

Exotic and Conventional Quarkonium Physics Prospects at Belle II

Sen Jia On behalf of the Belle II Collaboration Beihang University

HADRON 2019, August 16th-21th, 2019, Gunlin, China

Quarknium

- Quarkonium: $q\bar{q}$, the simplest system of a hadron.
- Below $D\overline{D}/B\overline{B}$ thresholds both charmonium and bottomonium are successful stories of QCD.
- But there are many exotic states observed in the past decade, and they are hard to fit in the two families.
 -2-

Various interpretations of the exotic states

Non-standard hadrons

Besides above models, there still are screened potential, cusps effect, final state interaction ...

<u>High Priority:</u>

- Identify most prominent component in wave function
- Seek unique picture describing all XYZ states, not state-by-state

Nature Reviews Physics 1, 480 (2019)

- SuperKEKB and Belle II detectors
- Charmonium(-like) prospects at Belle II
- Bottomonium(-like) prospects at Belle II
- Summary

SuperKEKB

Detector: Belle Vs. Belle II

Detector highlights at Belle II

• New Vertex Detectors: PXD + SVD

5 _7_

4.5

p [GeV/c]

4

0.5

1.5 2 2.5 3 3.5

• higher event rate (×10)

Charmonium(-like) states

Production of charmonium(-like) states at B-factory

- **B** decay $(B \rightarrow KX_{c\bar{c}})$
 - CKM favored process, large branching fractions $10^{-3} \sim 10^{-4}$
 - $J^{PC} = 0^{-+}, 1^{--}, 1^{++}, \dots$
- Initial-state radiation (ISR)
 I^{PC} = 1⁻⁻
- Two-photon process
 J^{PC} = 0⁻⁺, 0⁺⁺, 2⁺⁺, 2⁻⁺, ...
- Double charmonium
 - e.g. $e^+e^- \rightarrow J/\psi X(3940)$ [PRL 98, 082001 (2007)]

Expected statistics @50 ab-1 of XYZ

State	Production and Decay	N
X(3872)	$B \rightarrow KX(3872), X(3872) \rightarrow J/\psi \pi^+ \pi^-$	$\simeq 14400$
Y(4260)	ISR, Y(4260) $\rightarrow J/\psi \pi^+\pi^-$	$\simeq 29600$
Z(4430)	$B \rightarrow K^{\mp} Z(4430), Z(4430) \rightarrow J/\psi \pi^{\pm}$	$\simeq 10200$

Initial state radiation

Charmonium(-like) in B decays

Charmonium(-like) states are produced in B meson decays in association with a kaon: $B \rightarrow KX_{c\bar{c}}$

- Both the B and the kaon are spinless, therefore the state $X_{c\bar{c}}$ is produced polarized.
- The absolute branching fractions of the $X_{c\overline{c}}$ can be measured.

Remarkable charmonium mesons in B decays at Belle:

- $\eta_c(2S) \rightarrow K^0_S K \pi$
- $\psi_2(1D) \rightarrow \gamma \chi_{c1}$

Search for missing narrow charmonium $\eta_{c2}(1D)$ at Belle II > $J^{PC} = 2^{-+}$

- Expect to reside between the $D\overline{D}$ and $D\overline{D}^*$ thresholds
- → A promising search channel: $B \rightarrow K(h_c \gamma)$

Remarkable charmonium-like mesons in B decays $(B \rightarrow KX_{c\bar{c}})$

Further investigations at Belle II with more B mesons

1. Search for more open-flavor decay modes, e.g., $B \to K(D\overline{D})$, $B \to K(D\overline{D}^*)$, $B \to K(D\overline{D}^{**})$, $B \to K(D\overline{D}^{**})$, and $B \to K(D^*\overline{D}^{**})$

- 2. Confirm the Z(4050)⁺, Z(4200)⁺, Z(4250)⁺ and high mass X state.
- 3. Full amplitude analysis to $B \rightarrow K\omega J/\psi$ and $B \rightarrow K\pi \chi_{c1}$ decays to determine the spin-parities of the X(3915), Z(4050)⁺, and Z(4250)⁺.
- 4. Absolute branching fraction measurements

5. Systematic investigations of charmonium plus light hadron final states: $B \rightarrow K(c\overline{c}+h)$

Sensitivity of X(3872) total width and search for X(4014) at Belle II Sensitivity of X(3872) total width

 $B^{\pm} \rightarrow K^{\pm}X(3872)(\rightarrow D^0\overline{D}{}^0\pi^0)$

With the full data sample of Belle II (50 ab⁻¹), total width with values up to [90% C.L.] ~ 180 keV [3o significance] ~ 280 keV [5o significant] ~ 570 keV can be measured.

For details, please see Hikari's report "Sensitivity to the X(3872) total width at the Belle II experiment".

-0.010 -0.005

0.000

0.005

M – M_{pdg} [GeV]

0.010

0.015

0.020

0.025

- Belle II will search for the partner of the X(3872) at the $D^{*0}\overline{D}^{*0}$ threshold
- About 5σ significance with 1.3% reconstruction efficiency is expected.
 -13-

Charmonium-like via ISR

ISR technique is an effective tool to search for new exotics and study their properties:

- The whole hadron spectrum is visible so that the line shape of the resonance and fine structures can be investigated.
- The disadvantage is the effective luminosity and detection efficiency are relatively low.

