Light meson spectroscopy at e⁺e⁻ machines

Beijiang Liu Institute of High Energy Physics, CAS

Hadron spectroscopy

- Testing QCD in the confinement regime
- Revealing the fundamental degrees of freedom

critical for the quantitative understanding of confinement

Search for glueballs

Glueball

What role do gluonic excitations play in the spectroscopy of light mesons, and can they help explain confinement?

	$m_{\pi} \; ({ m MeV})$	$m_{0^{++}}$ (MeV)	$m_{2^{++}} ({\rm MeV})$	$m_{0^{-+}}$ (MeV)
$N_f = 2$	938	1417(30)	2363(39)	2573(55)
	650	1498(58)	2384(67)	2585(65)
$N_f = 2 + 1$ [22]	360	1795(60)	2620(50)	_
quenched [13]	_	1710(50)(80)	2390(30)(120)	2560(35)(120)
quenched [14]	_	1730(50)(80)	2400(25)(120)	2590(40)(130)

Low lying glueballs with ordinary quantum number →mixing with qqbar mesons

Systematic studies needed

PRD60, 034509; PRD73, 014516; PRD82, 034501; CPC 42 093103

Systematic study of glueball at BESIII

Charmonium decays provides an ideal hunting ground for light glueballs

- Gluon-rich" process
- Clean high statistics data samples from e⁺e⁻ production
- ◆ I(J^{PC}) filter in strong decays of charmonium

Overpopulated scalar mesons

Which one has more gluonic component?

Amplitude analysis of $J/\psi \rightarrow \gamma K_S K_S$

Mass-independent(MI) analysis, partial wave decomposition in mass bins

Amplitude analysis of $J/\psi \rightarrow \gamma \eta \eta / K_S^0 K_S^0$

Resonance	Mass (MeV/c^2)	Width (MeV/ c^2)	$\mathcal{P}(J/\psi \to \gamma X \to \gamma \eta m)$	Significance
$f_0(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2σ
$f_0(1710)$	$1759 \pm 6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0σ
$f_0(2100)$	$2081 \pm 13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13_{-0.10-0.28}^{+0.04}) \times 10^{-4}$	13.9σ
$f'_2(1525)$	$1513 \pm 5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	11.0σ
$f_2(1810)$	1822^{+29+66}_{-24-57}	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4σ
$f_2(2340)$	$2362^{+31+140}_{-30-63}$	$334_{-54-100}^{+62+165}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$	7.6σ

Br of $f_0(1710) \sim 10x$ larger than $f_0(1500)$

Resonance	$M ({\rm MeV}/c^2)$	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma ({\rm MeV}/c^2)$	$\Gamma_{\rm PDG}~({\rm MeV}/c^2)$	Branching fraction	Significance
K*(892)	896	895.81 ± 0.19	48	47.4 ± 0.6	$(6.28^{+0.16+0.59}_{-0.17-0.52}) \times 10^{-6}$	35σ
$K_1(1270)$	1272	1272 ± 7	90	90 ± 20	$(8.54^{+1.07+2.35}_{-1.20-2.13}) \times 10^{-7}$	16σ
$f_0(1370)$	$1350\pm9^{+12}_{-2}$	1200 to 1500	$231 \pm 21^{+28}_{-48}$	200 to 500	$(1.07\pm0.08\pm0.36)$ $(1.07\pm0.08\pm0.36)$ $(1.07\pm0.08\pm0.36)$	25σ
$f_0(1500)$	1505	1504 ± 6	109	109 ± 7	$(1.59^{+0.16+0.18}_{-0.16-0.56}) \times 10^{-5}$	23σ
$f_0(1710)$	$1765 \pm 2^{+1}_{-1}$	1723^{+6}_{-5}	$146 \pm 3^{+7}_{-1}$	139 ± 8	$(2.00^{+0.03+0.31}_{-0.02-0.10}) \times 10^{-4}$	$\gg 35\sigma$
$f_0(1790)$	$1870\pm7^{+2}_{-3}$		$146 \pm 14^{+7}_{-15}$		$(1.11^{+0.06}_{-0.06}) \times 10^{-5}$	24σ
$f_0(2200)$	$2184 \pm 5^{+4}_{-2}$	2189 ± 13	$364 \pm 9^{+4}_{-7}$	238 ± 50	$(2.72^{+0.08+0.17}_{-0.06-0.47}) \times 10^{-4}$	$\gg 35\sigma$
$f_0(2330)$	$2411\pm10\pm7$		$349 \pm 18^{+23}_{-1}$		$(4.95^{+0.21+0.66}_{-0.21-0.72}) \times 10^{-5}$	35σ
$f_2(1270)$	1275	1275.5 ± 0.8	185	$186.7^{+2.2}_{-2.5}$	$(2.58^{+0.08+0.59}_{-0.09-0.20}) \times 10^{-5}$	330
$f'_2(1525)$	1516 ± 1	1525 ± 5	$75\pm1\pm1$	73^{+6}_{-5}	$(7.99^{+0.03+0.69}_{-0.04-0.50}) \times 10^{-5}$	$\gg 35\sigma$
$f_2(2340)$	$2233 \pm 34^{+9}_{-25}$	2345^{+50}_{-40}	$507\pm 37^{+18}_{-21}$	322_{-60}^{+70}	$(5.54^{+0.34+3.82}_{-0.40-1.49}) \times 10^{-5}$	26σ
0 ⁺⁺ PHSP					$(1.85^{+0.05+0.68}_{-0.05-0.26}) \times 10^{-5}$	26σ
2 ⁺⁺ PHSP					$(5.73^{+0.99+4.18}_{-1.00-3.74}) \times 10^{-5}$	13σ

