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Introduction

strong interaction at low momentum transfer
→ perturbative QCD fails

effective degrees of freedom?

chiral perturbation theory (χPT)

→ Goldstone bosons π,K , η as dynamical degrees of freedom
→ power counting
◦ are more massive states relevant?
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vector-meson dominance (VMD)

→ considering ρ as a dynamical degree of
freedom

→ instrumental to describe hadron properties

how to systematically incorporate such
fields?

how to power count?
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Introduction

an effective field theory approach

– consider Goldstone-bosons π,K , η and
vector mesons ρ, ω,K∗, φ as effective
degrees of freedom

– construct a chiral SU(3) Lagrangian

how to power count?

– conjecture a scale separation in the
large Nc limit of chiral QCD

– m0− < 1GeV, m1− . 1GeV,
other meson masses ∼ (2− 3)GeV

– naturalness implications for the
low-energy constants (LECs)

C. Terschlüsen et al.: Electromagnetic transitions in an e↵ective chiral Lagrangian 3

Q. In an e↵ective field theory that is strictly perturbative
the identification of the two scales is straightforward. In
chiral perturbation theory the Goldstone boson masses
together with their four-momenta are the soft scales. The
hard scale is the mass of the lightest degree of freedom
that is not part of the Lagrangian. The Lagrangian can
be ordered according to the number of derivatives involved
in a given interaction term. The dimensionful parameters
scale with inverse powers of the hard scale. This is called
the naturalness assumption, any e↵ective field theory rests
on.

The identification of the characteristic scales is more
intricate for an e↵ective Lagrangian that is to be used
in non-perturbative applications, like coupled-channel ap-
proaches [17–21]. For instance, a unitarization of the chiral
Lagrangian formulated with Goldstone bosons only, gener-
ates scalar mesons dynamically. We consider the masses of
the scalar mesons as dynamically generated scales which
should be discriminated from the characteristic hard scale
of the Lagrangian. In our case the mass of the lightest
degree of freedom not part of the Lagrangian must be
larger than the mass of the scalar mesons. Given an e↵ec-
tive Lagrangian, the possible presence of dynamic scales
makes the identification of the characteristic hard scale
a di�cult problem. Progress may be possible by a suit-
able assumption which then needs to be scrutinized. Such
an assumption is the hadrogenesis conjecture, which bets
on the only relevance of pseudoscalar and vector meson
fields in the chiral Lagrangian [18, 22–25]. Since such a
Lagrangian is expected to generate the rest of the meson
spectrum dynamically, the characteristic hard scale is then
significantly larger than the vector-meson masses.

The chiral Lagrangian with dynamical vector-meson
fields has been studied in some detail [4–7,9,11,14,15]. In
particular, it was shown that the leading-order interaction
of the vector mesons with the Goldstone bosons generates
a quite realistic spectrum of axial-vector resonances [18].
A first attempt to provide a systematic ordering of the in-
teraction terms according to their relevance was proposed
by two of the authors in [13].

Hadrogenesis, if valid, has a specific implication on
the meson spectrum in the large-Nc limit of QCD. Since
the e↵ective Lagrangian includes pseudoscalar and vec-
tor mesons only, we expect the large-Nc meson spectrum
to exhibit a sizable gap. For instance, in the limit of a
large number of colors, the lowest JP = 0+, 1+, 2± states
should have masses much larger than the lowest JP =
0�, 1� states.1 The known physical JP = 0+, 1+, 2± states
would then be generated dynamically in terms of the pseu-
doscalar and vector meson fields. The large-Nc states are
integrated out and set the hard scale ⇤hard of the e↵ec-
tive Lagrangian. In turn it may be justified to consider
the masses of the JP = 0�, 1� states as soft scales Q and

1 To the best of the authors’ knowledge, the only stringent
fact that can be deduced from QCD in that limit so far is
the existence of an infinite tower of sharp states. The masses
of those states are unknown at present. To this extent our
assumption of a possible mass gap in that spectrum is not in
contradiction to large-Nc QCD.
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Fig. 1. The meson spectrum of QCD in the limit of a large
number of colors Nc as conjectured in the hadrogenesis picture.

insist on the counting

Dµ, mP , mV ⇠ Q , (8)

with mP and mV the typical mass of a pseudoscalar or
vector meson, respectively. The counting (8) relies on a
su�ciently large characteristic hard scale

⇤hard � (2 � 3) GeV , (9)

which identifies the natural size of dimensionful parame-
ters in the chiral Lagrangian.

