Unveiling the inner structure of mesons

Khépani Raya-Montaño

Nankai University, Tianjin, China

XVIII International Conference on Hadron Spectroscopy and Structure

Guilin, China. Aug 16-21, 2019

Unveiling the inner structure of mesons

In Collaboration with...

L. Chang, M. Ding, C.D. Roberts...

XVIII International Conference on Hadron Spectroscopy and Structure

Guilin, China. Aug 16-21, 2019

- Decades after the formulation of the fundamental theory of quarks and gluons, Quantum Chromodynamics (QCD), understanding the strong interactions is still being a challenge.
- » QCD is characterized by two emergent phenomena: confinement and dynamical chiral symmetry breaking.
- Due to the non perturbative nature of QCD, studying the hadron structure, from first principles, is an outstanding problem.
- I shall present a unified treatment, based on Dyson-Schwinger equations, to compute a choice of parton distributions within the pion and neutral pseudoscalar mesons.
- > Our treatment is suitable for other mesons and baryons as well.

Outline

- 1. Dyson-Schwinger equations (DSEs)
- 2. Parton Distribution Amplitudes (PDAs)
- 3. Electromagnetic Form Factors
 Pion elastic form factor (EFF)
 Pion transition form factor (TFF)
- 4. Parton Distribution Functions (PDFs)
- 5. Conclusions and scope -1 -1 -1 -1

DSEs: Quark Propagator

» DCSB is responsible for almost all of the mass of the visible universe. It is encoded in the quark propagator:

- The lighter the quark is, the stronger the effect of DCSB.
- Notably, in the chiral limit, a dynamically generated mass appears.

 $S(p;\zeta) = \frac{Z(p^2;\zeta)}{p^2 + M(n^2)}$

• Quark propagator DSE:

Few Body Syst. 58 (2017) no.1, 5

DSE-BSE approach

- DSEs are an infinite tower of coupled equations, which must be systematically truncated in order to extract the encoded physics.
- The quantum field theory (QFT) equation that describes quark-antiquark boundstates is the Bethe-Salpeter equation (BSE). Together with the DSE for the quark propagator, those are depicted as:

In which the DSEs and the quark-antiquark scattering kernel are related through the axial-vector Ward-Takahashi identity.

Phys.Lett. B733 (2014) 202-208

DSE-BSE approach

A symmetry-preserving truncation, sufficient for many needs, is the rainbow-ladder truncation (RL).

arXiv:1905.05208, Phys.Rev. C85 (2012) 052201

Besides accurately describing pseudoscalar* and light vector mesons, it guarantees the preservation of the Goldstone's Theorem:

$$f_{\pi}E_{\pi}(k; P=0) = B(k^2)$$

"Goldstone's theorem"

 $\Gamma_{\pi}(k; P) = \gamma_5[iE_{\pi}(k; P) + \gamma \cdot PF_{\pi}(k; P) + \gamma \cdot kk \cdot PG_{\pi}(k; P) + k_{\alpha}\sigma_{\alpha\beta}P_{\beta}H_{\pi}(k; P)]$ $S^{-1}(k) = i\gamma \cdot k \ A(k^2) + B(k^2)$ Phys.Lett. B420(1998) 267-273

* Non-Abelian anomaly is required for eta-eta' mesons See M. Ding's talk

DSE-BSE approach

The most fundamental expression of Goldstone's Theorem and DCSB:

 $f_{\pi}E_{\pi}(k; P=0) = B(k^2)$

"Goldstone's theorem"

 $E_{\pi}(p^2)$: Leading Bethe-Salpeter amplitude $B_{\pi}(p^2) \sim M(p^2)$: quark mass function

- > The above relationship is **exact in** the **chiral limit**.
- It implies that the two body problem is solved, almost completely, once the solution of one body problem is known.
- Remark: Pions exist if, and only if, DCSB is realized.

