Experimental Status of the XYZ Structures

Yuping Guo (KPH, Mainz University)

Hadrons

Quark model:

Mesons

Baryons

lowest configuration

• Exotic hadrons:

Charmonium Spectroscopy

[Predictions: PRD 72,054026 (2005); Measurements: PDG]

Charmonium Spectroscopy

[Predictions: PRD 72,054026 (2005); Measurements: PDG]

Charmonium Production

Direct Production

Initial State Radiation

Double Charmonium Production

Two Photon Production

Charmonium Production

B-meson Decays

pp(-bar) Annihilation

All quantum numbers

Charmonium Transitions

 $\Lambda_{\rm b}$ Decays, Muoproduction

Calorimeter

Ring Imaging Cherenkov Detector Drift Chamber

Beampipe

Endcap

Calorimeter

Iron

Polepiece

Barrel Muon Chambers

OMPA

sć

Quadrupoles **Rare Earth**

Quadrupole

Magnet Iron

X(3872) & X(3915)

X(3872)

- First observation:
 B[±] → K[±]π⁺π⁻J/ψ
- Mass: 3871.69±0.17 MeV/c²
 - Very close to D⁰D^{*0} threshold
- Width: <1.2 MeV [PRD 84, 052004 (2011) Belle]</p>
- J^{PC}=1⁺⁺
- Decay:
 - π⁺π⁻J/ψ, π⁺π⁻π⁰J/ψ, D⁰D¯⁰π⁰, D⁰D¯*⁰, γJ/ψ, γψ(2S)(?), π⁰χ_{c1}

X(3872) – New Production

X(3872) – New Production ս' μ MA π^+ $\gamma^*N \to X [\to \pi^+\pi^- J/\psi] \pi^\pm N'$ γ* **J/**ψ [PLB 783, 334-340 (2018)] π^{\pm} counts Ν N' ATLAS COMPASS counts/(0.02 GeV/c²) 14 a) 4.1 σ 10 8 6 0.4 ^{0.8} 0.9 1 m_{ππ} [GeV/c²] 0.5 0.3 0.6 0.7 0.2 2 Ŷ [ATLAS: JHEP 01, 117 (2017)] 3.8 3.6 4.2 4.4 4.6 4.8 _____5_ M_{J/ψ π⁺π⁻} [GeV/c²] $\tilde{X}(3872)$ $[(3860.0 \pm 10.4) \text{ MeV}/c^2, < 51 \text{ MeV}]$

* <0.97 90% C.L. from B decays @ Belle [PRD 99, 111101 (2019)]

No evidence in $\gamma \psi(3686)$!

 $\frac{\mathcal{B}[\chi_{c1}(3872) \to \gamma \psi(3686)]}{\mathcal{B}[\chi_{c1}(3872) \to \gamma J/\psi]} < 0.59$ BaBar, LHCb, Belle: 2.31 ± 0.57 [arXiv: 1907.07583]

X(3872) - Decays

[arXiv: 1907.09149]

Parameter	index Decay mode	Branching fraction
1	$X(3872) \rightarrow \pi^+\pi^- J/\psi$	$(4.1^{+1.9}_{-1.1})\%$
2	$X(3872) \to D^{*0}\bar{D}^0 + c.c.$	$(52.4^{+25.3}_{-14.3})\%$
3	$X(3872) ightarrow \gamma J/\psi$	$(1.1^{+0.6}_{-0.3})\%$
4	$X(3872) ightarrow \gamma \psi(3686)$ *	$(2.4^{+1.3}_{-0.8})\%$
5	$X(3872) \to \pi^0 \chi_{c1}$	$(3.6^{+2.2}_{-1.6})\%$
6	$X(3872) ightarrow \omega J/\psi$	$(4.4^{+2.3}_{-1.3})\%$
7	$B^+ \to X(3872)K^+$	$(1.9 \pm 0.6) \times 10^{-4}$
8	$B^0 \rightarrow X(3872)K^0$	$(1.1^{+0.5}_{-0.4}) \times 10^{-4}$
	$X(3872) \rightarrow \text{unknown}$	$(31.9^{+18.1}_{-31.5})\%$

* X(3872) $\rightarrow \gamma \psi$ (3686) from BESIII not included

** might contain non-X(3872) contribution

[PRD 86,072002(2012)]

[PRD 86,072002(2012)]

[PRD 86,072002(2012)]

4.8

 $e^+e^- \rightarrow \gamma \omega J/\psi$

Discovery

- First state Y(4260), discovered in ISR process at BaBar
 - $e^+e^- \rightarrow \gamma_{ISR}\pi^+\pi^- J/\psi$
 - M > 4 GeV above DD threshold
 - Not observed in inclusive hadron cross section
 - Not observed in open charm pair cross section
 - Confirmed by CLEO and Belle
- Quantum number: 1⁻⁻

