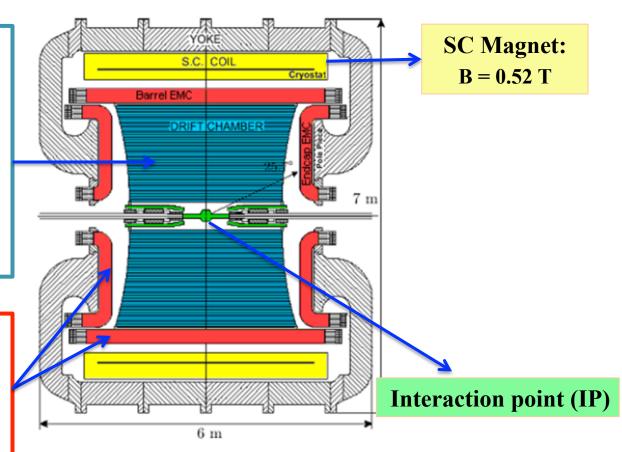


Overview of light hadron physics at KLOE/KLOE-2

Xiaolin Kang INFN – LNF Frascati, Italy On behalf of the KLOE-2 Collaboration

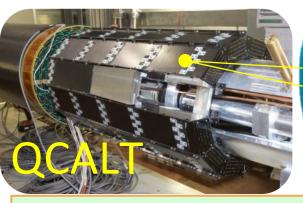
DA Φ NE: ϕ -factory

- Double rings e^+e^- collider @ $\sqrt{s}=M_{\phi}=1019.4$ MeV
- 105 bunches in each ring with a time interval of 2.7 ns
- 2 interaction regions
- Updated DA Φ NE (2008) \rightarrow increased the peak luminosity
 - Crab-Waist interaction scheme
 - Large beam crossing angle $\sim 2 \times 12.5$ mrad

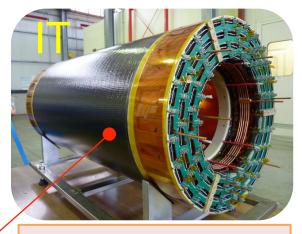

The KLOE detector

Drift Chamber:

- 12582 sense cells
- Stereo geometry
- 4 m diameter, 3.3 m long
- Low-mass gas mixture: 90% Helium-10% isobutane
- $\delta p_T / p_T < 0.4\% \ (\theta > 45^{\circ})$
- $\sigma_{xy} \approx 150 \text{ mm}, \sigma_z \approx 2 \text{ mm}$


Calorimeter:

- 98% coverage of full solid angle
- $\sigma_E / E = 5.7\% / \sqrt{E(GeV)}$
- $\sigma_t = 55 \text{ ps}/\sqrt{E(\text{GeV}) \oplus 140 \text{ ps}}$
- Barrel + 2 end-caps


CCALT – LYSO Crystal w SiPM - Low polar angle γ

QCALT – Tungsten / Scintillating Tiles w SiPM - K_L decays Quadrupole Instrumentation

LET: 2 calorimeters LYSO + SiPMs @ ~ 1 m from IP e⁺e⁻ taggers for γγ physics (HET)

Inner Tracker – 4 layers of Cylindrical GEM detectors To improve the track and vertex reconstruction First time CGEM in high energy experiment

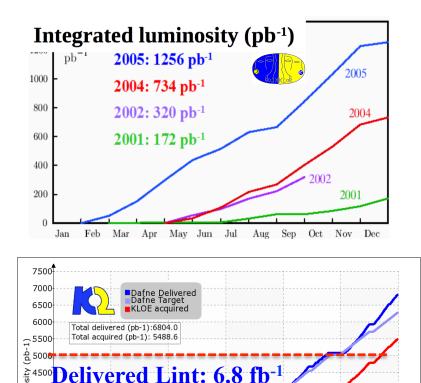
HET: Scintillator hodoscope +PMTs pitch:5 mm;

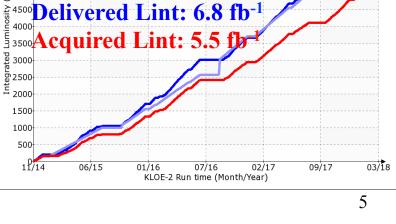
KLOE/KLOE-2 data sample

7000 Tated ັ້ສ 2500

> 1000 500 11/14

06/15


Int 2000 1500


- KLOE has collected ~ 2.5 fb⁻¹ (a) ϕ peak and 250 pb⁻¹ off-peak
 - Best performance: $L_{peak} = 1.4 \times 10^{32} \text{ cm}^{-1} \text{ s}^{-1}$
- KLOE-2 data-taking campaign completed on 30th March 2018, collected $\approx 5.5 \text{ fb}^{-1}(a) \phi \text{ peak}$
 - Best performance: $L_{peak} = 2 \times 10^{32} \text{ cm}^{-1} \text{ s}^{-1}$

