

Prediction K* meson with hidden charm

Xiu-Lei Ren (任修磊)

Institute of theoretical physics II, Ruhr-Universität Bochum

Based on the following papers:

XLR, B.B. Malabarba, Li-Sheng Geng, K.P. Khemchandani, A. Martínez Torres, PLB785(2018)112 XLR, B.B. Malabarba, K.P. Khemchandani, A. Martínez Torres, JHEP05(2019)1

Outline

RUB

Introduction

Theoretical Framework

Results and discussion

Summary and perspectives

Low-energy QCD

RUB

Quantum Chromo-Dynamics

• Fundamental theory for strong interactions (up to now)

Milestone of exotic hadron spectroscopy RUB

Breakthrough @ 2003

- X(3872) Belle, PRL91,262001(2003)
 ✓ The beginning of the XYZ story
- $D_{s0}^{*}(2317)$ BaBar, PRL90,242001(2003)
 - ✓ 160 MeV lower than the quark model prediction
- $D_{s1}(2460)$ CLEO PRD68,032002(2003)
 - ✓ 70 MeV lower than the quark model prediction

Four-quark state @ 2013

- Zc(3900) BESIII, PRL110,252001(2013); Belle, PRL110,252002(2013)
 - ✓ First very confirmed state of tetraquark
- □ Five-quark state @ 2015/2019
 - Pc(4312), Pc(4440), Pc(4457)

LHCb, PRL115,072001(2015); 122, 222001 (2019)

Confirmed in many experiments: BaBar,BESIII,CDF,CMS,D0,LHCb, ...

Milestone of exotic hadron spectroscopy RUB

Breakthrough @ 2003

- X(3872) Belle, PRL91,262001(2003)
- ✓ The beginning of the XYZ story
- $D_{s0}^*(2317)$ B Bar, PRL90,242001(2003)
 - ✓ 160 MeV lower than the quark model prediction
- $D_{s1}(2460)$ CL p PRD68,032002(2003)
 - ✓ 70 MeV lower than the quark model prediction

Four-quark state @ 2013

Zc(3900) *Esili, PRL110,252001(2013); Belle, PRL110,252002(2013)*

First very confirmed state of tetraquark

- □ Five-quark state @ 2015/2019
 - Pc(4312), Pc(4440), Pc(4457)

LHCb, PRL115,072001(2015); 122, 222001 (2019)

Confirmed in many experiments: BaBar,BESIII,CDF,CMS,D0,LHCb, ...

Dynamical generation in UChPT

Molecular picture

- $D_{s0}^*(2317)$: s-wave DK bound state F.-K. Guo, et al., PLB641 (2006) 278–285
- $D_{s1}(2460)$: s-wave D^*K bound state F.-K. Guo, et al., PLB647 (2007) 133–139
- X(3872): $D\bar{D}^* + C.C.$ D. Gamermann and E. Oset, Eur. Phys. J. A 33, 119 (2007)
- $Z_C(3900): D\bar{D}^* + C.C.$ F. Aceti, et al., PRD90 (2014) 016003

 \longrightarrow *KD*, *KD**, $D\bar{D}$ */ $\bar{D}D$ * interactions are attractive!

- **LQCD:** $K\bar{D}/K\bar{D}^*$: I = 0 moderately attractive, I = 1 slightly repulsive
- A nature question is that there exist the three-body bound state with the above building blocks or not.
 - *KDD**
 - *KDD**

RUB

Three-body problem using Faddeev equations RUB

Faddeev equations L. D. Faddeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960) [Sov. Phys. JETP 12, 1014 (1961)].

