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Challenges in Meson Spectroscopy

I Many broad and overlapping
states discovered

I Assignment to qq multiplets
still ambiguous

→ Fundamental to gain deeper
understanding of strong
interaction

→ Optimally: Combine
different production
processes and decay modes

[M.Kümmel, data from PDG2018]
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Modern high statistics experiments provide huge and clean data samples
Adequate tools using sophisticated methods are needed to properly analyze

this data
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What is PAWIAN?

PArtial Wave Interactive ANalysis Software

I PWA software package under development in Bochum to ...
[B. Kopf et. al., Hyperfine Interact. 229 (2014) no.1-3, 69-74]

I provide a generic (amplitudes, dynamics, ...) easy-to-use software
package (GPLv3)

I support different production processes
(pp, e+e−, γγ, ππ-scattering, CEP, ...)

⇒ Several analyses have already been performed

⇒ PAWIAN features full configuration of hypotheses and other input
settings via plain-text configuration files

⇒ Event based maximum likelihood fits (Minimizer: MINUIT2, ...)

⇒ Event generator, histogramming, analysis tools, ...

⇒ Coupled channel analyses across different production processes

⇒ Parallelization: Server-client (network) mode
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Workflow with PAWIAN

Experimental Data

Data Selection 
(kin. Fits, cuts, …)

Selected  
Data

Final State 
4-vectors

PHSP distributed  
Monte Carlo
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Workflow with PAWIAN

Experimental Data

Data Selection 
(kin. Fits, cuts, …)
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Text  

Config

Final State 
4-vectors

Unbinned  
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(all PHSP dimensions)

Final Parameters 
after minimization

Malte Albrecht (RUB EPI) PWA with PAWIAN 5



Workflow with PAWIAN

CFG

CFG

Client

Client

Global 

CFG

ServerNetwork (TCP/IP)

Server collects LH  
values from clients, 

distributes new parameters 

Final Parameters 
after minimization

Tested with hundreds of clients

LH  
values

Current 
Parameters

Few kB/s

I Only server communicates with minimizer, current parameters saved periodically
(restarting of fit easily possible any time!)

I Parallelization on event level → No communication between clients necessary

− ln Lk ≈ −
∑ndata

i=1 Qi · ln w(~τi , ~α) +
(∑ndata

i=1 Qi

)
· ln

(∑nMC
j=1 w(~τj ,~α)

nMC

)
+ ...

I Amplitudes are cached → only parts need to be re-evealuated in every
minimization step

I Very small network / I/O load → Multiple server processes per machine feasible
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Example: The Configuration File

→ When cleanly selected data and PHSP distributed MC are available, setup
of PWA fit quick and easy for many cases

→ No limitation on number of final state particles or intermediate resonances
I K -Matrix: Full configuration (number of poles, channels, order of

background terms, ...) via individual CFG files
I Some relevant lines in the config file (many more options available):

datFile = /path/to/reconstructed_data.dat
mcFile = /path/to/reconstructed_PHSP-MC.dat

finalStateParticle = K+
finalStateParticle = K-
finalStateParticle = pion0

productionFormalism = Heli

production = f2(1270) pion0 BlattWBarrier
production = aMatrix0 pion0 BlattWBarrier

decay = Cano f2(1270) To K+ K-
decay = Cano aMatrix0 To K+ K-

addDynamics = f2(1270) BreitWignerBlattWRel
addDynamics = aMatrix0 KMatrix ./a0_pieta_2channel_2poles.cfg K+ K-

serverPort = 24611
serverAddress = pc14
noOfClients = 250

Plain-text files w/ final state four vectors
(Data and PHSP MC)

Name and order of final state particles

Spin-formalism: Helicity, Canonical,
Rarita-Schwinger (partly),...