In Fig. 1 a possible spectrum of QCD in the large-Nc

limit is shown. While the lowest pseudoscalar and vec-
tor mesons are close to their physical masses, the lowest
scalar, axial and tensor states may have significantly larger
masses. The mass gap is characterized by the hard scale

⇤hard ⇠ N0
c , (10)

which is finite as Nc approaches infinity. Note that such a
spectrum does not contradict Weinberg’s sum rules [32].
Our picture would, however, invalidate a frequent assump-
tion that in the large-Nc limit such sum rules can be sat-
urated by few low-lying states only.

Though at large Nc loop e↵ects are naturally sup-
pressed, it is a nontrivial task to see how this is real-
ized in terms of the characteristic scales of the system.
In the present work we will focus on the systematic trun-
cation of the chiral Lagrangian. Detailed investigations of
loop e↵ects and renormalization issues will be presented
in forthcoming studies.

2.2 Primer on mesons in large-Nc QCD

A striking consequence of QCD in the large-Nc limit is
the suppression of n-body forces [26,27]. A vertex with n

[Terschlüsen,Leupold,Lutz:EPJA48,190]

masses and momenta of π,K , η and ρ, ω,K ∗, φ are soft
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dynamical vector mesons at the
one-loop level

– dimensional power counting
– an order-by-order renormalizability

condition [Terschlüsen,Leupold:PRD94,014021]

– specific correlations for LECs follow
[PRD98,056005]

is our approach compatible with QCD
lattice results?

– large data set for meson masses and
decay constants available at different
quark masses

– we consider results from QCDSF,
PACS-CS, HPQCD, CLS, HSC, ETMC [Phys.Rev.D84,054509]
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Effective Lagrangian with one-loop corrections

leading order two-point interactions

L(2)
2 = −f 2(trUµUµ +

1

2
trχ+

)
− 1

4
tr
(
∂µΦµα∂νΦνα

)
+

1

8
M2tr

(
ΦµνΦµν

)
– the Goldstone-boson fields Φ enter with

Uµ =
1

2
e−i Φ

2f
(
∂µe

i Φ
f
)
e−i Φ

2f + . . .

– the symmetry breaking terms χ± are proportional to the quark-mass
matrix with

χ± ∼ Diag(m,m,ms)

– the vector meson fields are in the tensor-field representation with

Φµν =

ρ0
µν + ωµν

√
2ρ+
µν

√
2K∗+

µν√
2ρ−µν −ρ0

µν + ωµν
√

2K∗0
µν√

2K∗−
µν

√
2K̄∗0

µν

√
2φµν


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leading order three-point interaction terms

L(3)
2 =

i

2
f h1 tr

(
Uµ Φµν Uν

)
+

i

8
h2 ε

µναβ tr
{[

Φµν , (DτΦτα)
]

+
Uβ
}

− i

4

M2

f
h3 tr

{
Φµτ Φµν Φτ ν

}

– we count

M2 ∼ m2
0− ∼ Q2

– the order-by-order renormalizability condition requests
(to avoid ∼ 1/Mn contributions in the induced loops)

L(3)
4 = M2 i

8
h4 ε

µναβ tr
{[

(DαΦµν), Φτβ
]

+
Uτ
}

+ M2 i

4
h5 ε

µναβ tr
{

Φµν χ− Φαβ
}

+ . . .

estimates from tree-level studies [Leupold,Lutz:NuPA813,96; Terschlüsen,et al:.EPJA48,190]

– hadronic and radiative decays of vector mesons → h1, h2

– magnetic-dipole and electric-quadrupole moments
of vector mesons → h3
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leading order four-point interaction terms

