

Measuring space-time properties of baryon resonances around 1 GeV using intensity interference

Qinghua HE for FOREST Collaboration

E-mail: heqh@nuaa.edu.cn

Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 2 Research Center for Electron Photon Science, Tohoku University, Sendai 982-0826, Japan

Motivation

Motivation

Is that possible to measure space-time properties of $\Delta(1232)$ resonance using $\pi^0\pi^0$ correlations in $\gamma p \rightarrow \pi^0\pi^0 p$?

 $\gamma p \rightarrow \pi^{0} \Delta \rightarrow \pi^{0} \pi^{0} p$ process is dominant in $\gamma p \rightarrow \pi^{0} \pi^{0} p$

Using FOREST data @ ELPH

properties

space-time

enhancement

probability $(P_{12}(p_1, p_2) = \langle \psi^{s*} \psi^S \rangle)$ of emission if the two bosons have similar momenta.

Correlation function

Intensity interference is measured in terms of a **correlation function**:

$$C_2(p_1, p_2) \equiv \frac{P_{12}(p_1, p_2)}{P_1(p_1)P_2(p_2)}$$

completely chaotic:

$$C_2(p_1, p_2) = 1 + |\hat{\rho}(Q)|^2$$

completely coherent:
 $C_2(p_1, p_2) = 1$

$$C_2(Q) \equiv N(1 + \lambda_2 e^{-r_0^2 Q^2})$$

 $Q^2 = -(p_1 - p_2)^2$ $p_{1,2}$: four momentum of the two identical particles.

Assume the particle emitting source has a Gaussian profile of density distribution $\rho(x) = \rho(0)e^{-x^2/2r_0^2}$

 $\hat{\rho}(Q)$: Normalized Fourier transform of source density $\rho(x)$:

 $\hat{\rho}(Q) = \int dx \rho(x) e^{i(p_1 - p_2)x} \qquad \left| \hat{\rho}(Q) \right|^2 = e^{-r_0^2 Q^2}$

N: normalized factor $\mathbf{r_0}$: emitter radius λ_2 : chaoticity parameter ($0 \le \lambda_2 \le 1$) 0: completely coherent case 1: totally chaotic limit

How to measure correlation function

Measure the spectra of Q (momenta difference) and compared it to that in a **reference sample** free of BE effects

$$C_{2}(Q) = \frac{P_{BE}(Q)}{P_{noBE}(Q)} = \frac{\rho_{BE}(Q)}{\rho_{noBE}(Q)}$$
signal sample
$$Q^{2} = -(p_{1} - p_{2})^{2} = (p_{1} + p_{2})^{2} - 4\mu^{2}$$
reference sample

A valid reference sample should be identical to the real data (signal sample) in all aspect but free of BEC.

The reference sample is constructed by taking two π^0 from different events, namely **event mixing**

<u>Challenges</u> in BEC analysis at low energies with low multiplicities

(1) Event mixing method

low energies low multiplicities	high energies high multiplicities
strongly disturbed by non-BEC factors of exclusive reactions with a low multiplicity such as global conservation laws and decays of resonances	weakly disturbed by non-BEC factors such as global conservation laws
Complicated kinematical constraints	Simple kinematical constraints

(2) Resonance decay effects

Event Mixing Technique

Appropriate mixing cuts should be applied in the mixing

Missing mass consistency (MMC) cut: |m_X^{mix} - m_X^{ori}| < M_{cut}
 Pion energy (PE) cut: events with pion energy higher than a given level are rejected
 Energy sum order (ESO) cut: min(E^{ori,1}_{sum}, E^{ori,2}_{sum}) < E^{mix}_{sum} < max(E^{ori,1}_{sum}, E^{ori,2}_{sum})
 no overlapping photon clusters (used to correct the detection efficiency)

Event Mixing Technique

0.8

0.8

0.8

0.8

Appropriate mixing cuts in event mixing: MMC + PE cuts

Fig. Fitted values of r_0 (a) and λ_2 (b) obtained by event mixing in a single-and a multi mixing (up to 10 times) mode at six incident photon energies E_{γ} =1.0, 1.03, 1.06, 1.09, 1.12, and 1.15 GeV for the $\gamma p \rightarrow \pi^0 \pi^0 p$ events. For comparison, the values of r_0 and λ_2 for the generated sample with BEC effects are also shown.

Fig. The ratio of the Q distribution of the generated BEC/noBEC sample, $N_{BEC}(Q)$, to that from the mixed events, $N_{Mix}(Q)$ (filled circles). The ratio of $N_{BEC}(Q)$ to the Q distribution of pure phase space sample, $N_{PS}(Q)$, is also shown (open triangles) in each panel for comparison.

[1] Q. He, et al., Prog. Theor. Exp. Phys. 2017, (2017); [2] Q.-H. He, et al., Chinese Phys. C 40, 114002 (2016).

