Partial Wave Analysis with the PAWIAN software package

M. Albrecht, B. Kopf, X. Qin

Ruhr-Universität Bochum Institut für Experimentalphysik I

XVIII International Conference on Hadron Spectroscopy and Structure Guilin, China August 17th 2019

Outline

- Introduction to PAWIAN
- Description of resonances
- Analyticity, unitarity and unstable particles
- Application example
- Summary and Outlook

Challenges in Meson Spectroscopy

- Many broad and overlapping states discovered
- Assignment to qq multiplets still ambiguous
- → Fundamental to gain deeper understanding of strong interaction
- → Optimally: Combine different production processes and decay modes

Modern high statistics experiments provide huge and clean data samples Adequate tools using sophisticated methods are needed to properly analyze this data

What is PAWIAN?

PArtial Wave Interactive ANalysis Software

PWA software package under development in Bochum to ...

[B. Kopf et. al., Hyperfine Interact. 229 (2014) no.1-3, 69-74]

- provide a generic (amplitudes, dynamics, ...) easy-to-use software package (GPLv3)
- support different production processes (p
 p
 p, e⁺e[−], γγ, ππ-scattering, CEP, ...)
- \Rightarrow Several analyses have already been performed
- ⇒ PAWIAN features full configuration of hypotheses and other input settings via plain-text configuration files
- \Rightarrow Event based maximum likelihood fits (Minimizer: MINUIT2, ...)
- \Rightarrow Event generator, histogramming, analysis tools, ...
- \Rightarrow Coupled channel analyses across different production processes
- \Rightarrow Parallelization: Server-client (network) mode

Workflow with PAWIAN

Workflow with PAWIAN

Workflow with PAWIAN

- after minimization
- Only server communicates with minimizer, current parameters saved periodically (restarting of fit easily possible any time!)
- ▶ Parallelization on event level \rightarrow No communication between clients necessary

$$-\ln \mathcal{L}_k \approx -\sum_{i=1}^{n_{data}} Q_i \cdot \ln w(\vec{\tau}_i, \vec{\alpha}) + \left(\sum_{i=1}^{n_{data}} Q_i\right) \cdot \ln \left(\frac{\sum_{j=1}^{:M_{cw}} w(\vec{\tau}_j, \vec{\alpha})}{n_{MC}}\right) + \dots$$

- ► Amplitudes are cached → only parts need to be re-evealuated in every minimization step
- ▶ Very small network / I/O load \rightarrow Multiple server processes per machine feasible

Example: The Configuration File

of PWA fit quick and easy for many cases						
Plain	$\rightarrow~$ No limitation on number of final state	> No limitation on number of final state particles or intermediate resonances				
Text Config	 K-Matrix: Full configuration (number of poles, channels, order of background terms,) via individual CFG files Some relevant lines in the config file (many more options available): 					
<pre>datFile = /path/to/reconstructed_data.dat mcFile = /path/to/reconstructed_PHSP-MC.dat</pre>		Plain-text files w/ final state four vectors (Data and PHSP MC)				
<pre>finalStateParticle = K+ finalStateParticle = K- finalStateParticle = pion0 productionFormalism = Holi</pre>		Name and order of final state particles Spin-formalism: Helicity, Canonical, Basita Schwinger (anothu)				
production = f2(: production = aMat	1270) pionO BlattWBarrier trixO pionO BlattWBarrier	Production channels (w/ or w/o barrier factors)				
decay = Cano f2(decay = Cano aMat	1270) To K+ K- trix0 To K+ K-	Decay channels				
addDynamics = f2 addDynamics = aMa	(1270) BreitWignerBlattWRel atrix0 KMatrix ./a0_pieta_2channel_2poles.cfg K+ K-	Dynamics for individual resonances (optional) Choice of Breit-Wigner, K-Matrix				
<pre>serverPort = 246: serverAddress = p noOfClients = 250</pre>	11 pc14 0	Configuration options for server/client network mode				

ightarrow When cleanly selected data and PHSP distributed MC are available, setup

