

High Energy Physics Institute Tbilisi State University

1

WIII International Conference on Hadron Spectroscopy and Structure

Associated quarkonium production at ATLAS

Tamar Zakareishvili (HEPI TSU), On behalf of the ATLAS Collaboration

The 18th International Conference on Hadron Spectroscopy and Structure,

16-21 August, 2019 Guilin, China

The author was supported by SRNSFG foundation through the grant projects #FR17_184 and #04/48, and The Volkswagen Foundation Ref.: 93 562

Outline

- Introduction
- ATLAS detector at LHC
- ATLAS results covered in this talk:
 - Prompt J/ ψ + W[±]
 - Prompt J/ ψ + Z⁰
- Summary

Introduction

- Quarkonia are formed from a quark pair of the same flavor and should represent one of the simplest systems described by QCD theory.
- However the mechanisms responsible for the production of quarkonia, are not fully understood in hadron collisions.
- Motivation to study the production of a prompt J/ψ meson in association with a vector boson offers:
 - Tests of Quantum Chromodynamics (QCD) at the perturbative/non-perturbative boundary;
 - Useful information on the Double Parton Scattering (DPS) process along with Single Parton Scattering (SPS) process;
 - Developing the framework for future probes of the Higgs sector;
 - Beyond-the-standard-model searches in such final states.

Colour-Singlet (CS) and Colour-Octet (CO) states

Perturbative calculations of heavy quarkonium production in hadronic collisions distinguish between terms that produce a heavy quark system (Q^-Q) in a colour-singlet (CS) or a colour-octet (CO) state.

SPS and DPS

The production of two objects in the same pp collision can be due to:

Single-Parton Scattering (SPS):

the two objects are produced via a subprocess in a single interaction of two partons.

Double-Parton Scattering (DPS):

simultaneous interaction of two pairs of partons, each producing one of the two objects, assumed to be uncorrelated.

ATLAS detector at LHC

Prompt J/ ψ + W[±]

Measurement of the production cross section of prompt J/ ψ mesons in association with a W[±] boson in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS **detector.** *JHEP 04 (2014) 172*;

 $\begin{array}{ll} \mbox{Production channel in the analysis:} & \label{eq:spinor} & \mbox{Superior} & \mbox{Supe$

In a later analysis [*Phys.Lett.* B781 (2018) 485-491] the authors found some evidence of DPS in this measurement.

Signal extraction

Prompt production: J/ψ produced in the hard scattering process.

Non-prompt production: J/ ψ produced in the decay of a B hadron, decay vertex separated from the primary vertex.

An unbinned maximum likelihood fit in J/ψ candidate invariant mass and pseudo-proper time.

sPlot procedure (*Nucl.Instrum.Meth.A555:356-369,2005*) used to obtain yields for prompt J/ ψ , non-prompt J/ ψ , and background.

Double Parton Scattering - DPS

For a collision in which a hard process occurs, the probability of an additional process is parameterized as [*Paver*, *N. et al. Nuovo Cim. A70 (1982) 215 SISSA-7/82/EP*]:

$$P_{J/\psi|W^{\pm}} = \sigma_{J/\psi}/\sigma_{\text{eff}}.$$

 $\sigma_{\rm eff}$ - the geometric size of the proton and transverse parton correlations - assumed to be **independent of the scattering process**.

From **DPS** - a uniform distribution in the azimuthal angle between the W± and J/ψ momenta .

From **SPS** - a distribution strongly peaked near $\Delta \phi = \pi$.

Observed W + prompt J/ψ candidates include both SPS and DPS events.

 $I/\psi + W^{\pm}$

$J/\psi + W^{\pm}$

Prompt J/ ψ + Z⁰

Observation and measurements of the production of prompt and non-prompt J/ ψ mesons in association with a Z boson in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector. *Eur. Phys. J.* C75 (2015) 229;

Production channel in the analysis:

 $Z_0 (\rightarrow \mu^+ \mu^- / e^+ e^-) + J/\psi (\rightarrow \mu^+ \mu^-)$

Trigger: single muon or electron, $p_T > 24 \text{ GeV}$ fiducial phase space $8.5 < p_T^{J/\psi} < 100 \text{ GeV} |y^{J/\psi}| < 2.1$ $p_T^{\mu} > 3.5 \text{ GeV} |\eta^{\mu}| < 1.3 |\eta^{\mu}| < 2.5$ $p_T^{\mu} > 2.5 \text{ GeV} |\eta^{\mu}| > 1.3 \text{ at least one } p_T^{\mu} > 4 \text{ GeV}$ $p_T^{\mu(Z)} > 15 \text{ GeV} |\eta^{\mu(Z)}| < 2.5$