Production channels
(w/ or w/o barrier factors)

Decay channels

Dynamics for individual resonances (optional)
Choice of Breit-Wigner, K -Matrix

Configuration options for server/client network
mode
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Description of Resonances

I Breit-Wigner parameterization most commonly used. OK, if resonance is
isolated, appearing only in one channel, far from thresholds

I K -matrix parameterization with consideration of analyticity:
I S-matrix describes two-body scattering process via S = I + 2i

√
ρT
√
ρ

I Where T can be written as T = (I − iKρ)−1K
I Elements of the K -matrix: Kij =

∑
α

gαi gαj

m2
α−s

+
∑

k ckij s
k

→ Example: 2 channels (ππ and KK)
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K-Matrix

● A two body scattering process can be fully described by the S-matrix  

● T-matrix can be expressed by K-matrix:   

● Elements of the K-matrix:    

S.U. Chung, E.Klempt „A Primer on K-matrix Formalism“, BNL Preprint (1995)

Aitchison: „Nucl Phys A189 (1972) 417

DPG 2019, München, March 17-22, 2019 

● Example: channel 1: pp, channel 2: K K   

K K K

I Extension of formalism to production of resonances using P-vector
approach: [I.Aitchison, Nucl.Phys.A 189 (1972) 417]

I Dynamical function becomes: F = (I − iKρ)−1P with

Pi =
∑
α
βαgαi
m2
α−s

+
∑

k cki s
k

Example:
pp → f0π0 → (KK)π0
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K-Matrix with P-Vector Approach

● Dynamical function for P-vector approach:                                               

                                                                 with: 

DPG 2019, München, March 17-22, 2019 

Aitchison: „The K-Matrix formalism for overlapping resonances“, Nucl Phys A189 (1972) 417

● Generalization of the K-matrix formalism to the case of 

production of resonances in more complex reactions

● Example: pp → f
0
 p0 → (KK) p0

pp f
0

K

K

p0 (recoil)
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Analyticity

I For coupled channels: Resonances can be below threshold for specific channels!

→ Treatment of phase-space factors becomes important

I Standard phase-space factors: ρ =

√[
1−

(
ma+mb

m

)2]
·
[
1−

(
ma−mb

m

)2]
→ Violate contraints from analyticity due to unphysical behavior below threshold

(pole at m = 0 and unphysical cuts for ma 6= mb)
I Replace standard phase-space factors ρ with function to respect constraints

from analyticity
(Chew-Mandelstam function [Basdevant, Berger PRD19 (1979) 239])

I T = (1− iKρ)−1K replaced by T = (1− K CM(s))−1K

  10

Bertram Kopf, Ruhr-Universität Bochum

Analyticity

DPG 2019, München, March 17-22, 2019 

● K-matrix description with standard phase space factors                                 

                                                                  
 
➢ violates constraints from analyticity: pole at s=0 and unphysical cuts in 

case of unequal masses
                                                                                       

● Proper description with Chew-Mandelstam function from Basdevant and 
Berger 
➢ above threshold: r(s)  = Im( CM(s) )
➢                                     replaced by 

standard r for hh' CM function for hh'

Phys Rev D19 239(1979)

real
imag

real
imag

r

C
M

(s
)

√s √s
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Unstable Particle Scattering

I Chew-Mandelstam function so far only valid for “zero-width approximation” case

→ Extension to particles with non-negligible widths (like ω, ρ, K∗, ...)

[Basdevant, Berger PRD19 (1979) 239]

I Correct analytical properties, satisfying quasi-two-body unitarity
I Chew-Mandelstam function for unstable particles used →

resonance branch cuts located on 2nd Riemann sheet of
three-particle complex energy plane
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CM Function with unstable Particles

● Example: rp

● Obtained Chew-Mandelstam function on the real

axis in full agreement with Basdevant and Berger

● For extracting pole positions an expansion into the

complex energy plane is needed   

Basdevant, Berger:
Phys. Rev. D19 (1979) 239

M. Kuhlmann (RUB)
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same procedure used in Sec. II for the stable-par-
ticle situation. We introduce a matrix L(s) anal-
ogous to C(s) of Eqs. (2) and (3), except that we
replace the usual CM function by its generaliza-
tion, Eq. (12), whenever channel involves an un-
stable particle U. sing a meromorphic matrix K(s),
we again form an amplitude