Description of Resonances

- Breit-Wigner parameterization most commonly used. OK, if resonance is isolated, appearing only in one channel, far from thresholds
- K-matrix parameterization with consideration of analyticity:
 - S-matrix describes two-body scattering process via $S = I + 2i\sqrt{\rho}T\sqrt{\rho}$
 - Where T can be written as $T = (I iK\rho)^{-1}K$
 - Elements of the K-matrix: $K_{ij} = \sum_{\alpha} \frac{g_{\alpha i}g_{\alpha j}}{m_{\alpha}^2 s} + \sum_k c_{kij}s^k$
 - $\rightarrow \text{ Example: 2 channels } (\pi \pi \text{ and } K\overline{K})$ $\pi \qquad \pi \qquad \overline{\mathsf{T}_{11}} \qquad \pi \qquad \overline{\mathsf{K}} \qquad \overline{\mathsf{T}_{22}} \qquad \overline{\mathsf{K}} \qquad \pi \qquad \overline{\mathsf{T}_{12}} \qquad \overline{\mathsf{K}} \qquad \overline{\mathsf$
 - Extension of formalism to production of resonances using P-vector approach: [I.Aitchison, Nucl.Phys.A 189 (1972) 417]
 - Dynamical function becomes: $F = (I iK\rho)^{-1}P$ with

$$P_{i} = \sum_{\alpha} \frac{\beta_{\alpha} g_{\alpha i}}{m_{\alpha}^{2} - s} + \sum_{k} c_{k i} s^{k}$$

Example:
 $\overline{p}p \rightarrow f_{0}\pi^{0} \rightarrow (K\overline{K})\pi^{0}$
$$P \qquad (I - i K \rho)^{-}$$

Analyticity

- For coupled channels: Resonances can be below threshold for specific channels!
- \rightarrow Treatment of phase-space factors becomes important
- Standard phase-space factors: $\rho = \sqrt{\left[1 \left(\frac{m_a + m_b}{m}\right)^2\right] \cdot \left[1 \left(\frac{m_a m_b}{m}\right)^2\right]}$
- → Violate contraints from analyticity due to unphysical behavior below threshold (pole at m = 0 and unphysical cuts for $m_a \neq m_b$)
- Replace standard phase-space factors ρ with function to respect constraints from analyticity (Chew-Mandelstam function [Basdevant, Berger PRD19 (1979) 239])
- $T = (1 iK\rho)^{-1}K$ replaced by $T = (1 K CM(s))^{-1}K$

Unstable Particle Scattering

Chew-Mandelstam function so far only valid for "zero-width approximation" case

→ Extension to particles with non-negligible widths (like ω , ρ , K^* ,...) [Basdevant, Berger PRD19 (1979) 239]

- Correct analytical properties, satisfying quasi-two-body unitarity
- Chew-Mandelstam function for unstable particles used → resonance branch cuts located on 2nd Riemann sheet of three-particle complex energy plane

Extraction of Pole Parameters

[M.Kuhlmann, RUB]

- (W) 0.4 0.2 -0.2 -0.4 Re(VS) 0.5 m(CM) 0.5 -0.5 $M_{1}^{0.8} 0.6_{0.4}^{0.4} 0.2_{0.2}^{0.2} 0.4_{0.2}^{0.2} 0.4_{0.6}^{0.2} 0.4_{0.6}^{0.2} 0.4_{0.8}^{0.8} 0.6_{0.8}^{0.8}$ 2.5 Re(VS) 0.5
- Downside: This CM-function involves integrals that have to be calculated numerically
- \rightarrow Solution:

Using pre-calculated complex-valued lookup-tables in PAWIAN (existing for the cases: $K^*\pi, \omega\pi, \rho\pi, ...$)

 \rightarrow Resonance parameters are extracted from the genuine poles of the T-matrix in the complex energy plane

Coupled Channel Analysis using CB/LEAR Data Preliminary

- Simultaneous fit of $\overline{p}p \to K^+ K^- \pi^0, \pi^0 \pi^0 \eta, \pi^0 \eta \eta$ channels
- \rightarrow Advantages: Common amplitudes, common description of the dynamics (*K*-matrix), less fit parameters
- Clean data samples were prepared at $p_{\overline{p}} = 0.9 \, \text{GeV}/c$
- Kinematic fits, event-based background subtraction