 $p_T^{e(Z)} > 15 \text{ GeV } |\eta^{e(Z)}| < 2.47$

Signal extraction

2D fit of J/ψ candidate invariant mass and pseudo-proper time.

sPlot procedure (*arXiv:physics/0402083*) used to obtain yields for :

- prompt J/ψ ;
- non-prompt J/ψ ;
- background.

 $I/\psi + Z^0$

Double Parton Scattering – DPS / Yields

Total yield for prompt J/ψ production is 56±10 events.

Total yield for non-prompt J/ψ production is 95±12 events.

In the yields:

- estimated pile up : $5.2^{+1.8}_{-1.3}$ and $2.7^{+0.9}_{-0.6}$ for prompt and non-prompt samples respectively;
- estimated DPS: $11.1^{+5.7}_{-5.0}$ and $5.8^{+2.8}_{-2.6}$ for prompt and non-prompt samples respectively, assuming: $\sigma_{\text{eff}} = 15 \pm 3 \text{ (stat)} + 5 \text{ (syst)} \text{ mb, New J. Phys. 15 (2013) 033038}$ $\sigma_{J/\Psi}$ from Nucl. Phys. B 850 (2011) 387-444

 $J/\psi + Z^0$

Results

The cross-section ratio of Z^0 + prompt J/ ψ to inclusive Z^0 production in the J/ ψ fiducial region (**Fiducial**), after correction for J/ ψ acceptance (**Inclusive**), and after subtraction of the double parton scattering component (**DPS-subtracted**).

LO: Gong, arXiv:1210.2430 NLO: Mao, arXiv:1102.0398

The inclusive (SPS+DPS) cross-section ratio is shown as a function of J/ψ transverse momentum.

- A higher production rate is predicted through colour-octet transitions than through colour-singlet processes.
- The expected production rate from the sum of singlet and octet contributions is lower than the data by a factor of 2 to 5 in the $J/\psi p_T$ range

Summary

- ATLAS Collaboration has observed:
 - W^{\pm} + prompt J/ ψ production at 5.1 σ significance in 4.5 fb⁻¹ of \sqrt{s} = 7 TeV pp collisions at the LHC:
 - W + prompt J/ψ candidates include both SPS and DPS events;
 - SPS is the dominant contribution to the total rate at low $J/\Psi p_{T}$;
 - This process appears to be dominated by CS production.
 - Z_0 + prompt J/ ψ production at 5 σ significance and Z₀ + non-prompt J/ ψ production at 9σ significance in 20.3 fb⁻¹ of $\sqrt{s} = 8$ TeV pp collisions at the LHC:
 - $Z + prompt I/\psi$ candidates include both SPS and DPS events;
 - Lower limit has been set on σ_{eff} (> 5.3 mb);
 - A higher production rate is predicted through CO transitions than through CS processes;
 - The expected production rate from the sum of singlet and octet contributions is lower than the data by a factor of 2 to 5.
- The effective cross-section of double parton scattering is measured to be σ_{eff} =6.3±1.6(stat)±1.0(syst) mb [*Eur. Phys. J.* C77 (2017) 76], which is is lower than from other final states.
- Some measured SPS contributions are well above theoretical predictions. ٠
- Theoretical predictions of the dependence of $\sigma_{\rm eff}$ on the process and energy ٠ are needed. 15

Backup

Triggers, fiducial cuts, integrated luminosities

 $\begin{array}{ll} \mbox{Trigger: single muon, } p_{\rm T} > 18 \ {\rm GeV} \\ \sqrt{s} = 7 \ {\rm TeV} \\ \mathcal{L} = 4.51 \ {\rm fb}^{-1} \\ J/\psi \rightarrow \mu^+\mu^- \\ W^{\pm} \rightarrow \mu\nu_\mu \end{array} \begin{array}{ll} \mbox{fiducial phase space } 8.5 < p_T^{J/\psi} < 30 \ {\rm GeV} \ |y^{J/\psi}| < 2.1 \\ p_T^{\mu} > 3.5 \ {\rm GeV} \ |\eta^{\mu}| < 1.3 \ |\eta^{\mu}| < 2.5 \ {\rm at \ least \ one \ } p_T^{\mu} > 4 \ {\rm GeV} \\ p_T^{\mu} > 2.5 \ {\rm GeV} \ |\eta^{\mu}| > 1.3 \end{array} \begin{array}{ll} p_T^{\mu} > 25 \ {\rm GeV} \ |\eta^{\mu(W)}| < 2.4 \\ W^{\pm} \rightarrow \mu\nu_\mu \end{array}$

