Measurenet of the Ξ_c Abosute Branching Fraction at Belle

Yubo Li

Peking University, Beijing On behalf of Belle collaboration 2019/08/21

Charm energy scale, α_s~1:
□ boundary of (non-)perturbative
□ platform for strong interaction study

• Charmed baryons offer more information:

- W-exchange diagrams can contribute without the helicity suppression
- Internal W emission is significant.
- Parity violation is readily observable because the decay of the daughter hyperon also violates parity.
- Testing heavy quark symmetry and light quark chiral symmetry

•Charmed Baryons are difficult to produce

- ➢ no resonant production mechanisms
- > continuum production with small cross-sections
- •Products in the decays of heavy mesons
 - Or high energy colliders

- In SU(3) anti-triplet charmed baryons, only Λ_c absolute Branching Fractions were measured by Belle [PRL 113, 042002] and BESIII [PRL 116,052001].
- Since Ξ_c^0 [PRL 62,863(1989)] and Ξ_c^+ [PLB 122,455(1983)] were discovered ~30 years ago, no absolute BRs could be measured.

For Ξ⁰_c, the Brs are all measured with ratios to Ξ⁻π⁺
 For Ξ⁺_c, the Brs are all measured with ratios to Ξ⁻π⁺π⁺
 So called reference modes

- $\Xi_c^0 \to pK^-K^-\pi^+$ and $\Xi_c^+ \to pK^-\pi^+$ are the fundamental channels to reconstruct Ξ_c^0 and Ξ_c^+ at hadron collider such as LHCb
 - Their BRs are important input for bottom baryons and double charmed baryons study.
- In theory: B(Ξ⁰_c → Ξ⁻π⁺) ≈ 1.12% or 0.74% [PRD48,4188] B(Ξ⁺_c → Ξ⁻π⁺π⁺) = (1.47 ± 0.84)% [PRD97,073006] B(Ξ⁺_c → pK⁻π⁺) = (2.2 ± 0.8)% [EPJC78,224; CPC42, 051001] The decay B → Λ⁻_cΞ_c, proceed via b → cc̄s transitions, BR ~10⁻³ in theoretical calculation ≻ A good chance to analysis B → Λ⁻_cΞ_c decay in Belle.

B meson tagging

- *B* meson comes from $\Upsilon(4S) \to B\overline{B}$
- If we reconstruct a B_{tag} , the recoil is B_{sig}
- 1042 B decay channel, 71 neural networks
- An overall efficiency:
 0.36% for B⁺
 0.24% for B⁰

So called Full Reconstruction algorithm (FR)

$\mathbf{\Xi_c^0}$ inclusive measurement

$\boldsymbol{\Xi_c^0}$ inclusive measurement

Λ_c⁻ reconstructed via p̄K⁺π⁻ and p̄K_s⁰
Tagged a B⁺ with FR algorithm

• $\mathcal{B}(B^- \to \Lambda_c^- \Xi_c^0) = (9.51 \pm 2.10 \pm 0.88) \times 10^{-4}$

BELLE

Ξ_c^0 exclusive measurement

10

Ξ_c^0 BRs measurement

Channel	Br/Ration	Theory	PDG
$\mathcal{B}(B^- \to \overline{\Lambda}_c^- \overline{\mathcal{Z}}_c^0)$	$(9.51 \pm 2.10 \pm 0.88) \times 10^{-4}$	$\sim 10^{-3}$	
$\mathcal{B}(B^- \to \overline{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	$(1.71\pm 0.28\pm 0.15)\times 10^{-5}$		$(2.4 \pm 0.9) imes 10^{-5}$
$\mathcal{B}(B^- \to \overline{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to \Lambda \mathrm{K}^- \pi^+)$	$(1.11\pm 0.26\pm 0.10)\times 10^{-5}$		$(2.1\pm 0.9) imes 10^{-5}$
$\mathcal{B}(B^- \to \overline{\Lambda}_c^- \Xi_c^0) \mathcal{B}(\Xi_c^0 \to p K^- K^- \pi^+)$	$(5.47 \pm 1.78 \pm 0.57) \times 10^{-6}$		
$\mathcal{B}(\Xi_c^0 o \Xi^- \pi^+)$	$(1.80\pm 0.50\pm 0.14)\%$		
$\mathcal{B}(\Xi_c^0 o \Lambda \mathrm{K}^- \pi^+)$	$(1.17\pm 0.37\pm 0.09)\%$		
$\mathcal{B}(\mathcal{Z}_c^0 \to pK^-K^-\pi^+)$	$(0.58\pm 0.23\pm 0.05)\%$		
$\mathcal{B}(\mathcal{Z}_{c}^{0} \to \Lambda \mathrm{K}^{-}\pi^{+})/\mathcal{B}(\mathcal{Z}_{c}^{0} \to \Xi^{-}\pi^{+})$	$0.65\pm 0.18\pm 0.04$		1.07 ± 0.14
$\mathcal{B}(\Xi_c^0 o pK^-K^-\pi^+)/\mathcal{B}(\Xi_c^0 o \Xi^-\pi^+)$	$0.32\pm 0.12\pm 0.07$		0.34 ± 0.04