Fit Result

- ▶ *f*₀ *K*-Matrix: 5 poles, 5 channels
- f₂ K-Matrix: 4 poles, 4 channels
- ρ K-Matrix: 2 poles, 3 channels
- ▶ a₀ and a₂ K-Matrix: 2 poles, 2 channels (each)
- $\rightarrow~$ All pole positions and coupling strengths are free parameters!
- (Kπ)_S-wave K-Matrix: 1 pole, 2 channel [Phys.Lett.B653 (2007) 1-11]
- Breit-Wigner description for isolated resonances ($\phi(1020)$, $K^{*\pm}(892)$, $\pi_1(1400)$)
- Overall: Good description of data for $\overline{p}p$ channels and also for scattering data:

$$\pi\pi \to \pi\pi$$
, $I = 0$ *S*-wave:

 $\overline{p}p
ightarrow K^+ K^- \pi^0$

Preliminary

Fit quality: *p* = 0.848 [Aslan,Zech NIM A 537 (2005) 626-636]

	contribution (in %)
f ₀ π ⁰	$10.7\pm0.4\pm1.5$
f ₂ π ⁰	$19.3\pm0.8\pm6.6$
$\rho \pi^{0}$	$6.2\pm0.6\pm3.2$
a ₀ π ⁰	$0.8\pm0.0\pm0.5$
a ₂ π ⁰	$1.0\pm0.0\pm0.8$
K*(892) [±] K [∓]	$45.7\pm1.6\pm10.5$
$(K\pi)^{\pm}_{S}K^{\mp}$	$14.4\pm0.8\pm4.3$
φ(1020) π ⁰	$2.7\pm0.3\pm0.5$
Σ	$100.9\pm2.0\pm5.8$

(angular distributions efficiency corrected)

Extracted Resonance Parameters (Example) Preliminary

-I/2 [GeV]

- All resonance parameters are encoded in the K-matrix
- \rightarrow Masses and widths from position of poles in complex plane of the T-matrix (Riemann sheet closest to the physical sheet)
- $\rightarrow \approx 50$ resonance properties extracted from this coupled channel fit

Partial widths / branching fractions extracted using the residues of the poles:

$${\sf Res}^{lpha}_{k
ightarrow k} = rac{1}{2\pi i} \oint_{{\sf C}_{z_{lpha}}} \sqrt{
ho_k} \cdot {\sf T}_{k
ightarrow k}(z) \cdot \sqrt{
ho_k} \; dz$$

name	pole mass $[MeV/c^2]$	pole width Γ [MeV]	$\Gamma_{\pi\pi}/\Gamma[\%]$	Γ_{KK}/Γ [%]	$\Gamma_{\eta\eta}/\Gamma[\%]$
$f_2(1270) \\ f'_2(1525)$	$\begin{array}{c} 1266.3 \pm 0.2 \pm 3.4 \\ 1506.8 \pm 1.1 \pm 4.6 \end{array}$	$\begin{array}{c} 200.1 \pm 0.5 {\pm} \ 14.2 \\ 87.6 \pm 1.2 {\pm} \ 9.2 \end{array}$	$\begin{array}{c} 88.2 \pm 0.1 {\pm}~4.5 \\ 4.1 \pm 1.8 {\pm}~1.2 \end{array}$	$\begin{array}{c} 6.8 \pm 0.5 \pm 4.5 \\ 54.0 \pm 3.7 \pm 9.1 \end{array}$	$\begin{array}{c} 0.0 \pm 0.5 \pm 0.1 \\ 5.6 \pm 4.5 \pm 0.6 \end{array}$

Summary

- PAWIAN software package is in a good shape
- Various analyses (single and coupled channel) underway using
 - e^+e^- data from BESIII (J/ψ , ψ (3686), ψ (3770), ...)
 - ▶ $\overline{p}p$ annihilation data (CrystalBarrel/LEAR, 0.9 GeV/ $c \le p_{\overline{p}} \le 1.94$ GeV/c)
 - $\rightarrow\,$ Momentum overlap with PANDA \rightarrow valuable studies to prepare for challenges ahead
 - simulated data for feasibility studies for PANDA
- Sophisticated techniques to consider analyticity/unitarity
- Growing user base and active community
- \rightarrow Discussion forum: https://pawiantalk.ep1.rub.de
- \rightarrow Git repository: https://jollyj.ep1.rub.de/EP1/Pawian

 \Rightarrow Future: Coupling of e^+e^- and $\overline{p}p$ data \Rightarrow Stay tuned for more results!

Partly supported by Deutsche Forschungsgemeinschaft (Collaborative Research Centre 110)