10

Scalar glueball candidate?

Flavor-blindness of glueball decays

$$egin{aligned} &\Gamma(J/\psi o \gamma G_{0^+}) = rac{4}{27} lpha rac{|p|}{M_{J/\psi}^2} |E_1(0)|^2 = 0.35(8) keV \ &\Gamma/\Gamma_{tot} = 0.33(7)/93.2 = 3.8(9) imes 10^{-3} \end{aligned}$$

CLQCD, Phys. Rev. Lett. 110, 021601 (2013)

Experimental results

- $\geq \mathrm{B}(\mathrm{J}/\psi \rightarrow \gamma \mathrm{f}_{0}(1710) \rightarrow \gamma K \overline{K}) = (8.5^{+1.2}_{-0.9}) \times 10^{-4}$
- >B(J/ $\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \pi \pi) = (4.0 \pm 1.0) \times 10^{-4}$
- $\succ \mathrm{B}(\mathrm{J}/\psi \rightarrow \gamma \mathrm{f}_{0}(1710) \rightarrow \gamma \omega \omega) = (3.1 \pm 1.0) \times 10^{-4}$

>B(J/ψ → γf₀(1710) → γηη)=(2.35^{+0.13+1.24}_{-0.11-0.74})× 10⁻⁴

 \Rightarrow B(J/ $\psi \rightarrow \gamma f_0(1710)$) > 1.7× 10⁻³

 $f_0(1710)$ largely overlapped with scalar glueball?

$$\frac{1}{P.S.}\Gamma(G \to \pi\pi: K\overline{K}: \eta\eta: \eta\eta': \eta'\eta') = 3:4:1:0:1$$

*with chiral suppression PRL 98 149103

$$\Gamma(G \to \pi\pi) / \Gamma(G \to K\bar{K}) \approx \frac{f_{\pi}^{4}}{f_{K}^{4}} \approx 0.48$$
$$\frac{1}{P.S.} \Gamma(G \to \pi\pi: K\bar{K}: \eta\eta) \approx 1.3: 3.16: 1$$

Other information

Two photon couplings

"Stickness"

PDG2018

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018

$f_0(1710) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(K\overline{K}) \times \Gamma(\gamma\gamma)$	/)/Γ _{total}				Г1	Г₄/Г
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT	-
$12^{+3}_{-2}^{+227}_{-8}$		UEHARA	13	BELL	$\gamma\gamma ightarrow ~\kappa^0_S \kappa^0_S$	
• • • We do not us	se the followin	ng data for average	es, fits,	limits, (etc. • • •	
<480	95	ALBRECHT	90G	ARG	$\gamma \gamma \rightarrow K^+ K^-$	
<110	95	¹ BEHREND	89C	CELL	$\gamma\gamma \rightarrow K^0_S K^0_S$	
<280	95	1 ALTHOFF	85B	TASS	$\gamma \gamma \rightarrow K \overline{K} \pi$	
łowever,	a sca	alar in γ	γ –	→ π ⁶	$^{0}\pi^{0}$	

Belle PRD 78 052004

TABLE VI: Fitted parameters of the $f_0(Y)$

Parameter	$\text{Belle}(\pi^0\pi^0)$	Crystal Ball	$f_0(1370)(PDG)$	$f_0(1500)(PDG)$	Unit
Mass	$1470 \begin{array}{c} +6 \\ -7 \end{array} \begin{array}{c} +72 \\ -255 \end{array}$	1250	1200 - 1500	1507 ± 5	MeV/c^2
$\Gamma_{ m tot}$	$90 \begin{array}{c} +2 \\ -1 \end{array} \begin{array}{c} +50 \\ -22 \end{array}$	268 ± 70	150 - 200	109 ± 7	MeV
$\Gamma_{\gamma\gamma}\mathcal{B}(\pi^0\pi^0)$	$11 \begin{array}{c} +4 \\ -2 \end{array} \begin{array}{c} +603 \\ -7 \end{array}$	430 ± 80	Unknown	Not seen	eV

$f_0(1370)$? $f_0(1500)$?