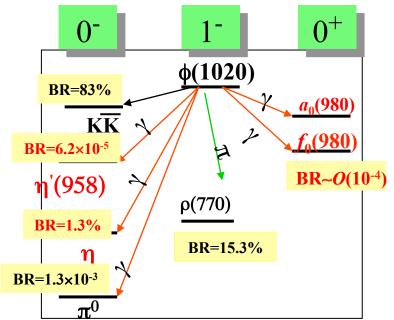
KLOE+KLOE-2 data sample:

- ~8 fb⁻¹, the largest sample collected at ϕ
- ~2.4×10¹⁰ \$\$\$ mesons

Unique data sample for typology and statistical relevance

Physics @ KLOE-2

• Kaon physics: 8.2×10⁹ Ks and K_L events


 CKM unitarity test, CPT and QM tests with kaon interferometry, Direct tests of T and CPT using entanglement, Ks rare decays...

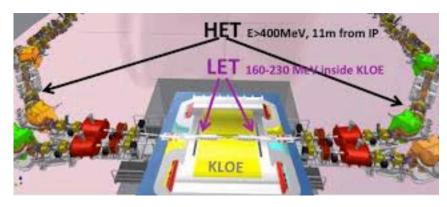
• Scalar and pseudoscalar mesons

- $3.1 \times 10^8 \eta$ events
- $1.48 \times 10^8 \eta'$ events
- $4.0 \times 10^6 \omega$ events
- Light meson transition form factors
- $\gamma\gamma$ physics $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-X$
 - $X=\pi\pi \Rightarrow$ study of $f_0(500)$
 - $X=\pi^0/\eta \Rightarrow \Gamma(\pi^0 \rightarrow \gamma\gamma)$, space-like TFF
- Hadronic X-section via ISR $[e^+e^- \rightarrow \gamma(2\pi, 3\pi, 4\pi)]$: hadronic corrections to $(g-2)_{\mu}$
- Dark force searches:
 - $e^+e^- \rightarrow U\gamma \rightarrow \pi\pi\gamma$, $\mu\mu\gamma$ Higgsstrahlung: $e^+e^- \rightarrow Uh' \rightarrow \mu^+\mu^- + miss$. Energy
 - Leptophobic B boson search: $\phi \rightarrow \eta B (B \rightarrow \pi^0 \gamma), \eta \rightarrow B \gamma (B \rightarrow \pi^0 \gamma)$

Workshop on e⁺e⁻ physics @ 1GeV https://agenda.infn.it/conferenceDisplay.py?confId=11722

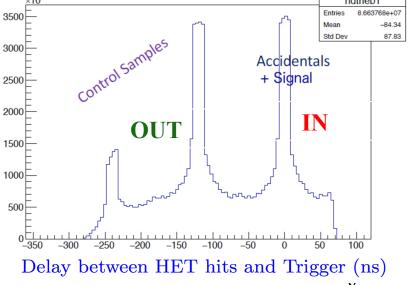
HET & $\gamma * \gamma * \rightarrow \pi^0$ analysis

- $\Gamma_{\pi 0 \rightarrow \gamma \gamma} \text{ at } 1 \% \text{ level (green point)}$ $\checkmark \Gamma_{\pi 0 \rightarrow \gamma \gamma} (\text{Th.}) = 8.09 \pm 0.11 \text{ eV} \sim 1.4\% \text{ precision}$ $\checkmark \Gamma_{\pi 0 \rightarrow \gamma \gamma} (\text{Exp.}) = 7.82 \pm 0.22 \text{ eV} \sim 2.8\% \text{ precision}$ Report at Hadron2019 (PrimEx collaboration) $\Gamma_{\pi 0 \rightarrow \gamma \gamma} (\text{Exp.}) = 7.80 \pm 0.05 \pm 0.11 \text{ eV} \sim 1.5\% \text{ precision}$
- first measurement of the $\mathcal{F}_{\pi 0\gamma *\gamma}(q^2)$ at $q_{\gamma *}^2 \le 0.1$ GeV² (red points)