Remarkable charmonium-like mesons via ISR

Further investigations at Belle II via ISR

Q4: more structures in $M(K^+K^-J/\psi)$?

- Perform the analysis of $e^+e^- \rightarrow \pi^+\pi^-h_c$, $\omega\chi_{c0}$, and $(D^*\overline{D}^*)^{\pm}\pi^{\mp}$ to confirm the results with BESIII.
- Study the processes $e^+e^- \rightarrow \pi^+\pi^-\psi_2(1D)$, $K^+K^-\psi_2(2S)$, $\phi\chi_{cJ}$, $\eta J/\psi$, $\eta' J/\psi$, $\eta\psi_2(2S)$, $\omega\chi_{cJ}$, etc to search for more charmonium-like states and new decay modes. -16-

Charmonium(-like) in two photons collisions and double charmonium production

Further investigations in two photons collisions and double charmonium production at Belle II

Two photons collisions

- Give more precise parameters of the X(3930) ($\chi_{c2}(2P)$).
- Determine J^P value of the X(3915) with angular distribution analysis (χ_{c0}(2P)?).
- Existence of the X(4350)? Search for X(4500) and X(4700) via two photons processes.
- With smaller boost at Belle II, the efficiency in twophoton process may be a little higher.

Double charmonium production

- Perform a full amplitude analysis at Belle II to measure spin-parities of the observed new states.
- Studies of the $e^+e^- \rightarrow h_c X$, $\eta_c X$, $\eta_c (2S)X$, $\psi(2S)X$, $\chi_{cJ}X$, etc.

Bottomonium(-like) states

Bottomonium(-like) from e⁺e⁻ B-factories

Achievements at Belle

- Discovery of η_b , h_b
- Discovery of charged exotics Z_b states
- Anomalous $\pi^+\pi^-$ and η transitions
- New bottomonium transition decays

Operation energies (in fb-1 (M events))

Experiment	Y(1S)	Y(2S)	Y(3S)	Υ(4S)	$\Upsilon(5S)$	Y(6S)
CLEO	1.2 (21)	1.2 (10)	1.2 (5)	16 (17.1)	0.1 (0.4)	-
BaBar	-	14 (99)	30 (122)	433 (471)	R _b scan	R _b scan
Belle	6 (102)	25 (158)	3 (12)	711 (772)	121 (36)	5.5
Belle II			300 (1200)	5×10 ⁴ (5.4×10 ⁴)	1000 (300)	100 + 400 (scan)

More data samples provide opportunities to explore bottomonium spectrum further.

Search for missing conventional bottomonia below the $B\overline{B}$ threshold at Belle II

Three ways to access bottomonia below $B\overline{B}$ threshold:

- Decays of higher mass states (e.g. Υ(4S,5S,6S))
- Production of 1⁻⁻ states via initial-state radiation
- Direct production via operation at a lower center-of-mass energy.

Predicted Missing bottomonium levels below $B\overline{B}$ threshold

Name	L	S	J^{PC}	Mass, MeV/ c^2	Emitted hadrons [Threshold, GeV/c^2]
$\eta_b(3S)$	0	0	0^{-+}	10336	ω [11.12], ϕ [11.36]
$h_b(3P)$	1	0	1^{+-}	10541	$\pi^+\pi^-$ [10.82], η [11.09], η' [11.50]
$\eta_{b2}(1D)$	2	0	2^{-+}	10148	ω [10.93], ϕ [11.17]
$\eta_{b2}(2D)$	2	0	2^{-+}	10450	ω [11.23], ϕ [11.47]
$\Upsilon_J(2D)$	2	1	$(1, 2, 3)^{}$	10441 - 10455	$\pi^+\pi^-$ [10.73], η [11.00], η' [11.41]
$h_{b3}(1F)$	3	0	3^{+-}	10355	$\pi^+\pi^-$ [10.63], η [10.90], η' [11.31]
$\chi_{bJ}(1F)$	3	1	$(2, 3, 4)^{++}$	10350 - 10358	ω [11.14], ϕ [11.38] PPD02 054024
$\eta_{b4}(1G)$	4	0	4^{-+}	10530	ω [11.31], ϕ [11.55]
$\Upsilon_J(1G)$	4	1	$(3, 4, 5)^{}$	10529 - 10532	$\pi^+\pi^-$ [10.81], η [11.08], η' [11.49]

Datasets: scan data from 10.63 GeV to 11.02 GeV + $\Upsilon(5S)$ + continuum -21

Search for new exotics at Belle II

- Observed $Z_b(10610)$ and $Z_b(10650)$ in $\Upsilon(5S,6S) \pi\pi$ transitions.
- The decays $Z_b(10610) \rightarrow B\overline{B}^*$ and $Z_b(10650) \rightarrow B^*\overline{B}^*$ are dominant.