Assignment requires further study with more sophisticated model ¹²

$B_s → J/ψf_0$ is selective for ss PLB 797 (2019) 134789

observation of $f_0(1500)$, non-observation of $f_0(1710)$

Tensor glueball candidate?

 $\Gamma(J/\psi
ightarrow \gamma G_{2^+}) = 1.01(22) keV$

 $\Gamma(J/\psi
ightarrow \gamma G_{2^+})/\Gamma_{tot} = 1.1 imes 10^{-2}$

CLQCD, Phys. Rev. Lett. 111, 091601 (2013)

Experimental results

Br(J/ $\psi \rightarrow \gamma f_2(2340) \rightarrow \gamma \eta \eta$) = (3.8^{+0.62+2.37}_{-0.65-2.07})×10⁻⁵ Phys.Rev. D87, 092009 (2013)

Br(J/ ψ → f₂(2340) → $\gamma \phi \phi$) = (1.91±0.14^{+0.72}_{-0.73})×10⁻⁴ Phys.Rev. D93, 112011 (2016)

Br(J/ ψ → $\gamma f_2(2340)$ → $\gamma K_S K_S$) = (5.54^{+0.34+3.82}_{-0.40-1.49})×10⁻⁵ Phys.Rev. D98, 072003 (2018)

 $f_2(2010)$, $f_2(2300)$ and $f_2(2340)$ stated in π -p reactions are observed with a strong production of $f_2(2340)$

It is desirable to search for more decay modes

- Search for glueballs
- Scalars near KK threshold
 - $a_0(980) f_0(980)$ mixing

$a_0(980) - f_0(980)$ mixing

- The nature of ground state scalar $a_0(980)$ and $f_0(980)$ are controversial

 $q\bar{q}$ mesons, $K\bar{K}$ molecules, tetraquarks, hybrids,...?

• $a_0(980) - f_0(980)$ mixing (proposed in 1979) is very sensitive to KK coupling, which is an important probe to the internal structure of $a_0(980)$ and $f_0(980)$

 $a_0(980) - f_0(980)$ mixing

Using isospin violating decays of charmonia

PR D75 114012, PR D76 074028

 Upper limit of mixing intensity using 2009 data sets BESIII PR D83 032003

 $a_0(980) - f_0(980)$ mixing

• First direct measurement with > 5σ , using high stat. data sets

BESIII PRL 121 022001

Significance of $a_0 - f_0$ mixing signal VS. coupling of $a_0(f_0) \rightarrow K\overline{K}$, compared with model predictions of $q\overline{q}$, $K\overline{K}$ molecules, tetraquarks, hybrids

- Search for glueballs
- Scalars near KK threshold
 - $a_0(980) f_0(980)$ mixing
- Structures near $N\overline{N}$ threshold
 - X(pp̄) and X(1835)

pp threshold enhancement X(pp)

- First observed in $J/\psi \to \gamma p \overline{p}$ at BESII, confirmed by BESIII and CLEO-c
- PWA of $J/\psi \rightarrow \gamma p \overline{p}$: $J^{PC} = 0^{-+}$
 - The fit with a BW and S-wave FSI (I=0) factor can well describe $p \bar{p}\,$ mass threshold structure
- Non-observation in hadronic decays: not from pure FSI

X(1835)

- Observed by BESII in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$, confirmed at BESIII
- PWA of $J/\psi \rightarrow \gamma K_s K_s \eta$
 - X(1835) $\rightarrow K_S K_S \eta$ is observed (the $K_S K_S$ system is dominantly produced through the f₀(980))
 - J^{PC}=0⁻⁺

Anomalous line shape of $\eta'\pi^+\pi^-$ near $p\overline{p}$ mass threshold: connection between X(1835) and X($p\overline{p}$)

The anomalous line shape can be modeled two models with equally good fit quality

- Suggest the existence of a state, either a broad state with strong couplings to $p\overline{p}$, or a narrow state just below the $p\overline{p}$ mass threshold
- Support the existence of a $p\overline{p}$ molecule-like state or bound state ²¹

Observation of $\eta(1475)$ and X(1835) in $J/\psi \rightarrow \gamma \gamma \phi$ BESIII PRD 97 051101

• Flavor filter: sizeable ss component

Search for X(1835) in $J/\psi \rightarrow \omega \eta' \pi^+ \pi^-$

No obvious signal of X(1835) is found. Upper limit on the branching fraction at 90% C. L.,

