1

nk

N(
NP
k=1

nk � np)

NX

k=1

�
2
k

nk
, (16)

where N is the number of di↵erent data sets, nk represents the number of data points in the

kth data set, np is the number of free parameters, and the �2 for the kth data set is obtained

as

�
2
k =

nkX

i=1

(ythk;i � yexpk;i )
2

�2
k;i

, (17)

with yexpk;i (ythk;i) representing the ith experimental (theoretical) point of the kth data set and

�
2
k;i the standard deviation associated with it. In this context, we should mention that the

values of �E and � from the SIDDHARTA collaboration are considered as two data points

of the same data set.

In the fitting procedure, we find that two types of solutions exist, which correspond to

�
2
d.o.f ⇠ 1. A �

2
d.o.f value of the order of 1 is the expected value for such a quantity when
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the number of degrees of freedom is large, with the �
2 having a standard deviation of one.

Large deviations from 1 for �2
d.o.f would imply, thus, that the fit found to the data could be

categorized as a bad fit. The parameter sets related to the two solutions, which we label

as Fit I and II, are given in Table I, together with the associated error bars. The central

value and the associated error correspond to the mean value and the standard deviation,

respectively, obtained for each parameter. The errors are estimated by admitting solutions

satisfying the condition

�
2 6 �

2
0 +

q
2�2

0, (18)

where �
2
0 is the minimum �

2 value obtained, as in Refs. [75, 76]. Equation (18), obtained

in Ref. [76], is based on the fact that in the limit of large number of degrees of freedom,

(�2
�n.d.o.f)/(

p
2 n.d.o.f) is normally distributed with the mean value 0 and standard devia-

tion 1. Thus, producing random numbers, within the error bars, for the parameters obtained

from the best fit and considering all the new fits satisfying Eq. (18) implies estimating the

parameter to a confidence level of 1 standard deviation and including, at the same time, the

correlated errors of all the free parameters.

Besides the above discussions, we must add that the biggest contribution to the �
2
d.o.f

comes from the cross section data for the di↵erent K�
p processes mentioned in the previous

section. Thus, when minimizing the �
2
d.o.f it is possible to find solutions with �

2
d.o.f ⇠ 1,

but the values obtained for the ratios of Eq. (15) and/or the SIDDHARTA data lay outside

the error bars related to the respective experimental data, making the results from the fit

incompatible with these data, in spite of fitting well the cross sections data on the K
�
p

processes. Such fits have been discarded.

In Fig. 1 we show the cross sections of the di↵erent processes, as obtained by the param-

eter set labeled as Fit I. The shaded bands in the panels correspond to the results obtained

by using the criteria given in Eq. (18). The data considered in the fit are shown as (red)

filled circles in Fig. 1. These data are taken from Refs. [61–67], and are the same as those
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FITS
TABLE I. Values of the parameters obtained by constraining the model amplitudes to reproduce

experimental data (mentioned in Sec. II). Here, ai represents the subtraction constant for the

channel i in the isospin base, fP (fv) is an average value for the decay constants of the pseudoscalar

(vector) mesons, and gPBV B is the coupling appearing in the PB $ V B vertices [see Eq. (11)].

The values of the minimum �2
d.o.f are 0.89 for Fit I and 0.91 for Fit II.

Parameters Fit I Fit II

aK̄N �2.00± 0.06 �2.12± 0.10

aK⌅ �2.43± 0.04 �2.43± 0.06

a⇡⌃ �1.09± 0.07 �1.18± 0.12

a⌘⇤ �1.25± 0.03 �1.27± 0.09

a⇡⇤ �0.84± 0.26 �1.69± 0.31

a⌘⌃ �3.62± 0.44 �1.97± 0.12

Parameters Fit I Fit II

aK̄⇤N �4.34± 0.08 �4.39± 0.09

aK⇤⌅ �3.86± 0.03 �3.33± 0.06

a⇢⌃ 1.17± 1.29 �2.36± 0.07

a!⇤ �6.50± 0.70 �3.86± 2.09

a�⇤ �6.83± 0.60 �5.22± 1.13

a⇢⇤ �0.77± 0.20 �0.49± 0.47

Parameters Fit I Fit II

a!⌃ �3.55± 1.58 �3.65± 1.34

a�⌃ �4.67± 0.29 �2.51± 0.39

fP (MeV) 94.62± 1.46 97.24± 1.56

fv (MeV) 138.12± 1.54 113.46± 5.21

gPBV B 2.19± 0.09 1.81± 0.07

considered in Ref. [31]. We have included more data points from Ref. [77] and which are

shown as (blue) filled squares in Fig. 1, going to about 100-200 MeV above the threshold

for these reactions. It can be seen that the results stay close to the data points at higher

energies too, even though the data at these energies were not used in the fit. At energies

farther from the reaction threshold, the cross sections are expected to get contributions from

interactions in higher partial waves, and, thus, the s-wave amplitudes, which are the ones