The slope of TFF near $q^2=0$ is crucial for hadronic light-bylight contributions to $g_{\mu}-2$ (Eur. Phys. J. C 72 (2012) 1917)

HET & $\gamma * \gamma * \rightarrow \pi^0$ analysis

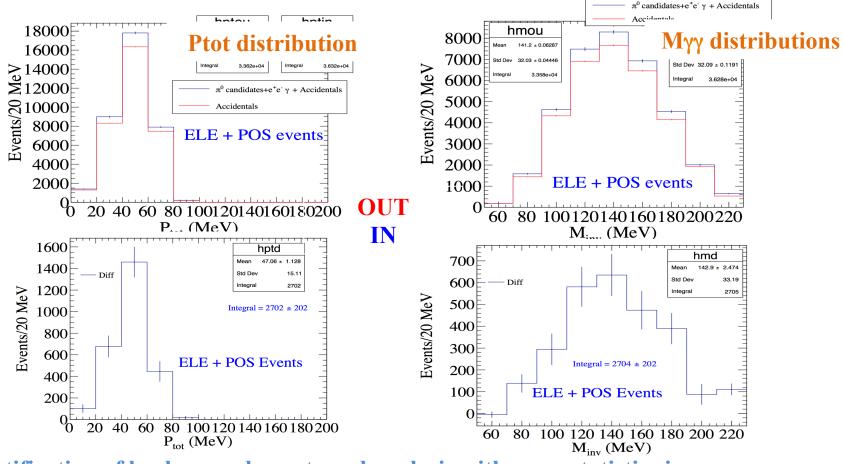
located 11m away the IP after the bending dipoles acting like spectrometer for the scattered e^+/e^- (420<E<495 MeV)


Analysis strategy

Hits in HET station and at least one bunch in KLOE associated with only 2 clusters in EMC

HET acquisition time 2.5 times larger than KLOE → OUT sample: outside overlapping time window HET-only IN sample: overlapping KLOE-HET time window

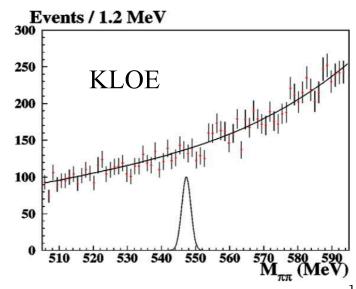
Subtract IN and OUT events in the same time window



 $\gamma * \gamma * \rightarrow \pi^0$: preliminary results

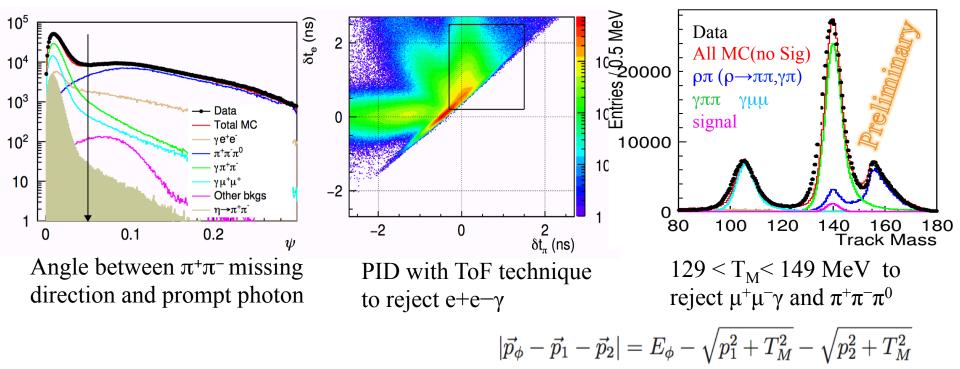
- ✓ 500 pb⁻¹ data of 2017
- $\checkmark \quad |\Delta P x, y| \gamma \gamma < 50 \text{ MeV}$

 TMVA is helpful to separate signal from background (radiative Bhabha)


Identification of background events and analysis with more statistics in progress

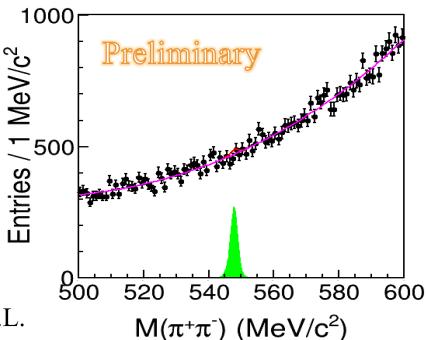
CP violating process: $\eta \rightarrow \pi^+ \pi^-$