T(s)= [1 -K(s)C(s)] 'K(s). (19)
The matrix T(s) depends only on the total invari-
ant energy variable s; it does not depend on the
subenergies. It expresses the entire s behavior
of the final amplitude.
We now construct the full amplitude for specific

stable decay products of the isobars. It is ob-
tained upon multiplying the appropriate element of
T by the corresponding isobar propagators and
their couplings to the decay particles. We use a
to label the initial-state isobar in channel i, and
P for the final-state isobar in channel j. Their
propagators are d„'(s„)and dz '(s,',), and their
couplings are f, and f&. We obtain

f (s~2) - f (s,'2)T)g(s» sg2~ san}= d ( ) T)~(s) d ( I )
. (2o)

O Sge p S~2

FIG. 4. The function C~ (g) (solid line) is compared
with the stable particle Chew-Mandelstam function
(dashed line): (a) real parts, (b) imaginary parts.

where A. is a normalization constant such that Eq.
(13}holds in the limit of a narrow resonance. The
normalization condition fixing X can be written
more generally as

1 '" -Imd(s') (16)
v ., 2 Id,(s') I'

In order to illustrate the softening or smearing
effect of our procedure, we compare the function
C„(s) from Eq. (12) with the Chew-Mandelstam
function obtained if the p is treated as stable. This
comparison is presented in Fig. 4; the smearing
effect is obvious. The imaginary part ImC(s} rep-
resents the "smeared" phase-space factor 2q/v s
which enters in the specification of unstable-parti-
cle cross sections. We may make restricted se-
lections ("cuts") in the vv or Kv mass and evaluate
the phase-space factor which results from an in-
tegral of ImC over a limited s' region in Eq. (12}
about the resonance peak. This is analogous to the
procedure followed experimentally.

V. ANALYTIC, QUASIUNITARY ISOBAR MODEL

A. Skeleton amplitudes and full amplitudes

An isobar or skeleton amplitude for particle
resonance scattering may be constructed by the

The scattering process is sketched in Fig. 5. We
have assumed for simplicity that we are dealing
with nonidentical particles, and only with orbital
S-wave states in the system s.
In Eq. (20), we separate completely the depen-

dence on subenergies from the dependence on the
total energy. Since the propagators d '(s) have
the correct analytic structure and proper phase
of the corresponding decay amplitude, Eq. (20) en-
sures that T,&satisfies the. correct discontinuity
relation in the subenergies sg, and s,',.

B. Unitarity and analyticity properties

= 2i TdQT~, (21)

where J dQ represents the integration over all
intermediate variables. However, owing to the
definition of our functions C(s; m*, p, ) of Sec. III,
it is apparent that all the quasi-two-body unitarity
contributions represented in Fig. 6(a) are included.
Omitted are the rearrangement contributions of
Fig. 6(b}. In this sense, our full amplitude satis-
fies only quasi-two-body unitarity in the spirit of

As constructed, our matrix T(s) possesses prop-
er analytic structure in the complex s plane, in
the sense that the particle-resonance scattering
cuts lie in second sheets. Our full amplitude
T(s, s„,s~), Eq. (20), does not exactly satisfy the
full three-body (or n-body} unitarity relation

kT = T(s+iv. , s~, s~) —T(s ls, s~, sg)—
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Extraction of Pole Parameters

I Downside: This CM-function
involves integrals that have to be
calculated numerically

→ Calculations very time consuming
(not for online use)

→ Solution:
Using pre-calculated complex-valued
lookup-tables in PAWIAN (existing
for the cases: K∗π, ωπ, ρπ, ...)