- Three coupled integrodifferential equations
- It is not easy to solve exactly

Simplify or introduce the approximations

- Alt-Grassberger-Sandras approach Nucl. Phys. B2, 167 (1967), Phys. Rev. C 17, 1981 (1978)
 - ✓ Transforming the Faddeev equations to the two-body form
 - ✓ Easily be solved in a separable formulation
- Faddeev equations with chiral unitary approach ^{A. Martínez Torres, et al., PRC77, 042203(2008)}
 - ✓ Using the on-shell two-body scattering amplitudes from the Bethe-Salpeter equation
 Talk by Alberto Martínez Torres @ Session 3, 9:55, 8/21
- Fixed Center Approximation (FCA) R. Chand and R. H. Dalitz, Ann. Phys. 20, 1 (1962). R. C. Barrett and A. Deloff, PRC 60, 025201 (1999).
 - Criteria: a heavy cluster formed by the first two particles a light third particle
 - Reduce the Faddeev equations to the two-body form

Successful applications of FCA

RUB

One-meson and two-baryon systems

- $\bar{K}NN/\bar{K}pp$ Bayar, PRC(2011),NPA(2012),PRC(2013)
 - Predicted bound state has been supported by J-PARC
- Two-meson and one baryon systems
 - $\pi
 ho\Delta$ Xie, PRC(2011) Explain the structure of $\Delta_{5/2^+}(2000)$

A. Martínez Torres, et al, PRC79,065207(2009)

KKN Xie, PRD(2011) Support the existence of N*(1920) Consistent with the Faddeev cal.

Three-meson systems

- Light sector: $ho K \bar{K}$ Bayar, EPJA(2014); $\eta^{(')} K \bar{K}$ Liang, PRD(2013); $\phi K \bar{K}$ Martinez Torres, PRD(2011); $\pi K^* \bar{K}$ Zhang, PRD(2017); $\eta K^* \bar{K}$ Zhang, 1906.07340
- Heavy sector: DKK, $DK\bar{K}$ Debastiani, PRD(2017); $\rho D\bar{D}$ Durkaya, PRD(2015); $\rho D^*\bar{D}^*$ Bayar, EPJA(2015); ρB^*B^* Bayar, EPJA(2016); BDD, $BD\bar{D}$ Dias, PRD(2017); $D^{(*)}B^{(*)}B^{(*)}$ Dias, PRD(2018)

Multi-meson systems

- multi-ho Roca, PRD(2010);
- $K^{(*)}$ -multi-ho Yamagata-Sekihara, PRD(2010); Xiao, PRD(2011); D^* -multi-ho Xiao, PRD(2012)

Multi- ρ systems in FCA

L. Roca and E. Oset, Phys. Rev. D 82, 054013 (2010)

In this work

- We study the three-body system, KDD*, by solving the Faddeev equation with the fixed center approximation
 - Heavy bound states of $D\bar{D}^*$ forming the cluster: X(3872) or Zc(3900)
 - Light particle K scattering off the cluster
- We find a bound state with hidden charm structure at the strangeness sector
 - Mass = 4307(2) MeV and Width = 18(2) MeV
 - Isospin: 1/2 and $J^P = 1^-$

We also investigate the decay properties of our predicted state

XLR, B.B. Malabarba, Li-Sheng Geng, K.P. Khemchandani, A. Martínez Torres, PLB785(2018)112 XLR, B.B. Malabarba, K.P. Khemchandani, A. Martínez Torres, JHEP05(2019)1

Outline

Introduction

Theoretical Framework

• Fixed center approximation of Faddeev equations

Results and discussion

Summary and perspectives

Fixed center approximation

Faddeev equations

 Scattering amplitude of 1,2,3 particles a set of three coupled equations

$$T = \sum_{i=1}^{3} T_i. \quad T_i = t_i + t_i G_0 T_j + t_i G_0 T_k.$$

Fixed center approximation

- Exist a stable cluster, e.g., of (1, 2)
- Mass hierarchy: m₃ << M₁₂
- Scattering amplitude reduced as two coupled equations

 $T = T_1 + T_2.$ $T_1 = t_1 + t_1 G_0 T_2 = t_1 + t_1 G_0 t_2 + t_1 G_0 t_2 G_0 t_1 + \cdots$ $T_2 = t_2 + t_2 G_0 T_1 = t_2 + t_2 G_0 t_1 + t_2 G_0 t_1 G_0 t_2 + \cdots$

RUB

$K(D\bar{D}^*)_{X(3872)}$ scattering in FCA

Single scattering: t_i

 $\langle KX(3872)|\hat{t}_1|KX(3872)\rangle \equiv t_1 = \frac{3}{4}t_{KD}^{I=1} + \frac{1}{4}t_{KD}^{I=0}.$