- The Br prediction in SM [Phys. Scripta T99, 23 (2002)]
 - ✓ proceed only via the CP-violating in weak interaction $\rightarrow 10^{-27}$
 - ✓ introducing a CP violating term in QCD → to 10^{-17}
 - ✓ allowing CP violation in the extended Higgs sector $\rightarrow 10^{-15}$
- Using the present upper bound on the nEDM $\rightarrow 5.3 \times 10^{-17}$ [Phys. Rev. D 99 (2019) 031703 (R)]
- Any observation of larger branching ratio → a new source of CP violation in the strong interaction
- The best limit 1.3×10^{-5} @ 90% C.L. by KLOE with ~ 350 pb⁻¹
- A recent limit 1.6×10⁻⁵ @ 90% C.L. from LHCb with Lint~3.3 fb⁻¹



Selection of $\phi \rightarrow \gamma \eta(\pi^+\pi^-)$ events

- 2004/2005 data ($L_{int} \sim 1.7 \text{ fb}^{-1}$)
- One vertex with two opposite charged tracks (reaching EMC):
 - Rv<8 cm && |Zv| < 10 cm, $45 < \theta_{trk} < 135^{\circ}$
- One prompt photon with energy in (250, 470) MeV
 - $45 < \theta_{\gamma} < 135^{\circ}$ to suppress $\gamma \pi^{+} \pi^{-}$ (ISR) backgrounds



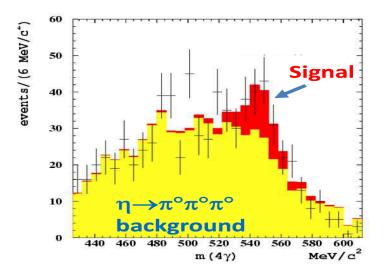
Preliminary result

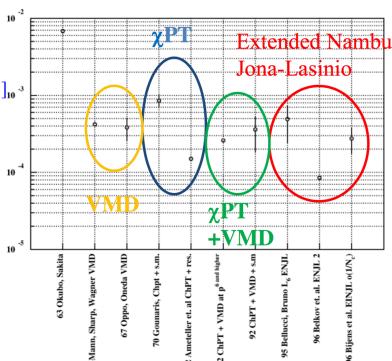
- Continue backgrounds from $\gamma \pi \pi$
- No event excess in the η region
- After all the cuts, efficiency $\sim 13.6\%$
- Un-binned maximum likelihood fit with 3rd polynomial function + MC signal shape

Preliminary U.L.: Br($\eta \rightarrow \pi^+\pi^-$) < 5.8 ×10⁻⁶ @ 90% C.L.

With all KLOE/KLOE-2 data (8 fb⁻¹) \Rightarrow

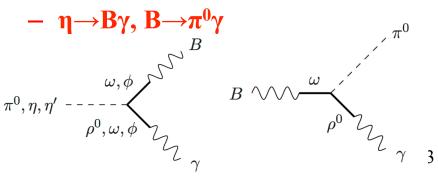
The expected upper limit is 2.7×10⁻⁶ @ 90% C.L.

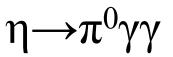



$\eta \rightarrow \pi^0 \gamma \gamma$ analysis

- ChPT "golden mode": O(p²) null, O(p⁴) suppressed, O(p⁶) dominates [PLB 276(1) (1984) 185]₁₀ -³
- Due to high backgrounds from $\eta \rightarrow \pi^0 \pi^0 \pi^0$, discrepancy from different experiments:

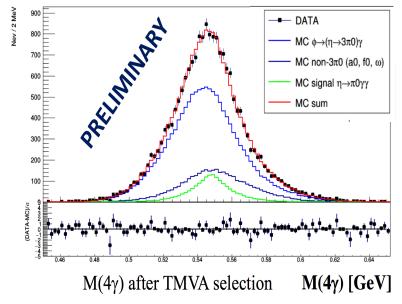
Br = $(22.1\pm2.4\pm4.7)\times10^{-5}$ CB@AGS (2008) Br = $(25.2\pm2.5)\times10^{-5}$ CB@MAMI


Br = $(8.4\pm2.7\pm1.4)\times10^{-5}$ KLOE preliminary (~450pb⁻¹)