L(4)
2 =

1

8
tr
{
g1

[
Φµν ,Uα

]
+

[
Uα,Φµν

]
+

+ g2

[
Φµν ,Uα

]
−

[
Uα,Φµν

]
−

}
+

1

8
tr
{
g3

[
Uµ ,U

ν]
+

[
Φντ ,Φ

µτ ]
+

+ g5

[
Φµτ ,Uµ

]
−

[
Φντ ,U

ν]
−

}
+

1

8

M2

f 2
tr
{
g6

[
Φµν ,Φαβ

]
+

[
Φαβ ,Φµν

]
+

+ g7

[
Φµν ,Φαβ

]
−

[
Φαβ ,Φµν

]
−

}
+

1

8

M2

f 2
tr
{
g8

[
Φµν ,Φµβ

]
+

[
Φαν ,Φαβ

]
+

+ g9

[
Φµν ,Φµβ

]
−

[
Φαν ,Φαβ

]
−

}

– the order-by-order renormalizability condition requests
(the 1-loop level µ-dependence cancelled by counter terms)

4g1 + g3 =
1

2
h2

2, g5 = g3 + 4g2 .
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next-to-leading order interactions involving vector-mesons

L(V )
4 =

e2

8
M4 tr{Φµν} tr{Φµν}+

b1

8
M2 tr

{
Φµν Φµν χ+

}
+

b2

8
M2 tr{Φµν Φµν} tr{χ+}+

b3

8
M2 tr{Φµν} tr{Φµν χ+}

+
c1

8
tr {Φµν χ+ Φµν χ+}+

c2

8
tr {Φµν Φµν χ2

+}

+
c3

8
tr {Φµν Φµν} tr {χ2

+}+
c4

8
tr {Φµν Φµν χ+} tr {χ+}

+
c5

8
tr {Φµν χ+} tr {Φµνχ+}+

c6

8
tr {Φµν} tr {Φµν χ2

+} ,

– the order-by-order renormalizability condition requests the b1 term to
scale with M2

– c3−6 terms are large Nc suppressed but required in the reproduction of
lattice data
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next-to-leading order interactions without vector-mesons

L(P)
4 = − 8 L4 tr{UµUµ} tr{χ+} − 8 L5 tr{UµUµχ+}+ 4 L6 tr{χ+} tr{χ+}

+ 4 L7 tr{χ−} tr{χ−}+ 2 L8 tr{χ+χ+ + χ−χ−} + . . . ,

– terms were constructed by Gasser-Leutwyler [Ann.Phys.158,142]

– integrate out vector-meson fields at the one-loop level

given our subtraction scheme we find

L4 → L4 , L5 → L5 , L6 → L6 .

L7 → L7 −
7 h2

1

49152π2
− h2

2

1536π2
' L7 − 0.31× 10−3 ,

L8 → L8 +
7 h2

1

16384π2
+

h2
2

512π2
' L8 + 0.92× 10−3.

– renormalization terms are dominated by the h2 coupling constant

h1 ' 1.96 from ρ→ ππ decay

h2 ' 1.95 from ω → ρπ decay
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Chiral extrapolations of meson masses and decay constants

contributions from loop diagrams
– vector meson masses

M2
V = Πtree

V + Πtadpole
V + Πbubble

V /ZV︸ ︷︷ ︸
depend on (M2

V
,m2

P
)

, +
g1−5 g6−9

+

π, K, φ

h1

h2

+ h3

– pseudoscalar meson masses

m2
P = Πχ−PT

P︸ ︷︷ ︸
(mq)

+ Πbubble
P /ZP︸ ︷︷ ︸
(M2

V
,m2

P
)

,

fP = f χ−PT
P︸ ︷︷ ︸

(mq)

+ (
√

ZP − 1)f − f√
ZP

Πbubble
P

m2
P︸ ︷︷ ︸

(M2
V
,m2

P
)

+

ρ, ω, K∗, φ

h1

h2

with ZP = 1 +
∂

∂m2
P

Πbubble
P (m2

P)

adjust the LECs to QCD lattice data at different quark masses
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A global fit to QCD lattice data

fit to QCD lattice data of meson masses and decay constants
[arXiv:1810.07376, 1810.07078]

– use on-shell masses in the loop contributions

– finite-volume corrections are taken into account

– we consider results from 6 lattice groups

– estimate the systematic error by the condition χ2/N ∼ 1

masses from QCDSF-UKQCD
[Phys.Rev.D84,054509]