Outline

- 1. Dyson-Schwinger equations (DSEs)
- 2. Parton Distribution Amplitudes (PDAs)
- 3. Electromagnetic Form Factors
 Pion elastic form factor (EFF)
 Pion transition form factor (TFF)
- 4. Parton Distribution Functions (PDFs)
- 5. Conclusions and scope

- The PDA is the projection of the meson BS wavefunction onto the light-front. It is process independent and plays a crucial role in the understanding meson's properties.
- Given a pseudoscalar meson, the PDA reads as:

$$f_H \phi_H(x;\zeta) = Z_2 \int_q \delta(n \cdot q + x \ n \cdot P) \gamma_5 \gamma \cdot n[S(q^+)\Gamma_H(q;P)S(q^-)]$$

The moments of the distribution:

$$\langle x^m \rangle_{\zeta} = \int_0^1 dx x^m \phi(x;\zeta) = \operatorname{tr} Z_2 \int_q \frac{(n \cdot q^+)^m}{(n \cdot P)^{m+1}} \gamma_5 \gamma \cdot n \ \chi_H(q;P)$$

Light-cone four-vector *n*:

 $n^2 = 0$, $n \cdot P = -m_M$, $P^2 = -m_M^2$

Phys.Rev.Lett. 110 (2013) no.13, 132001 Phys.Rev. D22 (1980) 2157

Light sector:

Broad and concave PDAs. Largely influenced by DCSB.

Heavy sector:

Narrow PDAs. Largely influenced by **Higgs** mass generation.

s-quark mass is the
 boundary between
 dominance of strong and
 Higgs mass-generation.

Phys.Rev. D22 (1980) 2157

Light sector:

Dilation of the light meson PDAs is supported by lattice:

- Phys.Rev. D83 (2011) 074505
- Phys.Rev. D95 (2017) no.9, 094514
- arXiv:1903.08038

Phys.Rev.Lett. 110 (2013) no.13, 132001 Phys.Lett. B753 (2016) 330-335 Phys.Rev. D99 (2019) no.1, 014014

- Interplay between emergent and explicit mass generation in the Standard Model:
 - *'light'* and 's' quark PDAs, whithin the eta-eta' mesons, exhibit similar profiles.
 - But, in contrast to the eta meson, eta' PDAs are narrower than the CL.
 - Nonetheless, all PDAs are fairly approximated by the conformal distribution.

Phys.Rev. D99 (2019) no.1, 014014

Outline

- Dyson-Schwinger equations (**DSEs**) 1.
- Parton Distribution Amplitudes (PDAs) 2.
- **Electromagnetic Form Factors** 3. Pion elastic form factor (EFF) Pion transition form factor (TFF)
- Parton Distribution Functions (PA 4.
- Conclusions and scope 5.

Pion elastic and transition FFs

> Electromagnetic structure of mesons is revealed via form factors:

- > EFF: Studied at JLab. Important for its 12 GeV Program.
- FFS: Studied at Babar, Belle, etc. Important for Belle II and BES III experiments. Crucial input for muon's anomalous magnetic moment measurements at J-Parc and Fermilab.

Pion elastic and transition FFs

> In the impulse approximation, those form factors are depicted as:

- Quark propagator and meson BSA are obtained from solutions of the corresponding DS-BS equations (quark-photon vertex can be written in terms of quark propagator dressing functions).
- Perturbation theory integral representations of those elements allow to compute the form factors for arbitrarily large space-like momenta.

Phys.Rev. D93 (2016) no.7, 074017 Phys.Rev.Lett. 111 (2013) no.14, 141802 Phys.Rev. D99 (2019) no.1, 014014 Phys.Rev. D95 (2017) no.7, 074014

Pion elastic form factor

Phys.Rev.Lett. 111 (2013) no.14, 141802. Chang et al.

DSE prediction of charged pion form factor **motivated a re-evaluation** of the reach **of JLab12 program**, with the aim of testing such prediction (so that green point was added).

Pion transition form factor

Phys.Rev. D93 (2016) no.7, 074017. K. Raya et al.

- Our prediction satisfies the Abelian anomaly, while also being in accordance with the conformal limit.
- **Precise agreement with experiment** from low to intermediate momenta.
- A PDA that is broadconcave at the hadronic scale, connects both the EFF and the TFF.
- Cannot concilliate with Babar large Q^2 data, which favors a *flat-top* PDA.

Transition form factors...

Phys.Rev. D95 (2017) no.7, 074014. K. Raya, M Ding et al.

- The corresponding TFFs for the analogous heavy systems, eta-c and eta-b, were computed within the same framework.
- Eta-c prediction shows keen agreement with the only available data.
 Eta-b prediction lies within the band of the NRQCD result.

Transition form factors...

Phys.Rev. D99 (2019) no.1, 014014. M. Ding, K. Raya et al.

- The good agreement with the experiment is encouraging.
- There are many extra subtleties: evolution of decay constants, gluon DAs, quarkphoton vertex improvement.
- Within the same framework, we unified ALL gamma-gamma to neutral pseudoscal TFFs, pion EFF, their corresponding valence-quark DAs, etc.