→ Resonance parameters are extracted
from the genuine poles of the
T -matrix in the complex energy
plane

[M.Kuhlmann, RUB]
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Coupled Channel Analysis using CB/LEAR Data Preliminary

I Simultaneous fit of pp → K+K−π0, π0π0η, π0ηη channels

→ Advantages: Common amplitudes, common description of the dynamics
(K -matrix), less fit parameters

I Clean data samples were prepared at pp = 0.9GeV/c
I Kinematic fits, event-based background subtraction

K+K−π0 (∼ 17.5k events) π0π0η (∼ 90.4k events) π0ηη (∼ 10.5k events)

I Additional constraints by coupling to scattering data (phase & elasticity):
I I = 0 S− and D−wave ππ → ππ, KK , ηη (ηη′),

I = 1 P-wave ππ → ππ
PRD 83 (2011) 074004, Nucl.Phys.B 64 (1973) 134-162, Nucl.Phys.B 100 (1975) 205
Nucl.Phys.B 269 (1986) 485, Nuov.Cim.A 80 (1984) 363
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Fit Result Preliminary

I f0 K -Matrix: 5 poles, 5 channels
I f2 K -Matrix: 4 poles, 4 channels
I ρ K -Matrix: 2 poles, 3 channels
I a0 and a2 K -Matrix: 2 poles, 2 channels (each)
→ All pole positions and coupling strengths are free parameters!
I (Kπ)S -wave K -Matrix: 1 pole, 2 channel [Phys.Lett.B653 (2007) 1-11]

I Breit-Wigner description for isolated resonances (φ(1020), K∗±(892), π1(1400))
I Overall: Good description of data for pp channels and also for scattering data:

ππ → ππ, I = 0 S-wave:

Phase
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Fig. 11 Results for Scattering Data. Figs a,b for S wave pp ! pp inelasticity and phase shift, c–e for |T 2|-values of processes pp !
hh ,hh 0,KK in S wave. f ,g for D wave pp ! pp inelasticity and phase shift. h, i for |T 2|-values of processes pp ! KK,hh , j,k for P0
wave pp ! pp inelasticity and phase shift. The data are given by red points with error bars and the blue line is the fit results.

Crystal Barrel analyses [3, 37]. The individual contributions
of the isolated resonances described with Breit-Wigner func-2

tions are in good agreement. For most of the remaining res-
onances, which are described by K-matrices in this work, it4

is not straightforward to compare the contributions to those
obtained from Breit-Wigner based fits.6

5.2 Pole and Breit-Wigner Parameters

The dynamics of the isolated resonance K⇤(892)± and8

f(1020) are described by a relativistic Breit-Wigner approx-
imation. The corresponding masses and widths are treated as10

free parameters so that these properties including their sta-
tistical uncertainties can directly be obtained from the out-12

come of the fit. However, the parameters of the resonances
described by the K-matrices must be determined by the pole14

positions in the complex energy plane of the T-matrix on the
Rieman sheet located next to the physical sheet. A detailed16

description of the classification of poles and their occurrence

on the different sheets can be found in [38], for example.18

Therefore the pole position properties are not direct fit pa-
rameters. The scan of the complex energy plane is realized20

here by a minimization procedure where the real and imag-
inary parts of the pole in the complex T-matrix plane are22

the free parameters. The extraction of the statistical errors is
based on this fit method as well and makes use of a numeri-24

cal approach by taking into account the covariance error ma-
trix obtained by the coupled channel fit. Due to the fact that26

the f0(980) and a0(980) resonances are located very close
to the KK̄ threshold the pole positions have been extracted28

slightly differently. Here the obtained quantities are based
on an average of the two relevant sheets below and above30

this threshold. Since the pole of the f0(1500) occurs nearby
the hh 0 threshold the same procedure has also been chosen32

for this resonance. The masses, widths and pole positions
so obtained are listed in Tab. 4. The systematic uncertainties34

were derived as described before in 5.1. It turned out that the
statistical errors in particular for the masses and widths pro-36

vided by the minimization tool MINUIT2 are systematically

Elasticity
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Fig. 11 Results for Scattering Data. Figs a,b for S wave pp ! pp inelasticity and phase shift, c–e for |T 2|-values of processes pp !
hh ,hh 0,KK in S wave. f ,g for D wave pp ! pp inelasticity and phase shift. h, i for |T 2|-values of processes pp ! KK,hh , j,k for P0
wave pp ! pp inelasticity and phase shift. The data are given by red points with error bars and the blue line is the fit results.