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{Trigger: single muon or electron, } p_{\rm T} > 24 \ {\rm GeV} \\ \hline \end{tabular} \\ \hline \end{tabular} \begin{array}{l} \sqrt{s} = 8 \ {\rm TeV} \\ \end{tabular} \\ \end{tabular} \begin{array}{l} \mbox{fiducial phase space } 8.5 < p_T^{J/\psi} < 100 \ {\rm GeV} \ |y^{J/\psi}| < 2.1 \\ \end{tabular} \\ \end{tabular} \\ \end{tabular} \\ \end{tabular} \begin{array}{l} \end{tabular} \\ \end{ta$

17

2D fit model

The combined probability density function used for the fit is:

$$\begin{split} p &\propto N_{\text{prompt } J/\psi} \times M_{J/\psi}(m_{\mu^+\mu^-}) \times T_{\text{prompt } J/\psi}(\tau) \\ &+ N_{\text{non-prompt } J/\psi} \times M_{J/\psi}(m_{\mu^+\mu^-}) \times T_{\text{non-prompt } J/\psi}(\tau) \\ &+ N_{\text{prompt } \text{bkg}} \times M_{\text{prompt } \text{bkg}}(m_{\mu^+\mu^-}) \times T_{\text{prompt } \text{bkg}}(\tau) \\ &+ N_{\text{non-prompt } \text{bkg}} \times M_{\text{non-prompt } \text{bkg}}(m_{\mu^+\mu^-}) \times T_{\text{non-prompt } \text{bkg}}(\tau). \end{split}$$

The functional forms of the probability density functions are:

$$\begin{split} M_{J/\psi}(m_{\mu^+\mu^-}) &= G(m_{\mu^+\mu^-}; m_{J/\psi}^{\text{PDG}}, \sigma_m) \\ T_{\text{prompt } J/\psi}(\tau) &= G(\tau; 0, \sigma_\tau) \otimes \left((1-a)\delta(\tau) + aC_0 \mathrm{e}^{-|\tau|/\tau_0}\right) \\ T_{\text{non-prompt } J/\psi}(\tau) &= G(\tau; 0, \sigma_\tau) \otimes \left(C_1\theta(\tau) \mathrm{e}^{-\tau/\tau_1}\right) \\ M_{\text{prompt bkg}}(m_{\mu^+\mu^-}) &= C_2 \mathrm{e}^{-m_{\mu^+\mu^-}/k_0} \\ M_{\text{non-prompt bkg}}(m_{\mu^+\mu^-}) &= C_3 \mathrm{e}^{-m_{\mu^+\mu^-}/k_1} \\ T_{\text{prompt bkg}}(\tau) &= G(\tau; 0, \sigma_\tau) \otimes \left((1-b)\delta(\tau) + bC_4 \mathrm{e}^{-|\tau|/\tau_0}\right) \\ T_{\text{non-prompt bkg}}(\tau) &= G(\tau; 0, \sigma_\tau) \otimes \left(C_5\theta(\tau) \mathrm{e}^{-\tau/\tau_2}\right). \end{split}$$

Some definitions

The cross-section ratio of W[±]+prompt J/ ψ production to the inclusive W[±] production:

$$\begin{split} R_{J/\psi}^{\text{fid}} &= \frac{\text{BR}(J/\psi \to \mu^+ \mu^-)}{\sigma_{\text{fid}}(pp \to W^{\pm})} \cdot \frac{\text{d}\sigma_{\text{fid}}(pp \to W^{\pm} + J/\psi)}{\text{d}y} \\ &= \frac{N^{\text{ec}}(W^{\pm} + J/\psi)}{N(W^{\pm})} \frac{1}{\Delta y} - R_{\text{pileup}}^{\text{fid}}, \\ R_{J/\psi}^{\text{incl}} &= \frac{\text{BR}(J/\psi \to \mu^+ \mu^-)}{\sigma_{\text{fid}}(pp \to W^{\pm})} \cdot \frac{\text{d}\sigma(pp \to W^{\pm} + J/\psi)}{\text{d}y} \\ &= \frac{N^{\text{ec}+\text{ac}}(W^{\pm} + J/\psi)}{N(W^{\pm})} \frac{1}{\Delta y} - R_{\text{pileup}}, \end{split}$$