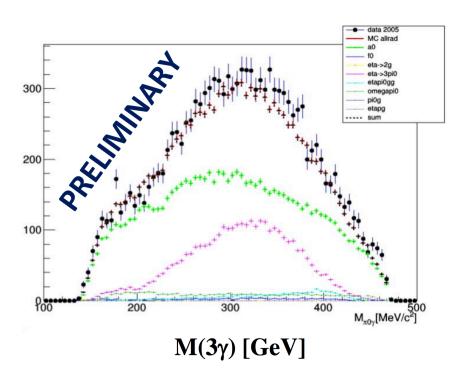


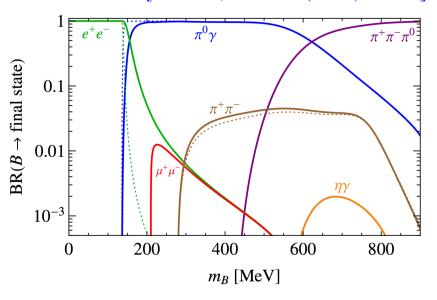
• Search for a leptophobic dark mediator,

B meson [S. Tulin, PRD 89 (2014) 14008]



- A new analysis of KLOE data with 4x larger data sample ($\sim 1.7 \text{ fb}^{-1}$)
- Tagging $\eta \rightarrow \pi^0 \gamma \gamma$ with the recoil photon of E=363 MeV from $\phi \rightarrow \gamma \eta$ decay
- Main backgrounds: $\phi \rightarrow \gamma a_0(\eta \pi^0)$, $\gamma f_0(\pi^0 \pi^0)$, $e^+e^- \rightarrow \pi^0 \omega(\gamma \pi^0)$, $\phi \rightarrow \gamma \eta(3\pi^0)$ with lost or merged photons
- Kinematic fits to suppress backgrounds (ToF of 5γ's and E&P conservation)
- TMVA with cluster shape to separate single photon from merged photon clusters
- S/B~0.4 achieved with efficiency~21%

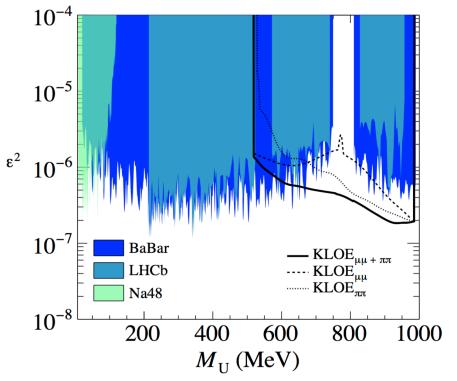

Further background subtraction and preliminary U.L. calculation is ongoing


 $B \rightarrow \pi^0 \gamma$ in $\phi \rightarrow B \eta(\gamma \gamma)$

- $\pi^0 \gamma$ is the leading decay mode of B boson
- 5 prompt photons in the final state
- Main backgrounds: $\phi \rightarrow \gamma a_0(\eta \pi^0)$ and $\gamma \eta(3\pi^0)$ with lost or merged photons
- Kinematic fits to suppress backgrounds (ToF of 5γ's, E&P conservation, η/π⁰)

B boson couples mainly to quarks [S. Tulin, PRD 89 (2014) 14008]

Discovery signal depends on mass m_B


U.L. extraction for dark B mediator with more statistics is ongoing

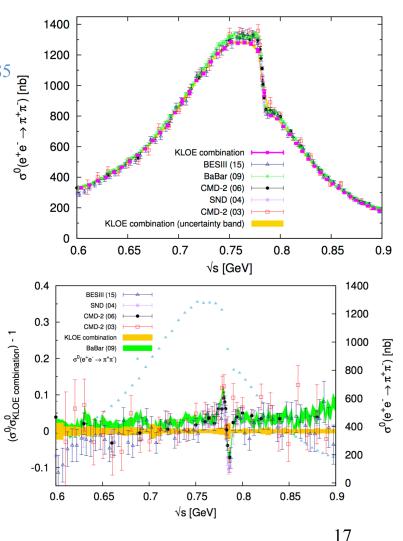
Dark Matter: combined limit on γU with U $\rightarrow \mu^+\mu^-$ and $\pi^+\pi^-$ PLB 784 (2018) 336