Y from ISR Process

Over Population 1⁻ States

Above open charm threshold, 5 expected, 7 observed

High Lumi. Scan Sample

19

Improved Measurement

[PRD 100, 032005 (2019)]

22

Y in b-flavored Decays

Z States

State	$M \; ({\rm MeV}/c^2)$	$\Gamma (MeV)$	J^{PC}	Process	Experiment
$Z_c(3900)^{(\pm,0)}$	3887.2 ± 2.3	28.2 ± 2.6	1^{+-}	$e^+e^- \to \pi^{(+,0)}(\pi^{(-,0)}J/\psi)$	BESIII, Belle
				$e^+e^- \to \pi^{(+,0)} (D\bar{D}^*)^{(-,0)}$	BESIII
				$H_b \to X \pi^+ (\pi^- J/\psi)$	D0
$Z_c(4020)^{(\pm,0)}$	4024.1 ± 1.9	13 ± 5	$1^{+-}(?)$	$e^+e^- \to \pi^{(+,0)}(\pi^-h_c)$	BESIII
				$e^+e^- \to \pi^{(+,0)} (D^*\bar{D}^*)^{(-,0)}$	BESIII
$Z(4050)^{\pm}$	4051^{+24}_{-40}	82^{+50}_{-28}	$?^{?+}$	$\bar{B}^0 \to K^-(\pi^+\chi_{c1})$	Belle
$Z(4100)^{\pm}$ 3.4	$\sigma 4096 \pm 28$	152_{-70}^{+80}	???	$B^0 \to K^+(\pi^-\eta_c)$	LHCb
$Z(4200)^{\pm}$	4196_{32}^{+35}	370^{+100}_{-150}	1^{+-}	$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle, LHCb
$Z(4250)^{\pm}$	4248_{-50}^{+190}	177^{+320}_{-70}	$?^{?+}$	$\bar{B}^0 \to K^-(\pi^+\chi_{c1})$	Belle
$Z(4430)^{\pm}$	4478_{-18}^{+15}	181 ± 31	1^{+-}	$B^0 \to K^+(\pi^-\psi(2S))$	Belle, LHCb
	-			$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle
$R_{c0}(4240)$	4239_{21}^{+50}	220^{+120}_{-90}	0	$B^0 \to K^+ \pi^- \psi(2S)$	LHCb

[PDG 2019]

Z States from **Y**

Both charged and neutral modes

[PRL 111,242001 (2013)]

 $Z_{\rm c}(3900)/Z_{\rm c}(3885)$

Z States from Y

 Z_c in $\pi\psi(2S)$

$H_b \to \pi^+ \pi^- J/\psi + X$

- Total fit

---- Background

3.8

3.9

M(J/ψπ[±]) [GeV]

---- Signal

3.7

0<mark>1.</mark> 3.6

- Total fit

···· Background

3.8

3.9

4

M(J/ψπ[±]) [GeV]

---- Signal

3.7

---- Signal

3.8

····· Background

3.9

4.1

M(J/ψπ[±]) [GeV]

Δ

4.2

200

0<u>11</u> 3.7

 $H_b \to \pi^+ \pi^- J/\psi + X$

[PRD100 012005 (2019)]

Z_c(3900)

 $Z_c(3900)^{\pm} \rightarrow \rho^{\pm}\eta_c$

[PLB 746, 194 (2015)]

	$\sqrt{s} = 4.226 \mathrm{GeV}$	$\sqrt{s} = 4.258 \mathrm{GeV}$	$\sqrt{s} = 4.358 \mathrm{GeV}$	Type-I	Type-II	Molecule
$R_{Z_{c}(3900)}$	2.2 ± 0.9 3.9	σ < 5.6	•••	230^{+330}_{-140}	$0.27\substack{+0.40 \\ -0.17}$	$0.046^{+0.025}_{-0.017}$
$R_{Z_{c}(4020)}$	< 1.6	< 0.9	< 1.4	6.6	+56.8 -5.8	$0.010\substack{+0.006\\-0.004}$

4230:
$$\sigma[e^+e^- \to \pi^+\pi^-\pi^0\eta_c] = (46^{+12}_{-11} \pm 10) \text{ pb}$$

 $\sigma[e^+e^- \to \pi Z_c, Z_c \to \pi \eta_c] = (48 \pm 11 \pm 11) \text{ pb}$

Connection: XYZ

Y → Z

- Z_c states from Y states above 4 GeV
- Z_c cross section vs E_{cms} measurement
- $Y \rightarrow X$
 - e⁺e⁻ →γX(3872)

[PRD98 052010 (2018)]

Summary

- Great progress in charmonium-like states
 - Numerous X(3872) measurements: mass, quantum number, production and decay modes
 - Overpopulation of 1⁻⁻ states above 4 GeV
 - Cross section measurement with much improved precision, Y(4260) ⇒ Y(4230); multi decay modes
 - Light hadron final states
 - New measurement of Z properties
 - Building relations between exotic states
 - Improved understanding of conventional charmonium states above open charm threshold, $\chi_{c0}(2P)$, $\chi_{c2}(2P)$ candidates

THANK YOU!