 $\langle KX(3872) | \hat{t}_2 | KX(3872) \rangle \equiv t_2 = \frac{3}{4} t_{K\bar{D}^*}^{I=1} + \frac{1}{4} t_{K\bar{D}^*}^{I=0}.$

RUB

Inputs: KD and $K\overline{D}^*$ scattering amplitudes

Totally fixed through UChPT with the heavy quark symmetry F.-K. Guo, et al., PBL641 (2006) 278

Double scattering: t_i G₀ t_j

G₀: K meson propagator inside the cluster X(3872)

$$G_0(\boldsymbol{q}) = \frac{1}{M_X} \int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} \frac{F_X(\boldsymbol{q})}{q^{0^2} - \boldsymbol{q}^2 - m_K^2 + i\epsilon}.$$

• F_X: Form factor of X(3872)

$$F_X(\boldsymbol{q}) = \frac{1}{\mathcal{N}} \int_{|\boldsymbol{p}|, |\boldsymbol{p}-\boldsymbol{q}| < \Lambda} d^3 \boldsymbol{p} f_X(\boldsymbol{p}) f_X(\boldsymbol{p}-\boldsymbol{q}).$$

 $\mathcal{N} = F_X(0), \quad f_X(\boldsymbol{p}) = \frac{1}{\omega_D(\boldsymbol{p})\omega_{\bar{D}^*}(\boldsymbol{p})} \frac{1}{M_X - \omega_D(\boldsymbol{p}) - \omega_{\bar{D}^*}(\boldsymbol{p})}.$

 \rightarrow Cutoff: fixed as the value used in the $D\bar{D}^*$ scattering to produce X(3872) in UChPT.

$K(D\bar{D}^*)_{X(3872)}$ scattering in FCA

X(3872)

Single scattering: t_i

 $\langle KX(3872)|\hat{t}_1|KX(3872)\rangle \equiv t_1 = \frac{3}{4}t_{KD}^{I=1} + \frac{1}{4}t_{KD}^{I=0}.$

 $\langle KX(3872) | \hat{t}_2 | KX(3872) \rangle \equiv t_2 - \frac{3}{3} t_{-1}$

D*

D

RUB

Inputs: KD and

Double s Parameter-free framework

G₀: K meson

$$G_0(\boldsymbol{q}) = \frac{1}{M_X} \int \frac{\boldsymbol{u}}{(2\pi)^2} d\boldsymbol{r}$$

$$F_X(\boldsymbol{q}) = \frac{1}{\mathcal{N}} \int_{|\boldsymbol{p}|, |\boldsymbol{p}-\boldsymbol{q}| < \Lambda} d^3 \boldsymbol{p} f_X(\boldsymbol{p}) f_X(\boldsymbol{p}-\boldsymbol{q}).$$

 $\mathcal{N} = F_X(0), \quad f_X(\boldsymbol{p}) = \frac{1}{\omega_D(\boldsymbol{p})\omega_{\bar{D}^*}(\boldsymbol{p})} \frac{1}{M_X - \omega_D(\boldsymbol{p}) - \omega_{\bar{D}^*}(\boldsymbol{p})}.$

 \blacktriangleright Cutoff: fixed as the value used in the $Dar{D}^*$ scattering to produce X(3872) in UChPT.

KX and KZc scattering in FCA

Full scattering amplitude of KX(3872)

Consider the transition between X(3872) and Zc(3900)

- X(3872)/Zc(3900): *DD*^{*} + *c.c.*
- Total scattering amplitude

$$T = T_1 + T_2 = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}$$

RUB

Introduce the matrix form of t₁, t₂, G₀

$$t_1 = \begin{bmatrix} (t_1)_{11} & (t_1)_{12} \\ (t_1)_{21} & (t_1)_{22} \end{bmatrix}, \quad t_2 = \begin{bmatrix} (t_2)_{11} & (t_2)_{12} \\ (t_2)_{21} & (t_2)_{22} \end{bmatrix}, \quad G_0 = \begin{bmatrix} (G_0)_{11} & 0 \\ 0 & (G_0)_{22} \end{bmatrix}$$