we calculate, are not expected to be su�cient to describe data at such energies. For a

better description of the data we need to include some well-known resonances in the formal-

ism, such as ⇤(1520)(3/2�), ⇤(1600)(1/2+), ⌃(1620)(1/2+), which are related to p-, d-wave

pseudoscalar-baryon interactions. Such states can be taken into account by including chan-

nels, like, meson–decuplet-baryon [78], two meson-one baryon [79], etc. Such extensions of

our work can be done in future. Still it is reassuring to see that the cross sections obtained

at higher energies do not di↵er much from the experimental data. It is worth mentioning

that the coupling to vector-baryon channels is useful in improving this agreement, at ener-

gies away from the threshold. Although, the presence of the vector-baryon coupling is more
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FIG. 1. Cross sections of di↵erent processes studied in our work. The shaded region represents the

results found with the parameters listed under the label Fit I, in Table I. Data shown as (red) filled

circles (taken from Refs. [61–67]) were used in the �2 fitting procedure explained in the text.
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FIG. 3. Cross sections obtained with the parameter set Fit II given Table I. The data are taken

from the same source as in Fig 1.
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TABLE III. Pole positions and couplings of the I(JP ) = 0(1/2�) states found. The central values

and errors were obtained as explained in the caption of Table I (for the sake of space, the errors are

represented as superscripts). Masses and widths are given in MeV. The coupling of the state to a

given channel are written as rows in the Table for Fit I and II ( the first (second) row is related to

the results for Fit I (Fit II)). The symbol “�” indicates that we have ignored the states found with

mass beyond 1680 MeV in Fit II

⇤(1405) ⇤(1670) ⇤(1800)

Fit I 1373±5 � i 114±9 1426±1 � i 16±1 1681±1 � i 16±2 1734±7 � i 19±2

Fit II 1385±5 � i 124±10 1426±1 � i 15±2 1681±2 � i 7±1 �

K̄N
0.84±0.14 � i 1.91±0.06 2.44±0.05 + i 0.69±0.08 0.33±0.02 � i 0.38±0.03 0.14±0.05 � i 0.12±0.07

0.66±0.35 � i 1.93±0.12 2.43±0.16 + i 0.63±0.23 0.15±0.06 � i 0.19±0.13 �

K⌅
�0.51±0.05 + i 0.49±0.06 0.59±0.09 � i 0.19±0.04 2.74±0.26 + i 0.25±0.22 1.26±0.60 � i 0.39±0.28

�0.55±0.13 + i 0.27±0.06 0.72±0.14 � i 0.14±0.08 0.33±0.64 + i 0.28±0.34 �

⇡⌃
�2.04±0.07 + i 2.29±0.08 �0.87±0.06 � i 1.05±0.09 0.27±0.02 + i 0.420.06 0.09±0.05 � i 0.14±0.07

�2.05±0.11 + i 2.27±0.09 �0.90±0.08 � i 0.96±0.15 �0.11±0.20 � i 0.13±0.35 �

⌘⇤
�0.71±0.07 � i 1.24±0.04 2.45±0.05 + i 0.21±0.04 �0.83±0.14 + i 0.11±0.08 �0.50±0.23 + i 0.49±0.24

�0.80±0.10 � i 1.24±0.06 2.34±0.13 + i 0.16±0.04 �0.19±0.10 � i 0.20±0.06 �

K̄⇤N
0.86±0.08 � i 0.04±0.10 �0.16±0.10 + i 0.26±0.03 �0.18±0.08 � i 0.05±0.03 �0.15±0.11 + i 0.05±0.04

0.62±0.28 � i 0.18±0.14 0.04±0.36 + i 0.23±0.19 0.50±0.92 + i 0.01±0.10 �

K⇤⌅
1.23±0.11 � i 0.08±0.09 �0.36±0.12 + i 0.42±0.05 �2.05±0.25 + i 0.22±0.13 1.01±0.47 + i 0.22±0.18

1.17±0.12 � i 0.40±0.12 0.00±0.19 + i 0.44±0.08 1.04±2.99 � i 0.19±0.30 �

⇢⌃
0.16±0.11 + i 0.29±0.07 �0.24±0.09 � i 0.01±0.02 0.23±0.16 � i 0.09±0.08 �0.28±0.28 � i 0.04±0.03

0.57±0.24 + i 0.41±0.19 �0.47±0.43 + i 0.03±0.18 �1.76±2.58 + i 0.10±0.37 �

!⇤
�0.26±0.03 + i 0.28±0.03 �0.37±0.02 � i 0.15±0.02 0.51±0.06 � i 0.09±0.03 �0.32±0.15 � i 0.07±0.06

�0.23±0.10 + i 0.33±0.06 �0.45±0.09 � i 0.16±0.07 �0.32±0.71 + i 0.05±0.08 �

�⇤
0.46±0.07 � i 0.44±0.06 0.62±0.05 + i 0.25±0.03 �0.66±0.10 + i 0.12±0.04 0.39±0.19 + i 0.11±0.07