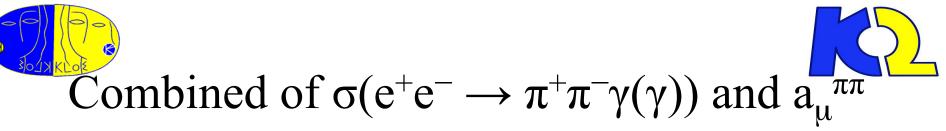
- New $\mu\mu\gamma$ limit with full KLOE statistics (1.93 fb⁻¹) in e⁺e⁻ $\rightarrow \mu^{+}\mu^{-}\gamma_{ISR}$ process
- $\pi\pi\gamma$ limit at the same luminosity (1.93 fb⁻¹) PLB757(2016)356
- Combining procedure requires:
 - Double inputs of data, expected background, U signal and systematical errors
 - Information on different efficiency and U decay branching fractions: BR(U $\rightarrow \mu\mu, \pi\pi$)
- Combined limit extracted by means of CLs Technique
- The limit on ε^2 is extracted when $N_U^{tot} = N_U^{\mu\mu} + N_U^{\pi\pi}$ reaches CLs < 0.1

Best limit in the 600 MeV-1000 MeV mass range

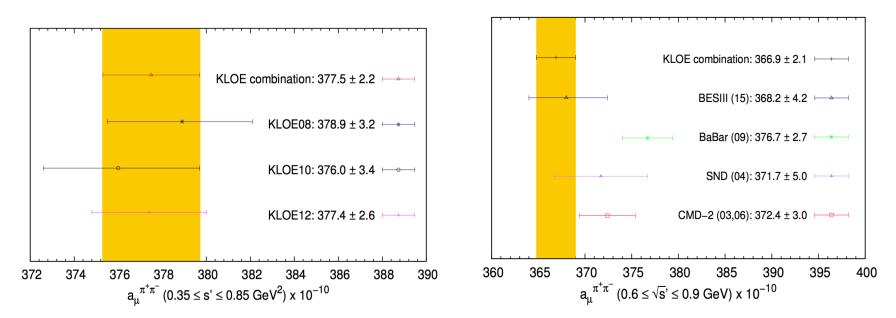
Combined $\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma(\gamma))$ and $a_{\mu}^{\pi\pi}$

JHEP 03 (2018) 173


- Three KLOE $\sigma(e+e- \rightarrow \pi+\pi-\gamma(\gamma))$ with ISR:
 - KLOE08: small angle photon
 - $\theta \gamma < 15^{\circ} \parallel \theta \gamma > 165^{\circ}, \sqrt{s} = 1.02 \text{GeV}, \text{PLB } 670 (2009) 285$
 - KLOE10: large angle photon
 - $45^{\circ} < \theta \gamma < 135^{\circ}, \sqrt{s} = 1.0 \text{ GeV}, \text{PLB } 700 (2011) 102$
 - KLOE12: small angle photon
 - $\sqrt{s} = 1.02 \text{GeV}$, PLB720 (2013) 336


KLOE08 & KLOE10
$$\sigma^0_{\pi\pi(\gamma)}(s') = \sigma_{\pi\pi(\gamma)}(s')|1 - \Pi(s')|^2,$$

KLOE12
$$\sigma_{\pi\pi(\gamma)}^{0}(s') = \frac{\mathrm{d}\sigma(\pi^{+}\pi^{-}\gamma)/\mathrm{d}s'}{\mathrm{d}\sigma(\mu^{+}\mu^{-}\gamma)/\mathrm{d}s'} \times \sigma_{(\gamma)}^{0}(e^{+}e^{-} \to \mu^{+}\mu^{-}, s')$$


All three meas are undressed of all VP effects and including FSR (overlapping range in the 0.6-0.95 GeV)

Iterative linear $\chi 2$ function minimization method is used for the combination \rightarrow construction of full statistical and syst. covariance matrices needed

JHEP 03 (2018) 173

 $a_{\mu}^{\pi\pi} = \int_{x_1}^{x_2} \sigma_{ee \to \pi\pi}(s) K(s) ds,$ $a_{\mu}^{\pi^+\pi^-}(KLOE \text{ combination}, 0.10 < s' < 0.95 \text{ GeV}^2) = (489.8 \pm 5.1) \times 10^{-10},$ KLOE comb $a_{\mu}^{\pi^+\pi^-}$ consistent with KLOE08, KLOE10 and KLOE12 individual estimations In agreement with CMD-2, SND and BESIII results within 1.5 σ Difference with BaBar < 3σ

- KLOE/KLOE-2 have collected 8fb⁻¹ data at ϕ peak (2.4×10¹⁰ ϕ mesons) ~ a unique worldwide sample
- KLOE is continuing to exploit the high statistics data samples collected at DAΦNE to perform precision measurements in hadron physics
- With the ongoing analysis and more statistics, more results are foreseen

Thanks for your attention!!!