KX and KZc scattering amplitudes

RUB

Modulus squared of scattering amplitudes

• Without considering the transition between KX and KZc

Predicted heavy K* meson

New meson with hidden charm in the strangeness sector

- Mass = 4307(2) MeV and Width = 18(2) MeV
- Isospin: 1/2 and $J^P = 1^-$
- Six-quark state with $e \cdot g \cdot K^{*+}(4307) : udd\bar{s}c\bar{c}$
- Molecular component: *KDD**

 Our prediction is consistent with the one (4317 MeV) given by solving the three-body Schrodinger equation with Born-Oppenheimer approximation.

Li Ma, Qian Wang, Ulf-G. Meißner, Chin.Phys. C43 (2019) 014102

Talk by Li Ma @ Session 3, 11:50, 8/21

We also investigate the KDD
 and KD*D
 systems using the fixed center approximation of Faddeev equations

Systems	$I(J^P)$	Masses of bound states
$K(D\bar{D})_{X(3700)}$	$\frac{1}{2}(0^{-})$	4162 MeV
$K(D^*\bar{D}^*)_{X(3915)}$	$\frac{1}{2}(2^{-})$	4368 MeV

Decay properties of K*(4307)

In order to provide more information

- Link to the internal structure of K*(4307)
- Reliable for the experimental searches

We studied the decay properties of K*(4307)

- Calculate the decay to two-body channels
 - $\checkmark \mathsf{K}^*(4307) \rightarrow J/\psi K^*, \bar{D}D_s, \bar{D}^*D_s^*, \bar{D}D_s$
 - ✓ Via the triangle loop
- Calculate the decay to three-body channel
 - $\checkmark \quad \mathsf{K}^*(4307) \rightarrow J/\psi \pi K$
 - ✓ Via the tree diagram

XLR, B.B. Malabarba, K.P. Khemchandani, A. Martinez Torres, JHEP05(2019)1

k*(4)=7)

K*(4307)

RUB

Decay processes of K*(4307)

RUB

- The estimated width of K*(4307) is from Zc's width
- The squared amplitude of KZc is around 200 times larger than that of KX
- We focus on the decay processes of K*(4307) via the Zc intermediate state
 - Four decay channels through triangle loops

Decay width

- Evaluate the decay processes in the charge basis
- Use the momentum cutoff to regularize the triangle loop
 - Vary the cutoff from 700 MeV to 800 MeV
- Decay width
 - Two-body decay channels can provide around 9 MeV

Process	Decay width (MeV)
$K^*(4307) \to J/\psi \; K^*$	6.97 ± 0.27
$K^*(4307)\to \bar D \ D^*_S$	0.54 ± 0.08
$K^*(4307)\to \bar{D}^*\;D^*_S$	0.54 ± 0.07
$K^*(4307)\to \bar D \ D_S$	1.14 ± 0.17

- Three-body decay channel can provide 12 MeV $K^*(4307) \rightarrow J/\psi K \pi$
- <u>k</u>*(4303) zc π k
- In total, the width of K*(4307) is around 21 MeV

Consistent with the one given before.

Summary

- We studied the three-body system, KDD^{*}, in the fixed center approximation of Faddeev equations
- And predicted a six-quark state with hidden charm in the strangeness sector

• **K*(4307)** with
$$I(J^P) = \frac{1}{2}(1^-)$$
 and $m \pm i\frac{\Gamma}{2} = 4307(2) \pm i9(1)$

- We also calculated the decay width of K*(4307) via the twobody and three-body final states
- In order to provide more favorable information for the experimental search, we are working on the production of K*(4307) through the decay of *B* meson to $J/\psi K \pi \pi$.

Invariant mass distribution of $J/\psi K\pi$

RUB

\Box X(3872) found in the $J/\psi\pi\pi$ invariant mass distribution

□ How about the invariant mass distribution of $J/\psi K\pi$? □ Our predicted K*(4307) can be found in there?

THANK YOU FOR YOUR ATTENTION!