– consider finite-box energy
levels from quark-antiquark
interpolators

– levels are well reproduced
– predictions for ω-meson

masses on the ensembles
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A global fit to QCD lattice data

masses from PACS-CS [Phys.Rev.D79,034503]

– energy levels from quark-antiquark interpolators
– levels are well reproduced
– predictions for ω-meson masses on the ensembles

masses from HSC [Phys.Rev.D79,034503]

– levels from quark-antiquark
interpolators well reproduced

– level from πK interpolators
well reproduced [Nucl.Phys.B932,29]

– tension in level from ππ
interpolators, not well
separated from the two-body
ππ state (dashed line)
[Nucl.Phys.B910,842]
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A global fit to QCD lattice data

decay constants from HPQCD and CLS [Phys.Rev.D88,074504; Phys.Rev.D95,074504]
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A global fit to QCD lattice data

decay constants from ETMC [Phys.Rev.D97,054508]

– fK depends on wave-function renormalization factor Z in the
twisted-mass set up

– tuning Z = 0.6884, 0.7428 at β = 1.95, 2.10, within the ranges from
two approaches determined by lattice
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Some predictions for QCD lattice simulations

ω − φ mixing angle ε is mass-dependent

ω = ω′ cos ε+ φ′ sin ε φ = φ′ cos ε− ω′ sin ε

– of physical relevance are εω = ε at Mω and εφ = ε at Mφ

– |εφ| ' 3.32◦ from φ→ π0γ [Klingl, et,al: Z.Phys.A356,193]

– from our global fit to lattice data εω ' 21◦ at physical quark masses

predict a striking quark-mass dependence of the mixing angles
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Some predictions for QCD lattice simulations

predictions for ETMC ensembles
[Phys.Rev.D95,074504]

– the lowest two-body energy
levels (dashed lines) are well
separated from our predicted
energy levels

– the quark masses ms and m
are determined from the
lattice values of mπ and mK

– our predictions for the ratio
ms/m match well with the
results from lattice
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Some predictions for QCD lattice simulations

predictions for CLS ensembles
[Phys.Rev.D95,074504]

– the lowest two-body energy
levels (dashed lines) are
not always well separated from
our predicted energy levels

– the quark masses ms and m
are determined from the
lattice values of mπ and mK

– our predictions for the ratio
ms/m match well with the
results from lattice

– no data yet from CLS but
levels from ππ interpolators
[Nucl.Phys.B939,145]

Xiao-Yu Guo (GSI) Hadron 2019 August 20, 2019 18 / 21



Some predictions for QCD lattice simulations

our prediction for the quark mass ratio

ms/m = 26.13− 26.92

– compares well with lattice result
ms/m = 26.66(32) [ETMC: Nucl.Phys.B887,19]

– our ratios are compatible with lattice
results on all considered ensembles

LECs of Gasser and Leutwyler

Ours: w/ VM 2-loop χPT

f [MeV] 67.51 - 73.57 64 - 71

103L4 -0.04 - 0.13 0.3 - 0.76

103L5 -0.01 - 0.04 0.50 - 1.01

103L6 -0.07 - 0.04 0.14 - 0.49

103L7 -0.14 - -0.11 -0.34 - -0.19

103L8 0.65 - 0.75 0.17 - 0.47

– the χPT results are at 2-loop
level
[Bijnens,Ecker:Ann.Rev.Nucl.Part.Sci.64,149]

– the impact of vector meson
loops seem most dominant
in L5
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Summary

dynamical vector-meson degrees of freedom at the one-loop level

– the vector-meson fields were incorporated in the chiral SU(3)
Lagrangian based on the hadrogenesis conjecture

– order-by-order renormalizability was obtained

– the one-loop corrections for the meson masses and decay-constants
were derived in a finite box

a global fit to lattice QCD results

– our results are compatible with lattice data sets from PACS, QCDSF,
HSC, HPQCD, CLS and ETMC

– predictions for vector-meson masses and the ω − φ mixing angles on
various lattice ensembles

– results for Gasser-Leutwyler LECs L4 − L8 (vector-meson degrees of
freedom are important)

Thank you for your attention!
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