Crystal Barrel analyses [3, 37]. The individual contributions
of the isolated resonances described with Breit-Wigner func-2

tions are in good agreement. For most of the remaining res-
onances, which are described by K-matrices in this work, it4

is not straightforward to compare the contributions to those
obtained from Breit-Wigner based fits.6

5.2 Pole and Breit-Wigner Parameters

The dynamics of the isolated resonance K⇤(892)± and8

f(1020) are described by a relativistic Breit-Wigner approx-
imation. The corresponding masses and widths are treated as10

free parameters so that these properties including their sta-
tistical uncertainties can directly be obtained from the out-12

come of the fit. However, the parameters of the resonances
described by the K-matrices must be determined by the pole14

positions in the complex energy plane of the T-matrix on the
Rieman sheet located next to the physical sheet. A detailed16

description of the classification of poles and their occurrence

on the different sheets can be found in [38], for example.18

Therefore the pole position properties are not direct fit pa-
rameters. The scan of the complex energy plane is realized20

here by a minimization procedure where the real and imag-
inary parts of the pole in the complex T-matrix plane are22

the free parameters. The extraction of the statistical errors is
based on this fit method as well and makes use of a numeri-24

cal approach by taking into account the covariance error ma-
trix obtained by the coupled channel fit. Due to the fact that26

the f0(980) and a0(980) resonances are located very close
to the KK̄ threshold the pole positions have been extracted28

slightly differently. Here the obtained quantities are based
on an average of the two relevant sheets below and above30

this threshold. Since the pole of the f0(1500) occurs nearby
the hh 0 threshold the same procedure has also been chosen32

for this resonance. The masses, widths and pole positions
so obtained are listed in Tab. 4. The systematic uncertainties34

were derived as described before in 5.1. It turned out that the
statistical errors in particular for the masses and widths pro-36

vided by the minimization tool MINUIT2 are systematically
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Fig. 12 Argand plots for the projection pp ! pp of the waves
S0(a),D0(b),P1(c). The numbers along the lines denote the masses
at these positions.
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Fig. 13 Efficiency corrected invariant p0p0- (left) and p0h- mass
(right) for the reaction p̄p ! p0p0h . The overall result is marked
in black, while the individual contributions are visualized by different
colors.

too small. Therefore the likelihood profiling method [39] has
been performed for some specific resonances. The obtained2

uncertainties based on this procedure are larger by a factor
of between 2 and 5. However, the uncertainties for the po-4

sitions of all poles with a significant contribution to the p̄p
channels are dominated by the systematics and thus the sta-6

tistical errors are negligible.
Most of the obtained quantities are in good agreement8

with other measurements [1]. It should be noted that the
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Fig. 14 Efficiency corrected invariant hh- (left) and p0h- mass (right)
for the reaction p̄p ! p0hh . The overall result is marked in black,
while the individual contributions are visualized by different colors.
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Fig. 15 Efficiency corrected invariant K+K�- (left) and K±p0- mass
(right) for the reaction p̄p ! K+K�p0 . The overall result is marked
in black, while the individual contributions are visualized by different
colors.

scalar mesons f0(1500) and f0(1710) exhibit larger total10

widths. The large mass and width for the f0(500) pole is
probably related to the chosen K-matrix approach. The de-12

scription chosen here does not take into account properly
crossing symmetries and other sophisticated constraints for14

the low pp mass region, as for example used in [4]. The
pole position for the r(1570)/r(1700) is strongly depend-16

ing on the chosen scattering data in the energy range be-
tween

p
s > 1.425GeV/c2 and

p
s < 1.9GeV/c2 . A mass18

of M = 1603.6 MeV/c2 and a width of G = 140.5 MeV
have been achieved with the D1-wave data from [20] and20

the resonance can be therefore associated with the r(1570).
By taking into account the scattering data from [36] instead,22
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pp → K+K−π0 Preliminary