- We have performed an analysis of $B^- \to \overline{\Lambda}_c^- \Xi_c^0$ inclusively and exclusively
- First model-independent measurement of absolute Brs of Ξ_c^0 decays
- The branching fraction $B(B^- \to \overline{\Lambda}_c^- \Xi_c^0)$ is measured for the first time
- The measured $B(\Xi_c^0 \to \Xi^- \pi^+)$ can be used to determine the BR of other Ξ_c^0 decays. ¹¹

PRL 122, 082001

\mathbf{Z}_{c}^{+} inclusive measurement

Λ_c⁻ reconstructed via p̄K⁺π⁻
Tagged a B⁰ with FR algorithm

- Fitted result: $N(\Xi_c^+) = 18.8 \pm 6.8, 3.2\sigma$
- $\mathcal{B}(\overline{B}^0 \to \Lambda_c^- \Xi_c^+) = (1.16 \pm 0.42 \pm 0.15) \times 10^{-4}$

$\mathbf{\Xi}_{c}^{+}$ exclusive measurement

\mathbf{z}_{c}^{+} exclusive measurement

Channel	Br/Ration	Theory	PDG
$\mathcal{B}(\overline{B}{}^0 \to \overline{\Lambda}{}^c \Xi^+_c)$	$(1.16\pm 0.42\pm 0.15)\times 10^{-3}$	$\sim 10^{-3}$	
$\mathcal{B}(\overline{B}{}^0 \to \overline{\Lambda}{}^c \Xi^+_c))\mathcal{B}(\Xi^+_c \to \Xi^- \pi^+ \pi^+)$	$(3.32\pm 0.74\pm 0.33)\times 10^{-5}$		$(1.8 \pm 1.8) \times 10^{-5}$
$\mathcal{B}(\overline{B}{}^{0} \rightarrow \overline{\Lambda}{}^{-}_{c}\mathcal{Z}{}^{+}_{c})\mathcal{B}(\mathcal{Z}{}^{+}_{c} \rightarrow p\mathrm{K}{}^{-}\pi^{+})$	$(5.27 \pm 1.51 \pm 0.69) \times 10^{-5}$		
$\mathcal{B}(\mathcal{Z}_c^+ \to \Xi^- \pi^+ \pi^+)$	$(2.86 \pm 1.21 \pm 0.38)\%$	$(1.47 \pm 0.84)\%$	
$\mathcal{B}(\mathcal{Z}_c^+ \to p \mathrm{K}^- \pi^+)$	$(0.45\pm 0.21\pm 0.07)\%$	$(2.2 \pm 0.8)\%$	
$\mathcal{B}(\Xi_c^+ \to p \mathrm{K}^- \pi^+) / \mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$	$0.16\pm 0.06\pm 0.02$		0.21 ± 0.04

- First model-independent $\mathcal{B}(\overline{B}^0 \to \Lambda_c^- \mathcal{I}_c^+)$ measurement
- $\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$ can be used to determine the BRs of other Ξ_c^+ decay
- $\mathcal{B}(\mathcal{Z}_c^+ \to p \mathbf{K}^- \pi^+)$ is smaller theory prediction > Indicating a large U-spin symmetry breaking?

Summary

- We studied $B \rightarrow \Lambda_c^- \Xi_c^{0,+}$ with $\Xi_c^{0,+}$ decay exclusively and inclusively.
- The absolutely $\Xi_c^{0,+}$ decay branching fractions are measured:

	Ξ_c^+
$\mathcal{B}(\Xi_c^0 o \Xi^- \pi^+)$	$(1.80 \pm 0.50 \pm 0.14)\%$
$\mathcal{B}(\Xi_c^0 o \Lambda \mathrm{K}^- \pi^+)$	$(1.17 \pm 0.37 \pm 0.09)\%$
$\mathcal{B}(\mathcal{Z}_c^0 \to pK^-K^-\pi^+)$	$(0.58 \pm 0.23 \pm 0.05)\%$

	Ξ_c^+
$\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$	$(2.86 \pm 1.21 \pm 0.38)\%$
$\mathcal{B}(\mathcal{Z}_c^+ o p \mathbf{K}^- \pi^+)$	$(0.45\pm 0.21\pm 0.07)\%$

Prospective

Back Up

● HadonB(J) skim;

- 1. |dr|<0.5 and |dz|<2cm; Pt>0.1GeV for all charged tracks;
- 2. Pt for all charged particle >0.1GeV/c;

• For particle identification:

- Apply vertex and mass fit for $\Lambda_c^+(\Xi_c^0)$ candidates, vote events with $\chi^2/ndf > 15$
- K_S candidates are selected by nisKsFinder and Applied vertex and mass fit, vote events with $\chi^2/ndf > 50$
- Λ candidates from Vee2 bank, Applied vertex and mass fit, vote events with $\chi^2/ndf>50$

Full Reconstruction

Neural network(NN) based full reconstruction used to tag B^{\pm} .

tag B^{\pm} cont_NBRank are required to be 1

NN output with continuum suppression are required: $\log(O_{NB}) > -4$ Λ_c^{\pm} have opposite charge with tag B^{\pm} .

$\Lambda_c^+ \rightarrow p \ K^- \pi^+ \text{ mode}$

 $\chi^2_{mass vertex}$ distribution of mass and vertex fit to Λ^+_c . MC histogram is normalized to the data according to the first 5 bins. Red arrows indicate the cut we applied: $\chi^2_{mass vertex} < 15$