The cross-section ratio of Z^0 +prompt J/ ψ production to the inclusive Z^0 production:

$$\begin{aligned} R_{Z+J/\psi}^{\rm fid} &= \mathcal{B}(J/\psi \to \mu^+ \mu^-) \, \frac{\sigma_{\rm fid}(pp \to Z + J/\psi)}{\sigma_{\rm fid}(pp \to Z)} \\ &= \frac{1}{N(Z)} \sum_{p_{\rm T} \ \rm bins} \left[N^{\rm ec}(Z + J/\psi) - N^{\rm ec}_{\rm pileup} \right], \end{aligned}$$

$$\begin{aligned} R_{Z+J/\psi}^{\mathrm{incl}} &= \mathcal{B}(J/\psi \to \mu^+ \mu^-) \, \frac{\sigma_{\mathrm{incl}}(pp \to Z + J/\psi)}{\sigma_{\mathrm{incl}}(pp \to Z)} \\ &= \frac{1}{N(Z)} \sum_{p_{\mathrm{T}} \mathrm{ \ bins}} \left[N^{\mathrm{ec+ac}}(Z + J/\psi) - N^{\mathrm{ec+ac}}_{\mathrm{pileup}} \right], \end{aligned}$$

19

Backgrounds

- Production of W^{\pm} bosons in association with b quarks, subsequent b-hadron decay to J/ ψ rejected using the fit.
- Decays of $B_c \rightarrow J/\psi \ \mu \pm \nu \ \mu X$ negligible background.
- The production of Z bosons ($Z \rightarrow \mu^+\mu^-$) vetoing events where a pairing of muons has an invariant mass within 10 GeV of the Z boson mass.
- Normalized Yield Multi-jet production – The $m_{T}(W)$ Neighted Events / 20 GeV **ATLAS**, $\sqrt{s} = 7$ TeV, $\int L dt = 4.5$ fb⁻¹ ATLAS, $\sqrt{s} = 7$ TeV, $\int L dt = 4.5$ fb⁻ 25- W+multi-jets hypothesis distribution of signal events is fit to a sum → W + prompt J/v data template multi-iets template Total fit 20 ••••• W of a multi-jet template and a W[±]boson multi-jets 0.03 15 signal template. 0.02 **Total yield** for prompt J/ ψ production is 29.2^{+7.5}₋₆₅ 0.01 Events. In the yield: estimated pile up : 1.8±0.2 50 100 150 200 150 50 100 200 estimated DPS: 10.8±4.2 W Transverse Mass [GeV] W Transverse Mass [GeV] assuming: $\sigma_{\rm eff} = 15 \pm 3 \, (\text{stat}) \stackrel{+5}{_{-3}} \, (\text{syst}) \, \text{mb}$, New J. Phys. 15 (2013) 033038 20 $\sigma_{J/\Psi}$ from Nucl. Phys. B 850 (2011) 387-444 Sample dominated by W + prompt J/ ψ events.

Backgrounds

Background estimation using MC:

- $Z \rightarrow \tau \tau$ or $W \rightarrow \ell \nu$ background;
- Top quark processes involving t t or single top production;
- The single-top Wt process;
- Diboson (WZ, WW and ZZ) production.

Using data:

 Multi-jet production – Selecting non-isolated leptons. The m(Z) distribution of signal events is fit to a sum of a multi-jet template and a Z⁰ boson signal template.

The numbers of background events estimated in the Z signal region, defined as $m_{_{ZPDG}}\pm 10$ GeV, for the $Z\!\rightarrow\!e^+e^-(\mu^+\mu^-)$ candidates are:

- associated with prompt J/ψ : 0±4 (1±4);
- associated with non-prompt J/ ψ : 1±5 (0±5).

The sample is dominated by genuine Z + J/ ψ events.

Measurements and limits on the effective cross section