 $B(J/\psi \rightarrow \omega X(1835) \rightarrow \omega \pi^{+} \pi^{-} \eta') < 6.2 \times 10^{-5}.$

Why not appear in J/ $\psi \rightarrow \gamma K_s K_s \eta$? Check consistency with $p\bar{p}$ cross sections Fine study of lineshape in other channels is needed

- Search for glueballs
- Scalars near KK threshold
 - $a_0(980) f_0(980)$ mixing
- Structures near $N\overline{N}$ threshold
 - X(pp̄) and X(1835)
 - e⁺e⁻ cross sections

A dip in the six-pion cross sections

BABAR PRD 73 052003

DM2 PLB 107 145

FOCUS PLB 514 240

 $M_{6\pi}(GeV/c^2)$

Cross section of $e^+e^- \rightarrow p\overline{p}$

Cross sections of $e^+e^- \rightarrow$ multi hadrons

Babar PRD 73 052003

Babar PRD 76 072008

CMD-3 PLB 723 82

CMD-3 PLB 794 64

Too narrow to be a ρ resonance (~1 MeV) Can be described via optical NN potentials

Non-observations

Cross section of $p\bar{p}$ annihilation : $4\pi > 6\pi \gg KK\pi\pi$ Why no structure in $e^+e^- \rightarrow 2(\pi^+\pi^-)$, but effect in $e^+e^- \rightarrow K^+K^-\pi^+\pi^-$ is at the same level as for 6π ?

- Search for glueballs
- Scalars near KK threshold
 - $a_0(980) f_0(980)$ mixing
- Structures near $N\overline{N}$ threshold
 - $X(p\overline{p})$ and X(1835)
 - e^+e^- cross sections
- **\$\$**(2170)

φ(2170)

- Observed by Babar in $e^+e^- \to \gamma_{ISR} \varphi f_0(980)$, confirmed by BESII and Belle
- Many interpretations
 - **□**ss̄g hybrid
 - $\square 3^{3}S_{1}$ or $2^{3}D_{1}$ strangeonium
 - Tetraquark
 - $\square Molecular of \Lambda \overline{\Lambda}$
 - $\Box \phi f_0(980)$ resonance with FSI
 - **□**Three body system of φKK

$e^+e^- \rightarrow K^+K^-\pi^0\pi^0$ at BESIII

- $\phi(2170) \rightarrow KK\pi\pi$ has good discriminate power to several models
 - $K^*(892)K^*(892)$: ssg (forbidden), 3^3S_1 (favored)
 - $KK_1(1400)$: ssg (favored)
 - KK (1460): $s\overline{s}g$ (forbidden), 2^3D_1 (favored)
- Amplitude analysis has been performed to extract intermedia resonances

- $M = (2127 \pm 17 \pm 12) \text{ MeV/c}^2 \text{ and } \Gamma = (107 \pm 32 \pm 28) \text{ MeV}$
- Non-observation in K*(892)K*(892): deviates from the prediction of 3³S₁ ss
- Observation in KK(1460): inconsistent with the prediction of hybrid interpretation

Decay modes	2 ³ L	$\mathbf{P}_1 \mathbf{s} \overline{\mathbf{s}}$	1 - s ⊽ g	$3^{3}S_{1}s\overline{s}$
Γ(MeV)	³ P ₀ model	Flux tube	Flux tube	³ P ₀ model
φη	0	0	1.2	21
φη'	2.9	2.8	0.4	11
Ratio(\phi/\phi)	0.0	0.0	3.0	2.0

 $e^+e^- \rightarrow K^+K^-$

BESIII PRD 99 032001

Mass (width) is different from the PDG values for $\phi(2170)$ or $\rho(2150)$ by $3(2)\sigma$

$e^+e^- \rightarrow K^+K^-K^+K^-$ and $K^+K^-\phi$ BESIII arXiv:1907.06015

• Enhancement observed at $\sqrt{s} = 2.232$ GeV

Summary

- Data from e⁺e⁻ machines with unprecedented statistical accuracy provides great opportunities to map out light meson spectroscopy and study QCD exotics
 - Advantages: low background; clearly defined initial and final state
 - BESIII collected 10 billions of J/ψ and will continue to run for more years; BelleII started data taking; CMD-3,SND are running
- Many new results bring answers and new questions

Nearby resonances around $f_0(1710)$

Scalar

 $f_0(1710) / f_0(1790)$

 $J/\psi \rightarrow \gamma \omega \phi$

M= $1795 \pm 7^{+13}_{-5} \pm 19 \pmod{\text{MeV/c^2}}$, $\Gamma = 95 \pm 10^{+21}_{-34} \pm 75 \pmod{\text{MeV}}$

Structures around $p\overline{p}$ threshold

- Any relations?
- What is the role of the $p\overline{p}$ threshold?
- Patterns in the production and decay modes