X(3872) Radiative Decays

- Ratio of X(3872) $\rightarrow \gamma \psi$ (2S) to $\gamma J/\psi$:
 - Theoretical predictions:
 - Pure DD* molecule: (3-4)×10⁻³;Charmonium: 1.2-15; Mixture: 0.5-5
 - Experimental measurements:
 - BaBar: 3.4±1.4, 3.5σ [PRL102, 132001 (2009)]
 - Belle: <2.1 @ 90% C.L. [PRL107, 091803 (2011)]</p>
 - LHCb: 2.46±0.64±0.29, 4.4σ [NPB 886, 665 (2014)]

[PRD91, 051101(R) (2015)] K*(892) 711 fb⁻¹ data, 2D fit (a) Events / (0.1 GeV/c² 40 B⁰→X(3872)(K⁺π⁻) (7.9±1.3±0.4)×10⁻⁶ non resonant 20 100 (a) Events / (0.004 GeV/c² (b) Events / (0.004 GeV) 100-7 σ 0.8 1.4 1 1.2 $M_{\rm H}$ (GeV/ c^2) -0.1 3.82 -0.05 0.05 3.84 3.9 3.92 0.1 3.86 3.88 ${
m M}_{{
m J}/\psi\pi\pi}\,({
m GeV}/c^2)$ ΔE (GeV) (b) B⁺→X(3872)(K⁰ π ⁺) (10.6±3.0±0.9)×10⁻⁶ 30-Events / (0.004 GeV/c² Events / (0.004 GeV) (b) (a) 30ŀ 3.7 σ 20 **Ö.**6 0.8 1.2 1.4 -8.1 3.82 -0.05 0 0.05 0.1 3.84 3.86 3.88 3.9 3.92 ${
m M}_{{
m J}/\psi\pi\pi}~({
m GeV}/c^2)$ $M_{K\pi}$ (GeV/c²) ΔE (GeV)

First observation:

- [PRL100, 142001 (2008)]
- Belle, $B \rightarrow K\pi^{\pm}\psi(2S)$, 605 fb⁻¹ data at $\Upsilon(4S)$
- Fit to the mass spectrum of $\pi^{\pm}\psi(2S)$, 6.5 σ
- Not confirmed by BaBar, found data can be explained by K* reflections: [PRD79, 112001 (2009)]
 - Two dimensional analysis, 413 fb⁻¹ data at Υ(4S)
- Updated Belle results:
 - Two dimensional analysis using same data as first publication
 - Four dimensional amplitude analysis, 711 fb⁻¹ Y(4S), Z(4430) favor 1⁺
 - Larger width, higher mass

Confirmation of Z(4430)

25176±174 B⁰ \rightarrow ψ 'K⁺ π ⁻, ψ ' \rightarrow μ ⁺ μ ⁻

[PRL 112, 222002] 3 fb⁻¹

Four dimensional analysis: Φ =(M²_{Kπ}, M²_{ψ'π}, $\theta_{\psi'}$, ϕ)

Mass and width consistent with Belle latest result JP=1+

Second peak: $4239 \pm 18^{+45}_{-10} \text{ MeV/c}^2$ $220 \pm 47^{+108}_{-74} \text{ MeV}$

Argand diagram resonance behavior character

Ζ(4430) in π**J**/ψ

- Belle $\overline{B}^0 \rightarrow K^-\pi^+ J/\psi, J/\psi \rightarrow I^+I^-$
 - 711 fb⁻¹ data at Y(4S), 2999
 - Four dimensional analysis: Φ=(M²_{Kπ}, M²_{ψπ}, θ_ψ, φ)
- Z(4200)⁺ observed
 - $J^{P} = 1^{+}$

Events / 0.254 GeV²/c⁴

40

20

12

14

16

Global significance: 6.2 σ

20

 $M^{2}(J/\psi,\pi), GeV^{2}/c^{4}$

18

22

12

14

16

18 20 22 M²(J/ψ,π), GeV²/c⁴

Z(4050) and Z(4250)

B⁰→K⁺π⁻χ_{c1} 605 fb⁻¹

[PRD78, 072004 (2008)]

$$M_{1} = (4051 \pm 14^{+20}_{-41}) \text{ MeV}/c^{2},$$

$$\Gamma_{1} = (82^{+21+47}_{-17-22}) \text{ MeV},$$

$$M_{2} = (4248^{+44+180}_{-29-35}) \text{ MeV}/c^{2},$$

$$\Gamma_{2} = (177^{+54+316}_{-39-61}) \text{ MeV},$$