  18

Bertram Kopf, Ruhr-Universität Bochum

pp → K+ K- p0

DPG 2019, München, March 17-22, 2019 

channel contribution %

K*(892) K 38.3 ± 1.3 ± 2.9

rp0 16.6 ± 1.2 ± 5.4

f
2
p0 16.2 ± 0.7 ± 3.4

f
0
p0 15.2 ± 0.5 ± 2.7

(Kp)
S
 K 15.1 ± 0.9 ± 4.7

a
2
p0 7.4 ± 0.2 ± 2.8

fp0 2.4 ± 0.2 ± 0.5

a
0
p0 0.3 ± 0.1 ± 0.7

S 111.5 ± 2.2 ± 5.6

goodness of fit: p = 85% 

Pre
lim
ina
ry

(angular distributions efficiency corrected)

Fit quality: p = 0.848
[Aslan,Zech
NIM A 537 (2005) 626-636]

contribution (in %)

f0 π
0 10.7 ± 0.4± 1.5

f2 π
0 19.3 ± 0.8± 6.6

ρ π0 6.2 ± 0.6± 3.2

a0 π
0 0.8 ± 0.0± 0.5

a2 π
0 1.0 ± 0.0± 0.8

K∗(892)± K∓ 45.7 ± 1.6± 10.5
(Kπ)±

S
K∓ 14.4 ± 0.8± 4.3

φ(1020)π0 2.7 ± 0.3± 0.5

Σ 100.9± 2.0± 5.8
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Extracted Resonance Parameters (Example) Preliminary

I All resonance parameters are
encoded in the K -matrix

→ Masses and widths from position
of poles in complex plane of the
T -matrix (Riemann sheet closest
to the physical sheet)

→ ≈ 50 resonance properties
extracted from this coupled
channel fit

I Partial widths / branching fractions extracted using the residues of the poles:

Resαk→k = 1
2πi

∮
Czα

√
ρk · Tk→k(z) ·

√
ρk dz

16

Table 4 Obtained masses and widths for the individual resonances. The values of the Breit-Wigner parameterization are listed for the isolated
resonances K⇤(892) and f(1680). The f(1020) has been described by a Voigtian. For the p1 and all f0, f2, a0, a2 and r-states the pole positions
are extracted from the T-matrix. Absolute and relative branching fractions are extracted for the f2(1270), f 02(1525), r(770), r(1570) and for the
a0 and a2 resonances, respectively. The obtained quantities for the a0(980) and f0(980) mesons are based on an average of the two relevant sheets
below and above the KK̄ threshold. The statistical uncertainty is given by the first and the systematic uncertainty is provided by the second error.

name Breit-Wigner mass [MeV/c2] Breit-Wigner width G [MeV]

K⇤(892) 893.9 ± 0.5± 1.7 53.5 ± 0.8± 0.7
f(1020) 1018.8 ± 0.5± 0.2 4.0 (fixed)

name pole mass [MeV/c2] pole width G [MeV]

p1 1434.4 ± 2.8± 48.4 246.7 ± 3.2 ± 144.1

f0(500) 781.2 ± 0.3± 164.4 788.6 ± 1.9± 217.7
f0(980) 992.8 ± 0.1± 2.0 36.7 ± 0.6± 20.0
f0(1370) 1400.1 ± 1.7± 11.0 306.8 ± 1.4± 24.8
f0(1500) 1517.9 ± 0.1± 19.3 154.1 ± 0.3± 10.0
f0(1710) 1705.4 ± 0.1± 7.2 261.9 ± 0.2± 50.3

f2(1640) 1624.9 ± 1.3± 26.6 204.9 ± 2.9± 18.2
f2(1950) 1981.3 ± 5.0± 25.3 350.0 ± 8.6± 51.5

name pole mass [MeV/c2] pole width G [MeV] GKK/Ghp0 [%]

a0(980) 989.0 ± 1.2± 8.8 119.0 ± 2.0± 16.7 5.8 ± 0.1± 4.7
a0(1450) 1298.2 ± 1.3± 6.3 122.9 ± 2.4± 12.2 97.2 ± 0.8± 44.2

a2(1320) 1316.6 ± 0.6± 1.7 106.9 ± 1.3± 6.4 50.4 ± 0.2± 31.1
a2(1700) 1728.8 ± 3.1± 6.9 164.0 ± 6.2± 23.8 60.1 ± 0.5± 58.2