0.44±0.27 � i 0.58±0.13 0.82±0.30 + i 0.29±0.19 0.60±1.19 � i 0.09±0.14 �

of ⇤(1405), with the lower mass pole being near 1368 MeV and the higher mass pole near

1423 MeV. The pole values obtained from fits constrained by photoproduction data are also

worth mentioning, for instance, those obtained in Refs. [40, 41]. The best solution in the

former work corresponds to the poles for ⇤(1405): 1429+8
�7� i12+2

�3 and 1325+15
�15� i90+12

�18 MeV.
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�3 and 1325+15
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1423 MeV. The pole values obtained from fits constrained by photoproduction data are also

worth mentioning, for instance, those obtained in Refs. [40, 41]. The best solution in the

former work corresponds to the poles for ⇤(1405): 1429+8
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decay rates in poor agreement:
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πΣ
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of ⇤(1405), with the lower mass pole being near 1368 MeV and the higher mass pole near

1423 MeV. The pole values obtained from fits constrained by photoproduction data are also

worth mentioning, for instance, those obtained in Refs. [40, 41]. The best solution in the

former work corresponds to the poles for ⇤(1405): 1429+8
�7� i12+2

�3 and 1325+15
�15� i90+12

�18 MeV.
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B. Isospin = 1, spin = 1/2

In the case of 1/2� isovector scattering amplitudes studied in the complex plane, two poles

appear around 1400 MeV with the parameter set Fit I (see Table IV), while only one pole

TABLE IV. Pole positions and couplings of the I(JP ) = 1(1/2�) states found in our work. The

central values and errors were obtained as explained in the caption of Table I (for the sake of space,

the errors are represented as superscripts).

⌃’s around 1400 MeV ⌃(1620) or ⌃(1670) ⌃(1900)

Fit I 1396±1 � i 5±2 1367±24 � i 57±21 1630±33 � i 104±13 1853±10 � i 150±10

Fit II � 1399±35 � i 36±9 � �

K̄N
0.18±0.03 + i 0.14±0.05 0.08±0.48 + i 0.52±0.73 1.47±0.08 � i 0.017±0.07 �0.86±0.03 + i 0.79±0.02

� 0.50±0.29 + i 0.33±0.18 � �

K⌅
1.06±0.22 + i 1.45±0.12 0.62±0.47 � i 0.42±1.00 2.89±0.26 � i 0.65±0.24 0.84±0.03 � i 0.39±0.05

� 0.81±0.42 + i 0.41±0.15 � �

⇡⌃
�0.17±0.09 � i 020±0.03 0.77±0.96 � i 0.67±1.22 0.71±0.33 � i 1.63±0.19 �0.02±0.04 + i 0.32±0.08

� 1.08±0.12 + i 0.19±0.21 � �

⇡⇤
0.03±0.10 + i 0.07±0.06 �0.91±1.32 + i 0.39±0.81 �0.26±0.34 � i 0.23±0.18 0.36±0.2 + i 1.54±0.04

� �1.40±0.18 � i 0.07±0.10 � �

⌘⌃
�0.43±0.03 � i 0.23±0.09 0.31±0.31 � i 0.59±1.12 �2.14±0.24 � i 0.13±0.11 0.07±0.03 � i 0.43±0.02

� 0.27±0.10 � i 0.19±0.11 � �

K̄⇤N
0.04±0.10 + i 0.15±0.07 �1.69±1.99 + i 0.31±0.68 �0.31±0.09 � i 0.11±0.16 0.71±0.05 � i 0.05±0.02

� �3.46±0.21 � i 0.06±0.15 � �

K⇤⌅
�0.50±0.22 � i 0.38±0.08 1.40±2.11 � i 1.10±2.38 �1.80±0.47 � i 0.37±0.14 �0.98±0.14 � i 0.72±0.06

� �0.01±0.59 � i 0.21±0.08 � �

⇢⌃
�0.15±0.07 � i 0.14±0.04 0.76±1.02 � i 0.58±0.85 �0.76±0.18 � i 0.53±0.49 �1.10±0.04 � i 0.34±0.03

� 3.60±0.61 � i 0.69±0.16 � �

⇢⇤
0.36±0.18 + i 0.29±0.07 �0.95±1.50 + i 0.93±1.84 2.44±0.50 + i 0.94±0.27 1.51±0.25 + i 0.82±0.09

� �1.26±0.19 + i 0.09±0.07 � �

!⌃
�0.15±0.11 � i 0.14±0.05 1.03±1.35 � i 0.55±1.10 �0.14±0.23 � i 0.44±0.14 �0.64±0.10 � i 0.23±0.04

� 2.15±0.20 � i 0.13±0.09 � �

�⌃
0.27±0.17 + i 0.24±0.08 �1.73±2.27 + i 0.90±1.82 0.42±0.38 + i 0.53±0.24 1.04±0.20 + i 0.39±0.07

� �3.23±0.39 + i 0.20±0.11 � �
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� 2.15±0.20 � i 0.13±0.09 � �

�⌃
0.27±0.17 + i 0.24±0.08 �1.73±2.27 + i 0.90±1.82 0.42±0.38 + i 0.53±0.24 1.04±0.20 + i 0.39±0.07

� �3.23±0.39 + i 0.20±0.11 � �
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Known ratios for  

 
We find 0.5 and 0.06

Known ratios for  

 
We find  0.37, 0.10, and 0.26. 
We provide decay rates in the article.