The expected molecular states with the structures $B\overline{B}$, $B\overline{B}^*$, and $B^*\overline{B}^*$.

$I^G(J^P)$	Name	Content	Co-produced particles	Decay channels
			[Threshold, GeV/c^2]	
$1^+(1^+)$	Z_b	$B\bar{B}^*$	π [10.75]	$\Upsilon(nS)\pi, h_b(nP)\pi, \eta_b(nS) ho$
$1^+(1^+)$	Z_b'	$B^*\bar{B}^*$	π [10.79]	$\Upsilon(nS)\pi, h_b(nP)\pi, \eta_b(nS) ho$
$1^{-}(0^{+})$	W_{b0}	$B\bar{B}$	ρ [11.34], γ [10.56]	$\Upsilon(nS) ho, \eta_b(nS)\pi$
$1^{-}(0^{+})$	W_{b0}^{\prime}	$B^*\bar{B}^*$	ρ [11.43], γ [10.65]	$\Upsilon(nS) ho, \eta_b(nS)\pi$
$1^{-}(1^{+})$	W_{b1}	$B\bar{B}^*$	ρ [11.38], γ [10.61]	$\gamma(nS)\rho$ arXiv:1610.01102
$1^{-}(2^{+})$	W_{b2}	$B^*\bar{B}^*$	ρ [11.43], γ [10.65]	$\Upsilon(nS)\rho$
$0^{-}(1^{+})$	X_{b1}	$B\bar{B}^*$	$\eta [11.15]$	$\Upsilon(nS)\eta, \eta_b(nS)\omega$
$0^{-}(1^{+})$	X_{b1}'	$B^*\bar{B}^*$	η [11.20]	$\Upsilon(nS)\eta, \eta_b(nS)\omega$
$0^+(0^+)$	X_{b0}	$B\bar{B}$	ω [11.34], γ [10.56]	$\Upsilon(nS)\omega, \chi_{bJ}(nP)\pi^+\pi^-, \eta_b(nS)\eta$
$0^+(0^+)$	X_{b0}'	$B^*\bar{B}^*$	ω [11.43], γ [10.65]	$\Upsilon(nS)\omega, \chi_{bJ}(nP)\pi^+\pi^-, \eta_b(nS)\eta$
$0^+(1^+)$	X_b	$B\bar{B}^*$	ω [11.39], γ [10.61]	$\Upsilon(nS)\omega, \ \chi_{bJ}(nP)\pi^+\pi^-$
$0^+(2^+)$	X_{b2}	$B^*\bar{B}^*$	ω [11.43], γ [10.65]	$\Upsilon(nS)\omega, \chi_{bJ}(nP)\pi^+\pi^-$

Belle II is back to the game

Kick-off of the Belle II Physics Run (Phase III)

On March 25 19:44 (JST), 2019, electron-positron collisions have restarted at the SuperKEKB collider, and the Belle II experiment has now kicked off its physics data taking.

PHASE III: Full detectors operation; increased luminosity

Each 1 ab^{-1} dataset at B-factory provides:

- $\sim 1.1 \times 10^9 \ B\bar{B} \Rightarrow$ a B-factory;
- $\sim 1.3 \times 10^9 \ c\bar{c} \Rightarrow$ a charm-factory;
- $\sim 0.9 \times 10^9 \ \tau^+ \tau^- \Rightarrow$ a τ -factory;
- wide region $E_{c.m}^{eff.} = [0.5-10]$ GeV via ISR process.

The results on quarkonium physics in early Phase 3

 $\Upsilon(2S, 3S) \rightarrow \pi^+ \pi^- \Upsilon(1S) (\rightarrow \mu^+ \mu^-)$

The Belle II Collaboration

Belle Collaboration: 536 colleagues, 91 institutions, 20 countries/regions

Belle II Collaboration:952 colleagues, 116 institutions, 26 countries/regions

Summary

Physical run started in March 2019: There are much better vertexing, particle ID, etc than those at Belle.

As a density frontier experiment, Belle II play an important role to resolve the existing puzzles in quarkonium field with its huge statistical samples.

- Confirm or deny the observed unconventional states
- Precious measurements of the properties of the observed exotics
- Search for missing conventional states and new exotics

We expect many exciting results in the coming years !

Thanks for your attentions!

Backup slides

Energy frontier at Belle II

- Interesting physics beyond Υ(6S)
 - $\Lambda_b \overline{\Lambda}_b$ threshold ~ 11.24 GeV. The increase to about 11.35GeV could cover $\Lambda_b \overline{\Lambda}_b$ threshold to study potentially interesting baryon-antibaryon dynamics.
 - Search for new molecular states around 11.5-11.6 GeV, e.g., partners of X(3872) and Z_b via vector states transitions.
- Machine limits
 - The range of beam energies covers the Y (1S) and Y (6S) resonances for physics operation, but no enough spare cavities to run safely at Y (6S).
 - Maximum center of mass energy is 11.24 GeV in SuperKEKB due to the maximum beam energy of the injector linac.
 - Linac upgrade is required for running beyond 11.24GeV.