The role of charged exotic states in ${\rm e^+e^-} \rightarrow \psi'({\rm J}/\psi) \; \pi^+\pi^-$

Daniel Molnar

Collaborators: Igor Danilkin and Marc Vanderhaeghen

Phys. Lett. B 797 (2019) 134851

- Exotic States
- Naive Quark Model
- Exotic Explanations
- Experimental Results

Formalism

- Cross Section
- Isobar Model
- Unitarity in the s-channel
- Dispersion Relation
- Left-Hand Cuts
- Anomalous Threshold
- Inverse Amplitude Method
- 3
 - $\psi(2S) \pi^+\pi^-$
 - Z_c(3900)
 - No Intermediate State
 - Z_c(4016) or Z_c(4020)?

Perspectives

- $e^+e^- \rightarrow J/\psi \ \pi^+\pi^-$
- Strange Partner of Z_c(3900)?
- Preliminary results for $e^+e^-
 ightarrow J/\psi \ \pi^+\pi^-$
- ${\small \bullet}$ Predictions for $e^+e^- \rightarrow J/\psi \; {\it K}^+{\it K}^-$

Exotic States		

Exotic States ●000						
	G	uark Moo	del			
				Quarks		
Mesons:	q q		mass =2.4 MeV/c ² charge 2/3	 =1.275 GeV/c ² 2/3	=172.44 GeV/c ² 2/3	
$P=(-1)^l$	$C = (-1)^{L+1}$	-5	spin 1/2 U up	1/2 C charm	top	
LS	JPC)	*4.8 MeV/c ² -1/3 1/2 d	≈95 MeV/c ² -1/3 1/2 S	≈4.18 GeV/c ² -1/3 1/2 b	

L .	5	
0	0	0-+
0	1	1
1	0	1+-
	1	0^{++} 1^{++} 2^{++}
2	0	2-+
	1	1 2 3

Forbidden Quantum Numbers:

$$0^{--}$$
, 0^{+-} , 1^{-+} , 2^{+-} , \cdots

• Heavy Quarks:

strange

bottom

down

$$\frac{d^2}{dr^2}u(r) + 2\mu\left[E - V(r) - \frac{l(l+1)}{2\mu r^2}\right]u(r) = 0$$

Phenomenological Potential:

$$V(r)\simeq -rac{\kappa}{r}+br+{
m spin-terms}$$

- Hybrids and Glueballs
- Tetraquark
- Molecular state
- Hadrocharmonium
- Kinematics effects

Alternative explanations:

- Hybrids and Glueballs
- Tetraquark
- Molecular state
- Hadrocharmonium
- Kinematics effects

No Unique Structure

No new physics! All interpretations are based on QCD.

Alternative explanations:

- Hybrids and Glueballs
- Tetraquark
- Molecular state
- Hadrocharmonium
- Kinematics effects

No Unique Structure

No new physics! All interpretations are based on QCD.

Charged Exotic Mesons

- Confirmed in 2013 by Belle and BESIII
- $c\bar{c} + q_i\bar{q}_j$ $(i \neq j)$

√s(GeV)

$Z_{c}(3900) + Z_{c}(4030)$

- Two charged exotic states!
- No consistent description
- Below K K threshold

4.2 4.3 4.4 4.5 4.6

41

Cross Section (pb)

-20 4.0

BESIII PRD (2017)

	Formalism			
0000	000000	000	0000	0

2 Formalism

$$egin{aligned} &\langle \pi\pi\psi(\lambda_2) | \, \mathcal{T} \, | \gamma^*(\lambda_1)
angle = & (2\pi)^4 \delta(q-p_\psi-p_{\pi^+}-p_{\pi^-}) \; \mathcal{H}_{\lambda_1\lambda_2} \end{aligned}$$

Independent Helicity Amplitudes

P-symmetry: \mathcal{H}_{++} , \mathcal{H}_{+-} , \mathcal{H}_{+0} , \mathcal{H}_{0+} and \mathcal{H}_{00}

• CP-symmetry: $J_{\pi\pi} \rightarrow \text{even}$ • Bose-symmetry: $I_{\pi\pi} = 0$, 2 • $I_{\psi} = 0$; $I_{\gamma} = 0$, 1 \Longrightarrow $I_{\pi\pi} = 0$

• The pions interaction amplitude can be written in terms of the phase shift:

$$t^*_{\pi\pi}(s) = rac{e^{-i\delta_{\pi\pi}(s)}\sin\delta_{\pi\pi}(s)}{
ho(s)}$$