Σ(1620)spin-parity) [60],

�(⌃(1670) ! K̄N)

�(⌃(1670) ! ⇡⌃)
< 0.75, (24)

0.05 . �(⌃(1670) ! ⇡⇤)

�(⌃(1670) ! ⇡⌃)
. 0.85, (25)

and from the state in our Fit I, the former ratio is obtained to be ⇠0.5 and the latter one

is found ⇠0.06. In the case of ⌃(1620) (1/2�), the following partial widths are known from

di↵erent partial-wave analyses [60]:

0.08 <

�
�(⌃(1620) ! K̄N)�(⌃(1620) ! ⇡⌃)

�1/2

�total
< 0.35, (26)

0.1 <

�
�(⌃(1620) ! K̄N)�(⌃(1620) ! ⇡⇤)

�1/2

�total
< 0.15, (27)

0.08 <
�(⌃(1620) ! K̄N)

�total
< 0.35, (28)

and we obtain them to be 0.37, 0.10, and 0.26, respectively. This analysis shows that our

state can be associated to ⌃(1620)(1/2�) as well as to ⌃(1670) with unknown spin-parity,

which, in turn, may imply that both these states are not di↵erent. It may be useful to give

the branching ratios of our state 1630 ± 33 � i(104 ± 13) MeV here. We find that decay

ratios to K̄N , ⇡⌃, ⇡⇤, ⌘⌃ and K⌅ are 26.3%, 52.2%, 3.5%, 7.9% and 7.6%, respectively.

Not much is known about ⌃(1900) either, it has been found in the partial-wave analyses of

Refs. [89, 90]. The mass and width in Ref. [60] of ⌃(1900) are in agreement with those in

Table IV.

C. Isospin = 0, spin = 3/2

The vector-baryon systems can have a total spin 1/2 or 3/2 in s-wave interactions. Thus,

we can study states with spin-parity (JP ) = (3/2�) too. Such states arise purely from

vector-baryon dynamics. In the case of the I(JP ) = 0(3/2�) configuration, we find a state
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Not much is known about ⌃(1900) either, it has been found in the partial-wave analyses of

Refs. [89, 90]. The mass and width in Ref. [60] of ⌃(1900) are in agreement with those in

Table IV.

C. Isospin = 0, spin = 3/2

The vector-baryon systems can have a total spin 1/2 or 3/2 in s-wave interactions. Thus,

we can study states with spin-parity (JP ) = (3/2�) too. Such states arise purely from

vector-baryon dynamics. In the case of the I(JP ) = 0(3/2�) configuration, we find a state
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B. Isospin = 1, spin = 1/2

In the case of 1/2� isovector scattering amplitudes studied in the complex plane, two poles

appear around 1400 MeV with the parameter set Fit I (see Table IV), while only one pole

TABLE IV. Pole positions and couplings of the I(JP ) = 1(1/2�) states found in our work. The

central values and errors were obtained as explained in the caption of Table I (for the sake of space,

the errors are represented as superscripts).

⌃’s around 1400 MeV ⌃(1620) or ⌃(1670) ⌃(1900)

Fit I 1396±1 � i 5±2 1367±24 � i 57±21 1630±33 � i 104±13 1853±10 � i 150±10

Fit II � 1399±35 � i 36±9 � �

K̄N
0.18±0.03 + i 0.14±0.05 0.08±0.48 + i 0.52±0.73 1.47±0.08 � i 0.017±0.07 �0.86±0.03 + i 0.79±0.02

� 0.50±0.29 + i 0.33±0.18 � �

K⌅
1.06±0.22 + i 1.45±0.12 0.62±0.47 � i 0.42±1.00 2.89±0.26 � i 0.65±0.24 0.84±0.03 � i 0.39±0.05

� 0.81±0.42 + i 0.41±0.15 � �

⇡⌃
�0.17±0.09 � i 020±0.03 0.77±0.96 � i 0.67±1.22 0.71±0.33 � i 1.63±0.19 �0.02±0.04 + i 0.32±0.08

� 1.08±0.12 + i 0.19±0.21 � �

⇡⇤
0.03±0.10 + i 0.07±0.06 �0.91±1.32 + i 0.39±0.81 �0.26±0.34 � i 0.23±0.18 0.36±0.2 + i 1.54±0.04

� �1.40±0.18 � i 0.07±0.10 � �

⌘⌃
�0.43±0.03 � i 0.23±0.09 0.31±0.31 � i 0.59±1.12 �2.14±0.24 � i 0.13±0.11 0.07±0.03 � i 0.43±0.02