name pole mass [MeV/c2] pole width G [MeV] Gpp/G [%] GKK/G [%] Ghh/G [%]

f2(1270) 1266.3 ± 0.2± 3.4 200.1 ± 0.5± 14.2 88.2 ± 0.1± 4.5 6.8 ± 0.5± 4.5 0.0 ± 0.5± 0.1
f 02(1525) 1506.8 ± 1.1± 4.6 87.6 ± 1.2± 9.2 4.1 ± 1.8± 1.2 54.0 ± 3.7± 9.1 5.6 ± 4.5± 0.6

r(770) 765.6 ± 0.2± 0.3 122.5 ± 0.3± 0.6 99.6 ± 0.1± 6.4 0.1 ± 0.1± 0.1 -
r(1570)/r(1700) 1603.6 ± 3.6 +42.9

�18.4 140.5 ± 5.4 +117.4
�28.0 31.4 ± 2.5 +2.9

�20.8 5.9 ± 10.6 +3.4
�4.0 -

According to equ. 3 the SDM elements are slightly depend-
ing on the invariant mass of the two-body subsystem X which2

is caused by the production barrier factor FLXsr
(
p

s,mX ,msr).
Therefore the elements have been extracted within the range4

of ±20 MeV/c2 around the obtained mass values of all 3
vector mesons. This limitation ensures that the fluctuations6

related to the invariant mass values are small and thus negli-
gible compared with other uncertainties.8

The spin density matrix elements averaged over the com-
plete production angle have also been calculated via:10

r i j =

1R
�1

ds
dcos q p̄p ri j(cos q p̄p) dcos q p̄p

1R
�1

ds
dcos q p̄p dcos q p̄p

(21)

5.4.1 p̄p ! f(1020)p0

The differential cross section for the produced f(1020) is12

shown in Fig. 16 (a). It is clearly visible that this vector
meson is produced strongly in the forward and backward14

direction and is symmetric in cosq p̄p
f , as expected accord-

ing to the underlying strong interaction process. Based on16

this outcome and the one from [37] the total cross section
for the reaction p̄p ! f(1020)p0 at a beam momentum18

of 900 MeV/c is determined to be s(p̄p ! f(1020)p0) =
19.1 ± 2.1 (stat.) ± 3.6 (exp.) ± 2.0 (ext.) µb. The first20

error is the statistical and the second one the systematic un-
certainty from this analysis. The third error represents the22

uncertainty for the total cross section of the reaction p̄p !
K+K�p0 extracted from [37].24

The SDM elements for f(1020) in its respective helicity
system are shown in Fig. 16 (b-d). All matrix elements ex-26

hibit a strong oscillatory dependence on the production an-
gle cos q p̄p

f . This oscillatory behavior was already observed28

in the SDM elements of the w(782) [9]. The integrated ele-
ments averaged over the complete production angle are con-30

sistent with no spin alignment (Tab. 5) which means that all
diagonal elements are in agreement with r ii = 1/3.32

5.4.2 p̄p ! K⇤(892)K

In contrast to the f(1020) the cross section of the K⇤(892)�34

is characterized by a very significant asymmetric dependence
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Summary

I PAWIAN software package is in a good shape

I Various analyses (single and coupled channel) underway using
I e+e− data from BESIII (J/ψ, ψ(3686), ψ(3770), ...)
I pp annihilation data (CrystalBarrel/LEAR, 0.9GeV/c ≤ pp ≤ 1.94GeV/c)
→ Momentum overlap with PANDA → valuable studies to prepare for

challenges ahead
I simulated data for feasibility studies for PANDA

I Sophisticated techniques to consider analyticity/unitarity
I Growing user base and active community
→ Discussion forum: https://pawiantalk.ep1.rub.de
→ Git repository: https://jollyj.ep1.rub.de/EP1/Pawian

⇒ Future: Coupling of e+e− and pp data ⇒ Stay tuned for more results!

Partly supported by Deutsche Forschungsgemeinschaft (Collaborative Research Centre 110)
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