Outline

- 1. Dyson-Schwinger equations (DSEs)
- 2. Parton Distribution Amplitudes (PDAs)
- 3. Electromagnetic Form Factors
 Pion elastic form factor (EFF)
 Pion transition form factor (TFF)
- 5. Conclusions and scope

- > Pion structure function is inferred from the process: $\gamma^*\pi \to \gamma^*\pi$
- In the RL truncation, the collection of symmetry preserving diagrams is: Phys.Lett. B737 (2014) 23-29, arXiv:1905.05208

We compute, at hadronic scale (where fully-dressed quasiparticles are the correct degrees of freedom), the valencequark distribution functions.

- > Evolution enables the dressed-quarks degrees of freedom to become less well-dressed, in the manner that QCD prescribes.
- The natural hadronic scale arises from the PI effective charge*, which saturates in the infrarred.
- These features and the connection to pQCD are captured by:

$$\alpha_{PI}(k^2) = \frac{4\pi}{\beta_0 \ln[(m_\alpha^2 + k^2)/\Lambda_{QCD}^2]}$$

> We identify the hadronic scale:

 $\zeta_H = m_\alpha \approx 300 \text{ MeV}$

* Few Body Syst. 59 (2018) no.6, 121, Phys.Rev. D96 (2017) no.5, 054026

> Valence quark PDF reconstructed from Mellin moments:

- Induced hardening owing to DCSB. Same effect is observed in the pion valence-quark DA.
 - DCSB manifests in wave functions, form factors, distribution amplitudes and parton distribution functions.

* Phys.Lett. B737 (2014) 23-29

arXiv:1905.05208. M. Ding, K. Raya et al.

Excellent agreement with lattice and phenomenological results.

Lattice moments:

Detmold et al., Brommel et al., Oehm et al.

□ Valence content is roughly 50%.

Gluon and sea contributions:

 $< x_{gluon} > = 0.41(2) , < x_{sea} > = 0.11(2)$

□ It **confirms** the large gluon momentum fraction:

Phys.Rev. D93 (2016) no.7, 074021 Phys.Rev. C63, 025213 (2001).

□ A **similar trend** has been seen in a recent analysis:

Phys. Rev. Lett.121, 152001 (2018)

arXiv:1905.05208. M. Ding, K. Raya et al.

Excellent agreement with experimental and lattice results.

arXiv:1905.05208. M. Ding, K. Raya et al.

Gluon and sea contributions:

 $< x_{gluon} > = 0.45(1) , < x_{sea} > = 0.14(2)$

- Pointwise form of the lattice result agrees with DSE prediction (within errors).
- □ Two **disparate** treatments have arrived at the *same* prediction.

□ It encourages to get more data.

Experimental data:

J. S. Conway *et al.* Phys. Rev. D39, 92 (1989) M. Aicher *et al.* Phys. Rev.Lett.105, 252003 (2010)

Lattice results:

Sufian et al., Phys. Rev. D99, 074507 (2019)

Outline

- 1. Dyson-Schwinger equations (DSEs)
- 2. Parton Distribution Amplitudes (PDAs)
- 3. Electromagnetic Form Factors
 Pion elastic form factor (EFF)
 Pion transition form factor (TFF)
- 4. Parton Distribution Functions (PD
- 5. Conclusions and scope

Conclusions and scope

- Within a single, fully consistent treatment of QCD, a variety of linked predictions have been discussed:
- 1. Pion electromagnetic form factor
- 2. $\gamma\gamma^*$ TFFs of ALL neutral **pseudoscalars**
- 3. Valence-quark **distribution amplitudes**
- 4. Pion parton **distribution functions**

Computed, for the first time, for arbitrarily large Q^2.

Real progress towards understanding the pion structure

- All predictions are connected within the same picture: a picture that connects the pion EFF and TFF with the corresponding broad valencequark DA and PDF.
- The good agreement with experimental and sophisticated lattice QCD results (*when available*), is **encouraging**.

Urgent need for new data!

Conclusions and scope

- Following the same trail, there are many recent and ongoing predictions, e.g.:
 - **Generalized parton distributions**
 - Kaon PDF
 - Nucleon TFFs
- Doubly off-shell TFFs

- Continuum QCD has evolved to the point where realistic predictions for elastic and transition form factors and parton distributions of **all types are within reach**.
- Nowadays, there is an array of exciting opportunities at existing and planned facilities.

Good times to be interested in hadron physics!