� 0.27±0.10 � i 0.19±0.11 � �

K̄⇤N
0.04±0.10 + i 0.15±0.07 �1.69±1.99 + i 0.31±0.68 �0.31±0.09 � i 0.11±0.16 0.71±0.05 � i 0.05±0.02

� �3.46±0.21 � i 0.06±0.15 � �

K⇤⌅
�0.50±0.22 � i 0.38±0.08 1.40±2.11 � i 1.10±2.38 �1.80±0.47 � i 0.37±0.14 �0.98±0.14 � i 0.72±0.06

� �0.01±0.59 � i 0.21±0.08 � �

⇢⌃
�0.15±0.07 � i 0.14±0.04 0.76±1.02 � i 0.58±0.85 �0.76±0.18 � i 0.53±0.49 �1.10±0.04 � i 0.34±0.03

� 3.60±0.61 � i 0.69±0.16 � �

⇢⇤
0.36±0.18 + i 0.29±0.07 �0.95±1.50 + i 0.93±1.84 2.44±0.50 + i 0.94±0.27 1.51±0.25 + i 0.82±0.09

� �1.26±0.19 + i 0.09±0.07 � �

!⌃
�0.15±0.11 � i 0.14±0.05 1.03±1.35 � i 0.55±1.10 �0.14±0.23 � i 0.44±0.14 �0.64±0.10 � i 0.23±0.04

� 2.15±0.20 � i 0.13±0.09 � �

�⌃
0.27±0.17 + i 0.24±0.08 �1.73±2.27 + i 0.90±1.82 0.42±0.38 + i 0.53±0.24 1.04±0.20 + i 0.39±0.07

� �3.23±0.39 + i 0.20±0.11 � �
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SCATTERING LENGTH

Scattering length from Siddharta data
 

Our values

aK−p = (−0.65 ± 0.10) + i (0.81 ± 0.15)

For completeness, we give in Table VII the K
�
p scattering length, determined from

Eq. (14), as well as the scattering lengths associated with the K̄N system in isospins I = 0 and

I = 1, respectively. The value found for the K
�
p scattering length is in agreement with the

one obtained using directly the SIDDHARTA data, aK�p = (�0.65± 0.10) + i (0.81± 0.15)

fm, by means of Eq. (13), and with the result of Ref. [93] from Kaonic hydrogen x rays,

aK�p = (�0.78± 0.15± 0.03) + i (0.49± 0.25± 0.12) fm.

TABLE VII. Scattering lengths for K�p and K̄N in isospin 0 and 1, respectively (all units are in

fm).

Fit I Fit II

aK�p �0.74+0.01
�0.02 + i 0.69+0.02

�0.01 �0.74+0.07
�0.02 + i 0.73+0.03

�0.08

a0
K̄N

�1.58+0.03
�0.03 + i 0.87+0.02

�0.03 �1.60+0.03
�0.01 + i 0.89+0.04

�0.13

a1
K̄N

0.09+0.02
�0.02 + i 0.50+0.04

�0.02 0.12+0.10
�0.04 + i 0.55+0.02

�0.04

IV. SUMMARY AND OUTLOOK

A simultaneous fit to several relevant data has been made to study hyperon reso-

nances. Low-lying hyperon resonances have been studied earlier in several works, by

solving pseudoscalar-baryon coupled-channel scattering equations. We have included both

pseudoscalar- and vector-baryon dynamics and find that the properties of the widely known

hyperons, like, ⇤(1405), are well reproduced. The formalism used in the previous work on this

topic [37] has been extended by including s- and u-channel diagrams to study pseudoscalar-

baryon interactions. We find that an isospin 1 state, around 1400 MeV, also exists, though

it is not clear if it is related to one or two poles in the complex plane. The data fitted in

the present work are related to the production of pseudoscalar-baryon channels. Still the

cross sections at somewhat higher energies are found to follow the data, in one of the two
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STATISTICAL COMPARISON

How to compare the fits in previous works, e.g, Oller, Meißner, PLB 500, 
263 (2001) and Guo, Oller, PRC87, 035202 (2013))

Not nested-models, cannot use F-test

Other possibilities AIC test Akaike Information criterion 

    n is no. of parameters, k is no. of data points

 AIC for our model < AIC for the   fit < AIC for the    fit.

AIC = χ2
0 +

2nk
k − n − 1

𝒪(p2) 𝒪(p)



SUMMARY

We find evidence for a light  , mass around 1400 MeV.  The poles on 
  are in agreement with those obtained by analyzing data on 
electro- and photo-production data. 

We provide resonance-vector-baryon vertex couplings, which can be 
useful in models requiring such vertices.

We study resonance arising from VB interactions. 

A statistical comparison with other works based on LO, NLO 
Lagrangians is made.