Resonance decay effects correction

Resonance decay effects correction

3-d correlation function

$$C_{BEC}(q, p_2) = 1 + \lambda \exp\left(-\frac{\alpha^2 q^2}{2}\right) \exp\left(-\frac{\alpha^2 q_z^2}{2}\right) J_0(\beta q_r)$$

= $1 + \lambda \exp(-\alpha^2 q_z^2) \exp\left(-\frac{\alpha^2 q_r^2}{2}\right) J_0(\beta q_r)$ α : Gaussian radius
 λ : correlation strength

Space-time coordinates of Δ at rest

q: relative momentum of two pions in the frame of Δ at rest $\vec{q} = (q_r, 0, q_z)$ in cylindrical coordinates $q^2 = q_r^2 + q_z^2$ $\boldsymbol{\beta} = \frac{1}{2p_2}$

 p_2 : Δ decayed pion 3-d momentum in the frame of Δ at rest

 $J_0(\beta q_r)$: Oth-order Bessel function

H. Shimizu, ELPH Annual Report, 2017

Correlation functions at different p_2

$$C_{BEC}(q, p_2) = 1 + \lambda \exp(-\alpha^2 q_z^2) \exp\left(-\frac{\alpha^2 q_r^2}{2}\right) J_0\left(\frac{q_r}{2p_2}\right)$$

FOREST Experiment

4π Electromagnetic detector complex FOREST

EM Calorimeter

SCISSORS III 192 CsI; θ: 4°-24°, φ:full Res. : 3% @ 1GeV

Backward Gamma 252 Lead/Scintillating fiber modules; θ: 30°-100°, φ:full Res. : 7% @ 1GeV

Rafflesia II 62 Lead Glass modules; Res. : 5% @ 1GeV

Plastic Scintillator

SPIDER (2 layers × 24 modules
IVY (18 modules)
LOTUS (12 modules)
14

Identification of $\gamma p \rightarrow \pi^0 \pi^0 p$

 p/π

4

 $t_5 - t_{4\gamma}$

6

2

100

-2

0

Unidentified

8

200

100

10

0.4

0.6

0.8

of coincident photons $(\mathbf{t}_{4\gamma})$

Miss mass Mx of $\gamma p \rightarrow \pi^0 \pi^0 X$ is • equal to the proton mass

1.6

1.4

1.2

mX (GeV)

Invariant mass and missing mass

The best combinations of the two paris of photons

Missing mass distribution of the hypothesis $\gamma p \rightarrow \pi^0 \pi^0 X$

$\gamma p \rightarrow \pi^{0} \Delta \rightarrow \pi^{0} \pi^{0} p$ process is dominant in $\gamma p \rightarrow \pi^{0} \pi^{0} p$

Q. He, PhD Thesis, Tohoku University, 2014

Preliminary results of experimental $\pi^0\pi^0$ correlation functions for reaction $\gamma p \rightarrow p\pi^0\pi^0$

p ₂ : 0.2-0.3 GeV	V			
E_{γ} (GeV)	N	λ	α (fm)	χ^2/ndf
1.13-1.15	0 .71±0.07	1.00±0.84	0.44 ± 0.10	84.7/44
1 .11-1.13	0.81±0.03	1.00±0.08	0.59±0.06	60.2/44
1.09-1.11	0.79±0.03	1.00±0.05	0.58 ± 0.05	76.9/44
1.07-1.09	0.82±0.03	1.00±0.03	0.61 ± 0.04	63.3/44
1.05-1.07	0.82±0.02	1.00±0.02	0.65 ± 0.04	81.5/44
1.03-1.05	0.85±0.02	1.00±0.05	0.70±0.05	42.5/43
1.01-1.03	0.84±0.03	1.00±0.04	0.68 ± 0.05	38.2/42
0.99-1.01	0.84±0.03	0.94±0.15	0.69 ± 0.07	52.3/42
Ave.	0.83±0.01	1.00±0.01	0.63±0.02	
Mean square	e radius x (fm)	$\langle x^2 angle = 3 lpha^2$)	<i>x</i> =1.09±0.03	

Fit:
$$C_{BEC}(q, p_2) = N(1 + \lambda \exp(-\alpha^2 q_z^2) \exp\left(-\frac{\alpha^2 q_r^2}{2}\right) J_0(q_r/2p_2))$$

Double ratio method is used (Geant4 simulation data are used to correct the experimental correlation function)

λ: fit limits: [0,1] Fit range: q_z :[0,0.7] GeV; q_r :[0,0.7] GeV p_2 is fixed to be 0.25 GeV

Summary and discussion

- ❖ Preliminary BEC results on FOREST experiments shows the mean square radius of the intermediate state (Δ(1232) resonance is dominant) in $\gamma p \rightarrow$ $\pi^0 \pi^0 p$ at $E_{\gamma} \sim 1$ GeV is about 1.09±0.03 fm
- Still need to refine this analysis to get BEC results from pure Δ(1232) events and to estimate the systematic errors...
- Appropriate event mixing method for lowmultiplicity BEC analysis is required
- BEC analysis for BGOegg experimental data is on the way

Future plan

BGOegg data is better

LEPS2/BGOegg @ Spring-8

N. Muramatsu, PWA10/ATHOS5 @IHEP, Beijing, 19 July, 2018

Future plan

LEPS2/BGOegg @ Spring-8

- coverage: 24°-156°
- BGO crystal length: 220 mm (20X₀)

Thanks for your attention

Nanjing University of Aeronautics and Astronautics