- Since $h_{\lambda_1\lambda_2}(s) = |h_{\lambda_1\lambda_2}(s)|e^{i\phi(s)} \implies \phi(s) = \delta_{\pi\pi}(s)$, Watson Theorem
- Therefore, we can use the δ_{ππ}(s) through the Omnès Function:

$$\Omega(s) = exp\left[rac{s}{\pi}\int\limits_{4m_\pi^2}^\infty rac{ds'}{s'}rac{\delta_{\pi\pi}(s')}{s'-s}
ight]$$

Omnès, Nuovo Cim. (1958) Muskhelishvili, (1953)

Dispersion Relation

 Assuming no kinematic constrains, we look for a solution in terms of the Omnès function:

$$h^s_{\lambda_1\lambda_2}(s) = \Omega(s) \ G_{\lambda_1\lambda_2}(s)$$

• The unitarity relation for the Omnès function is

$$\mathsf{Disc}\,\Omega(s) = t^*_{\pi\pi}(s)\,\rho(s)\,\Omega(s)\,\theta(s > 4m^2_{\pi})$$

• Since Disc $h_{\lambda_1\lambda_2}(s) = \text{Disc } h^s_{\lambda_1\lambda_2}(s)$, one can write down a DR for $G_{\lambda_1\lambda_2}$:

$$\mathcal{G}_{\lambda_1\lambda_2} = -\int\limits_{4m_\pi^2}^\infty rac{ds'}{\pi} rac{ ext{Disc}\left(\Omega
ight)^{-1}(s')\,h_{\lambda_1\lambda_2}^{L}(s')}{s'-s}$$

Helicity Amplitude with Rescattering

$$\mathcal{H}_{\lambda_1\lambda_2}(s,t,u) = h^t_{\lambda_1\lambda_2}(t) + h^u_{\lambda_1\lambda_2}(u) + \Omega(s) \left\{ a + bs - \frac{s^2}{\pi} \int\limits_{4m_\pi^2}^{\infty} \frac{ds'}{s'^2} \frac{\mathsf{Disc}\left(\Omega\right)^{-1}(s') h^L_{\lambda_1\lambda_2}(s')}{s' - s} \right\}$$

• 2 subtraction constants to reduce the sensitive to high energy.

Anomalous Threshold

- Depending on the kinematics new nonphysical singularities might appear $(q^2 > 2m_{\pi}^2 + 2m_z^2 m_{\psi}^2).$
- The anomalous piece that emerges because the anomalous branch point moves onto the first Riemann sheet distorting the integration contour. Effectively, that can be written as

$$\int_{-1}^{1} \frac{dz}{t - m_z^2} = \int_{-1}^{1} \frac{dz}{u - m_z^2} = -\frac{2}{k(s)} \log\left(\frac{X(s) + 1}{X(s) - 1}\right) - i\frac{4\pi}{k(s)}\theta(s_- < s < s_a)$$

• $s_a = 2m_{\pi}^2 + m_{\psi}^2 + q^2 - 2m_z^2$ is the position where the argument of the logarithm changes sign.

• Analytical continuation: $q
ightarrow q + i\epsilon$

Cross-Check

• Comparison of the DR with the scalar triangle loop calculated via traditional method.

S. Mandelstam, PRL (1960); W. Lucha et al, PRD (2007); M. Hoferichter et al, Mod. Phys. Conf. Ser. (2014)

		$\psi(2S) \pi^+\pi^-$		
0000	000000	000	0000	0

 $\psi(2S) \pi^+\pi^-$

No intermediate state is required;

- Two real subtraction constants and the $\pi\pi$ Omnès function describe well the data;
- The left-hand cuts are dominated by the contact interation or possible D-meson loops (absorbed in the subtraction constants).

			Perspectives	
0000	000000	000	0000	0

Perspectives

$$\begin{bmatrix} \mathcal{H}_{\psi\pi\pi} \\ \mathcal{H}_{\psi\kappa\kappa} \end{bmatrix} = \begin{bmatrix} h_{Z_c}(t,u) \\ h_{Z_c^s}(t,u) \end{bmatrix} + \underbrace{\begin{bmatrix} \Omega_{\pi\pi,\pi\pi} & \Omega_{\pi\pi,\kappa\bar{\kappa}} \\ \Omega_{\kappa\bar{\kappa},\pi\pi} & \Omega_{K\bar{\kappa},\kappa\bar{\kappa}} \end{bmatrix}}_{\bar{\Omega}} \left\{ \begin{bmatrix} a+bs \\ c+ds \end{bmatrix} - \frac{s^2}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s'^2} \frac{\mathsf{Disc}\,(\bar{\Omega})^{-1}(s')}{s'-s} \begin{bmatrix} h_{Z_c}^L(s') \\ h_{Z_c^s}^L(s') \end{bmatrix} \right\}$$