Σ
Λ(1405)



EXTRA SLIDES
Amplitudes:

  

  

Vcont(i → j) = −
1

4f 2
P

Mi + Ei

2Mi

Mj + Ej

2Mj
𝒜ij[(2 s − Mi − Mj) + (2 s + Mi + Mj)

Vs(i → j) =
1

2f 2
P

Mi + Ei

2Mi

Mj + Ej

2Mj ∑
k

ℬk
ij

s − M2
k [( s − Mi) ( s − Mj) ( s − Mk)

 ×
⃗p i ⋅ ⃗p j + i χ†

j ( ⃗p j × ⃗p i) ⋅ ⃗σ χi

(Mi + Ei)(Mj + Ej)

 
⃗p i ⋅ ⃗p j + i χ†

j ( ⃗p j × ⃗p i) ⋅ ⃗σ χi

(Mi + Ei)(Mj + Ej) ( s + Mi) ( s + Mj) ( s + Mk)



EXTRA SLIDES
Amplitudes:

   Vu(i → j) = −
1

2f 2
P

Mi + Ei

2Mi

Mj + Ej

2Mj ∑
k

𝒞k
ij

u − M2
k [u ( s + Mk) + s(Mj [Mi + Mk]

 +MiMk) − Mj (Mi + Mk) (Mi + Mj) − M2
i Mk +

⃗p i ⋅ ⃗p j + i χ†
j ( ⃗p j × ⃗p i) ⋅ ⃗σ χi

(Mi + Ei)(Mj + Ej)

 × (u ( s − Mk) + s (Mj [Mi + Mk] + MiMk) + Mj (Mi + Mj) (Mi + Mk) + M2
i Mk)] .

In agreement with: Ramos, Feijoo and Magas, Nucl. Phys. A 954, 58 (2016), Oller, Meißner, PLB 500, 263 
(2001), Borasoy, Nissler, Weise, EPJA 25, 79 (2005).  



EXTRA SLIDES
Amplitudes:

3

diagrams and a contact interaction, using a Lagrangian
invariant under the gauge transformations of the hidden-
local symmetry. It was found that the contribution of
all the diagrams is of comparable size and that the full
(summed) amplitude depended on the total spin as well
as the isospin of the system. Following Ref. [25], thus,
we write vector-baryon (VB) amplitudes for each spin-
isospin configuration as

V I,S
VB = V I,S

t,VB + V I,S
s,VB + V I,S

u,VB + V I,S
CT,VB. (2)

These amplitudes can be obtained from the general La-
grangian

LVB = �g

(
hB̄�µ [V µ

8 , B]i + hB̄�µBihV µ
8 i (3)

+
1

4M

�
F hB̄�µ⌫ [V µ⌫

8 , B]i + DhB̄�µ⌫ {V
µ⌫
8 , B}i

�

+hB̄�µBihV µ
0 i +

C0

4M
hB̄�µ⌫V

µ⌫
0 Bi

)
,

where h...i refers to an SU(3) trace, the subscript 8 (0) on
the meson fields denotes the octet (singlet) part of their
wave function (relevant in case of ! and �, for which we
assume an ideal mixing). V µ⌫ represents the tensor field
of the vector mesons,

V µ⌫ = @µV ⌫
� @⌫V µ + ig [V µ, V ⌫ ] , (4)

and V µ and B denote the SU(3) matrices for the (phys-
ical) vector mesons and octet baryons

V µ =
1

2

0

BBBB@

⇢0 + !
p

2⇢+
p

2K⇤+

p
2⇢� �⇢0 + !

p
2K⇤0

p
2K⇤� p

2K̄⇤0 p
2�

1

CCCCA

µ

, (5)

B =

0

BBBBB@

1p
6
⇤ + 1p

2
⌃0 ⌃+ p

⌃� 1p
6
⇤ �

1p
2
⌃0 n

⌅� ⌅0
�

q
2
3⇤

1

CCCCCA
. (6)

In Eq.(3), the coupling g is related to meson decay con-
stants as

g =
m

p
2f

, (7)

and the constants D = 2.4, F = 0.82 and C0 = 3F �D
are such that the anomalous magnetic couplings of ⇢NN ,
!NN and �NN vertices are correctly reproduced. These
values have also been found useful in calculations of the
magnetic moments of the baryons in Ref. [26].

Keeping in mind that the thresholds of di↵erent VB
channels di↵er by ⇠ 200 MeV, which implies that the
center of mass energies of the lighter VB channels can
vary up to 200 MeV above the respective thresholds,

we calculate all the amplitudes relativistically, following
Refs. [27, 28].

