XVIII International Conference on Hadron Spectroscopy and Structure (HADRON2019)

Contribution ID: 55 Type: Poster

Studies of the ISR process e+e- -> pi+pi-pi0gamma at the phi mass with the KLOE detector

Experimental measured value of the muon magnetic moment $a_{\mu} = \frac{g_{\mu} - 2}{2}$

has a long-standing and well known discrepancy comparing with Standard Model prediction that has been narrowed down within a range $3.2-3.6\,\sigma$ after years of efforts made by experimentalists and theoreticians. Previous results of dipion cross section $\sigma_{\pi\pi}=\sigma(e^+e^-\to\pi^+\pi^-)$ from KLOE have provided comprehensive and substantial studies on the largest experimental input from hadronic contribution. In order to deepen the understand of theoretical uncertainty for a_μ , it is natural to extent the studies to three pion cross section, which is the second largest hardronic contribution to a_μ .

The initial state radiation (ISR) process $e^+e^-\to 3\pi$ has been studied at a center-of-mass energy $\sqrt{s}\approx 1.019$ GeV close to the ϕ resonance using a $1.7~{\rm fb}^{-1}$ data sample collected with KLOE detector at the DAΦNE year 2004/2005. In this analysis, we have studied the visible section $\sigma_{3\pi}^{\rm vis}$ of process $e^+e^-\to \pi^+\pi^-\pi^0$ for the effective center-of-mass energy $\sqrt{s'}$ corresponds to omega mass range $M_{3\pi}\in[720,900]~{\rm MeV}/c^2.$ With the same dataset, a further study of ${\cal C}$ -violating decay $e^+e^-\to\phi\to\omega\gamma$ is being performed based on a careful investigation of the ISR process, which is the major background with identical 3π final state.

Primary author: Dr KANG, Xiaolin (INFN-LNF)

Presenter: Dr KANG, Xiaolin (INFN-LNF)

Track Classification: Posters