 $\implies m_{Z_c^{(s)}} > m_{Z_c}$

• For q = 4.26(4.23) GeV, $\gamma^*(q) \to K Z_c^{(s)}$ and $Z_c^{(s)} \to J/\psi K$ would constrain the $Z_c^{(s)}$ mass:

$$3.59 < m_{Z_{c}^{(s)}} < 3.77(3.74) \; {
m GeV}$$

25

20 15

10

1.15

1.10

MKK (GeV)

3.60

3.65

do/dM_{KK} (pb/GeV)

30

20

10

1.00

1.05

				Summary
0000	000000	000	0000	0

- We perform an amplitude analysis of the reaction $e^+e^- \rightarrow \psi(2S) \pi^+\pi^$ at different e^+e^- -CM energies q;
- The $\pi\pi$ -FSI is treated using the dispersion theory and we studied quantitatively the contribution of the charged exotic mesons as intermediate states;
- The exotic state Zc(3900) plays an important role to explain the invariant mass distribution at both q = 4.226 and q = 4.258 GeV;
- To explain the enhancement in the experimental data at q = 4.416 GeV a heavier charged state is needed instead, with $m_Z = 4.016(4)$ GeV and $\Gamma_Z = 52(10)$ MeV. However, this state could be the already known $Z_c(4020)$;
- For q = 4.358 GeV no intermediate Z_c state is necessary for left-hand cuts in order to describe both $\psi\pi$ and $\pi\pi$ line shapes. It points to another left-hand contribution which we absorbed in the subtraction constants:
- The $\pi\pi$ -FSI is the main mechanism to describe the $\pi\pi$ -line shape for all the energies.

Thank you for listening!

Appendix

$$\operatorname{Im}[t_{\pi\pi}(s)] = \rho_{\pi\pi}(s) |t_{\pi\pi}(s)|^2 \implies \operatorname{Im}\left[\frac{1}{t_{\pi\pi}(s)}\right] = -\rho_{\pi\pi}(s)$$

The ChPT amplitude only satisfy the unitarity condition perturbatively:

 $Im[t_{LO}] = 0$; $Im[t_{NLO}] = \rho_{\pi\pi}(s) |t_{LO}(s)|^2$ with $t_{\pi\pi} = t_{LO} + t_{NLO} + \cdots$

One can write down a dispersion relation for the ChPT amplitudes as

$$t_{\rm LO}(s) = \sum_{l=0}^{k} a_l s^l; \qquad t_{\rm NLO}(s) = \sum_{l=0}^{k} b_l s^l + \frac{s^k}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds'}{s'^k} \frac{\rm Im\,[t_{\rm NLO}]}{s' - s - i\epsilon} + I_{LC}\,[t_{\rm NLO}]$$

- Same analytic structure for t and t^{-1} : $G(s) \equiv t_{LO}^2/t_{\pi\pi} \implies \text{Im}[G(s)] = -\text{Im}[t_{\text{NLO}}]$
- Thus G(s) ≃ t_{LO}(s) − t_{NLO}(s), considering that I_{LC} [G(s)] = −I_{LC} [t_{NLO}] and ignoring pole contributions:

$$t_{\pi\pi}(s)\simeq rac{|t_{ ext{LO}}(s)|^2}{t_{ ext{LO}}(s)-t_{ ext{NLO}}(s)}$$

Truong, PRL (1988) Dobado & Peláez, PRD (1993)

Inverse Amplitude Method

• Spurious poles emerges below threshold for the scalar waves (J=0), thus to reproduce correctly the Adlers zeros the IAM must be modified as

$$t_{\pi\pi}(s) = rac{|t_{ ext{LO}}(s)|^2}{t_{ ext{LO}}(s) - t_{ ext{NLO}}(s) + A^{ ext{mIAM}}(s)}$$
 GomezNicola et al.

with the adler zero $s_A = s_{LO} + s_{NLO} + \mathcal{O}(p^6)$ and $t_{LO}(s_{LO} + s_{NLO}) + t_{NLO}(s_{LO} + s_{NLO}) = 0$