We start the discussion on di↵erent amplitudes with
the contact interaction which arises from the commutator
part of the tensor field (Eq. (4)). The resulting amplitude
has a form,

V I
CT,VB = �CI

CT,VB
g1g2

2
p
M1M2

{�i~� · ~✏2 ⇥ ~✏1 (8)

+
1

E2 + M2

⇣
�✏01~� · ~P2~� · ~✏2 + ✏02~� · ~P2~� · ~✏1

⌘

+
1

E1 + M1

⇣
�✏02~� · ~✏1~� · ~P1 + ✏01~� · ~✏2~� · ~P1

⌘

�
1

2 (E1 + M1) (E2 + M2)

⇣
~� · ~P2~� · ~✏1~� · ~✏2~� · ~P1

� ~� · ~P2~� · ~✏2~� · ~✏1~� · ~P1

⌘orM1 + E1

2M1

r
M2 + E2

2M2
,

where M1, (M2), E1 (E2), ~P1 (~P2) represent the mass,
energy and the three-momentum of the baryon in the ini-
tial (final) state, respectively, and g1 (g2) is related to the
decay constant of the vector meson in the initial (final)
state through Eq. (7). The values of the decay constants
used in our work are: f⇡ = 93 MeV, f⌘ = 120.9 MeV, fk
= 113.46 MeV, f⇢, f! = 153.45, f� = 168.33 MeV, fK⇤

= 159.96 MeV [29, 30]. In Eq. (8), ✏01 (✏02) and ~✏1 (~✏2)
represent the temporal and the spatial part of the po-
larization four-vectors of the mesons in the initial (final)
state, respectively, and CI

CT,VB are isospin dependent co-
e�cients whose values are given in the Appendix A, in
Tables A1, A2 for the di↵erent relevant channels. We
recall that the main purpose of the present article is to
study the formation of resonances in a coupled meson-
baryon system. We are, thus, interested in low energy
dynamics of such a system and, consider the s-wave con-
tribution of di↵erent amplitudes. The s-wave part (l = 0)
of Eq. (8) gives

V I,S
CT,VB = �CI

CT,VB
g1g2

2
p
M1M2

r
M1 + E1

2M1

r
M2 + E2

2M2
(9)

⇥
⇢
�i~� · ~✏2 ⇥ ~✏1 +

1
E1 +M1

⇣
�✏02~� · ~✏1~� · ~P1 + ✏01~� · ~✏2~� · ~P1

⌘�
,

which is indicated by the superscript S representing the
spin of the VB system (which coincides with the total
angular momentum J of the sysem).

The amplitude of Eq. (9) is projected on the total spin
half base, to get,

V I,1/2
CT,VB = CI

CT,VB
g1g2

p
M1M2

r
M1 + E1

2M1

r
M2 + E2

2M2

⇥

(
1 +

✓
1

E1 + M1

◆ 
| ~K1 |

2

2m1
�

| ~K1 || ~K2 |

6m2

!)
,(10)

and in case of spin 3/2, we obtain

V I,3/2
CT,VB = �CI

CT,VB
g1g2

2
p
M1M2

r
M1 + E1

2M1

r
M2 + E2

2M2

⇥

⇢
1 +

✓
1

E1 + M1

◆ 
�

4 | ~K1 || ~K2 |

3m2

!�
. (11)

Contact 
interaction:



EXTRA SLIDES
Amplitudes (t-channel):

5

For more details on the conventions/normalizations re-
lated to the polarization vectors used in our work, we

refer the reader to Appendix B.
Finally, the contribution of the t-channel amplitude is

obtained as,

V I
t,VB =

�m2
V x

4fV ifV j

1

t�m2
V x

⇢
✏1 · ✏2

✓
2
p
s�M1 �M2 + (M1 �M2)

(m2
2 �m2

1)

m2
V x

◆
CI

t1,VB (16)

+

✓
M1 + M2

2M

�
2
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�
�

s� u

2M
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~� · ~P2 ~� · ~P1

(E1 + M1) (E2 + M2)

 ✓
2
p
s + M1 + M2

� (M1 �M2)
(m2

2 �m2
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m2
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◆
CI
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✓
M1 + M2

2M

�
2
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�
+
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✓
CI
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"
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E1 + M1
�

~� · ~P2 ~� · ~✏1
E2 + M2

+
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#
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"
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+
✏02~� · ~P2 ~� · ~P1

(E1 + M1) (E2 + M2)

#!
+

2

M
(K1 · ✏2P1 · ✏1 + K2 · ✏1P1 · ✏2)

⇥

 
1 �

~� · ~P2 ~� · ~P1

(E1 + M1) (E2 + M2)

!
CI

t2,VB

)r
M1 + E1

2M1

r
M2 + E2

2M2
,

where, mV x represents the mass of the exchanged meson,
m1(m2), K1(K2) represent the mass and four-momentum
of the meson in the initial (final) state, M denotes the
SU(3) average mass which is taken as the nucleon mass,
M1(M2) and E1(E2), ~P1(~P2) represent the mass, energy
and three-momentum of the baryon in the initial (final)
state. The values of CI

t1,V B and CI
t2,V B are given in Ta-

ble A7, A8, A9, A10 in Appendix A. The s-wave projec-
tion of the t-channel amplitude is also done numerically,
as in the case of the u-channel amplitude. We have fol-
lowed the arguments of Ref. [31] for the numerical inte-
gration of the t-channel amplitude.

It can be seen that the amplitude of Eq.(16) is spin
degenerate at low energies (where only the ~✏1 · ~✏2 spin
structure contributes). This finding is in agreement with
the results found in Refs. [13–17]. However, such near
degeneracy is removed by summing Eqs. (9), (13), (15)
to the t-channel amplitude, giving rise to spin, isospin-
dependent results. For a numerical comparison, we show
the lowest order amplitudes obtained in the present work
for the ⇢⌅ and K̄⇤⌃ channels, as examples, in Fig. 2. In
fact, the general spin-dependence of the vector meson-
baryon kernels may be expected since both the interact-
ing hadrons have nonzero spin and similar masses. An al-
ternative mechanism of breaking the spin-degeneracy has
been suggested in Ref. [19]. Further, we go a step forward
by including pseudoscalar-baryon as coupled channels in
our formalism. The consideration of various contribu-
tions to the vector-baryon amplitudes, together with the
treatment of the vector- and pseudoscalar-mesons at par
in the coupled channel dynamics, is the distinct feature
of our formalism.

A formalism to obtain the transition amplitudes be-

FIG. 2: A comparison of the lowest order ⇢⌅ and K̄⇤⌃
amplitudes (Eq. (2)) for di↵erent spin-isospin

configurations.

tween the pseudoscalar-baryon and the vector-baryon
channels was developed in our previous work [32], where
the Kroll-Ruderman term for the photoproduction of a
pion was modified, in consistency with the vector meson
dominance phenomenon, by replacing the photon by a
vector meson. The deduction was extended to the SU(3)
case in Ref. [32] to obtain a general Lagrangian for the
transitions among pseudoscalar-baryon (PB) and vector-
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In Eqs. (10) and (11), (and throughout this manuscript)
m1, m2 and ~K1, ~K2 represent the masses and the
three-momenta of the vector mesons in the initial and
final state, respectively.

Using the Yukawa-type vertices obtained from Eq. (3),
we deduce the s- and u-channel amplitudes by treating
the vector mesons relativistically, and obtain,
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where Mx is the mass of the exchanged (octet) baryon,
s and u are the Mandelstam variables, K0

1 (K0
2 ) is the

energy of the incoming (outgoing) vector meson, Is1i, I
s
1f ,

Is2i, I
s
2f are the isospin coe�cients for di↵erent channels

whose products are given in the Appendix A, in Ta-
bles A3, A4, A5, A6. The definitions of Vu1, Vu2 ... Vu12

appearing in Eq. (13) are also given in Eqs. (A1-A12),
in Appendix B. Due to the kinematic dependence of
the Mandelstam variable u on the incoming and outgo-
ing momentum, the s-wave projection of the u-channel
amplitude is done numerically. In case of the s-channel
amplitude we can project Eq. (12) analytically on s-wave,
which gives
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which, in turn, on spin-half projection reduces to
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EXTRA SLIDES
Amplitudes (s-, u-channel):
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In Eqs. (10) and (11), (and throughout this manuscript)
m1, m2 and ~K1, ~K2 represent the masses and the
three-momenta of the vector mesons in the initial and
final state, respectively.

Using the Yukawa-type vertices obtained from Eq. (3),
we deduce the s- and u-channel amplitudes by treating
the vector mesons relativistically, and obtain,
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where Mx is the mass of the exchanged (octet) baryon,
s and u are the Mandelstam variables, K0

1 (K0
2 ) is the

energy of the incoming (outgoing) vector meson, Is1i, I
s
1f ,

Is2i, I
s
2f are the isospin coe�cients for di↵erent channels

whose products are given in the Appendix A, in Ta-
bles A3, A4, A5, A6. The definitions of Vu1, Vu2 ... Vu12

appearing in Eq. (13) are also given in Eqs. (A1-A12),
in Appendix B. Due to the kinematic dependence of
the Mandelstam variable u on the incoming and outgo-
ing momentum, the s-wave projection of the u-channel
amplitude is done numerically. In case of the s-channel
amplitude we can project Eq. (12) analytically on s-wave,
which gives
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V I,1/2
s,VB =

g1g2
s�M2

x

(
�p

s+Mx

�
 
| ~K1|| ~K2|
3m1m2

 
Is1f +

Is2fK
0
2

2
p
M1M2

!✓
Is1i +

Is2iK
0
1

2
p
M1M2

◆

� | ~K2|| ~K1|
m2

✓
K0

2

3m2
+

2
3

◆
Is2i

2
p
M1M2

 
Is1f �

Is2fK
0
2

2
p
M1M2

!!

+
�p

s�Mx

�
 
3

 
Is1f �

Is2fK
0
2

2
p
M1M2

!✓
Is1i �

Is2iK
0
1

2
p
M1M2

◆
+

| ~K1|2

m1

✓
K0

2

3m2
+

2
3

◆
Is2i

2
p
M1M2

 
Is1f �

Is2fK
0
2

2
p
M2M2

!!)
. (15)


