| Motivation | Theoretical approach | Results | Outlook | Summary | Back Slides |
|------------|----------------------|---------|---------|---------|-------------|
|            |                      |         |         |         |             |
|            |                      |         |         |         |             |

# Global analysis of the $\Delta(1232)$ contribution in the pion photo-production on nucleons

Gustavo H. Guerrero-Navarro

gust avo.guerrero@ific.uv.es





August 17th, 2019 HADRON 2019, Guilin, China

Collaboration: Manuel J. Vicente Vacas, Astrid H. Blin, Deliang Yao.

| Motivation<br>00000 | Theoretical approach | Results<br>00000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|---------------------|----------------------|------------------------|---------------|---------------|-------------|
|                     |                      |                        |               |               |             |
| Outline             |                      |                        |               |               |             |

#### 1 Motivation

2 Theoretical approach

#### 3 Results

#### 4 Outlook

#### 5 Summary

| Motivation<br>●0000 | Theoretical approach | Results<br>0000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|---------------------|----------------------|-----------------------|---------------|---------------|-------------|
|                     |                      |                       |               |               |             |
| Motivation          |                      |                       |               |               |             |



At the peak the neutral channel has bigger cross section than the charged channel

- Near threshold there are huge cancellations for the neutral channel (not well described at low energy)
- For the charged channel there are not such cancellations

| Motivation<br>00000 | Theoretical approach | Results<br>00000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|---------------------|----------------------|------------------------|---------------|---------------|-------------|
|                     |                      |                        |               |               |             |
| Experim             | ental data           |                        |               |               |             |





| Motivation<br>00000 | Theoretical approach | Results<br>00000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|---------------------|----------------------|------------------------|---------------|---------------|-------------|
| Experime            | ntal data            |                        |               |               |             |



 $E_\gamma \sim 145~{\rm MeV}$  -  $\sim 215~{\rm MeV}$  Measured observables :

$$\sigma \quad , \quad \frac{d\sigma}{d\Omega} \quad , \quad \Sigma = \frac{d\sigma_{\perp} - d\sigma_{\parallel}}{d\sigma_{\perp} + d\sigma_{\parallel}}, \quad T = \frac{d\sigma_{+} - d\sigma_{-}}{d\sigma_{+} + d\sigma_{-}}$$

| Motivation<br>0●000 | Theoretical approach | Results<br>0000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|---------------------|----------------------|-----------------------|---------------|---------------|-------------|
|                     |                      |                       |               |               |             |
|                     |                      |                       |               |               |             |

### Experimental data



- Hornidge et al.
   PRL (2013) \*
- Schumann et al. EPJ A (2010)
- Blanpied et al. PRC (2001)
- Schmidt et al. PRL (2001)
- Others ...

#### 779 data points

 $E_\gamma \sim 145 \; {\rm MeV}$  -  $\sim 215 \; {\rm MeV}$ Measured observables :

$$\sigma \quad , \quad \frac{d\sigma}{d\Omega} \quad , \quad \Sigma = \frac{d\sigma_{\perp} - d\sigma_{\parallel}}{d\sigma_{\perp} + d\sigma_{\parallel}}, \quad T = \frac{d\sigma_{+} - d\sigma_{-}}{d\sigma_{+} + d\sigma_{-}}$$

| Motivation | Theoretical approach | Results | Outlook | Summary | Back Slides |
|------------|----------------------|---------|---------|---------|-------------|
|            |                      |         |         |         |             |
|            |                      |         |         |         |             |

#### Experimental data



$$\gamma p \rightarrow \pi^+ n$$

- Hornidge et al.
   PRL (2013) \*
- Schumann et al. EPJ A (2010)
- Blanpied et al. PRC (2001)
- Schmidt et al. PRL (2001)
- Others ...

#### 779 data points

 $E_\gamma \sim 145~{\rm MeV}$  -  $\sim 215~{\rm MeV}$  Measured observables :

$$\sigma \quad , \quad \frac{d\sigma}{d\Omega} \quad , \quad \Sigma = \frac{d\sigma_{\perp} - d\sigma_{\parallel}}{d\sigma_{\perp} + d\sigma_{\parallel}}, \quad T = \frac{d\sigma_{+} - d\sigma_{-}}{d\sigma_{+} + d\sigma_{-}}$$

| Motivation<br>O ● O O O | Theoretical approach | Results<br>0000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|-------------------------|----------------------|-----------------------|---------------|---------------|-------------|
|                         |                      |                       |               |               |             |

### Experimental data



 $\gamma p \to \pi^0 p$ 

- Hornidge et al.
   PRL (2013) \*
- Schumann et al. EPJ A (2010)
- Blanpied et al.
   PRC (2001)
- Schmidt et al. PRL (2001)

Others ...

779 data points

#### $\gamma p \to \pi^+ n$

- Ahrens et al. EPJ A(2004)
- Blanpied et al. PRC (2001) \*
- Korkmaz et al. PRL (1999)
- Fissum, et al. PRC (1996)
- Bergstrom et. al. PRC (1996)
- McPherson et. al. PRB (1964)
- Walker et al. PR (1963)

#### 129 data points

 $E_{\gamma} \sim 145 \text{ MeV} - \sim 215 \text{ MeV}$ Measured observables :

$$\sigma \quad , \quad \frac{d\sigma}{d\Omega} \quad , \quad \Sigma = \frac{d\sigma_{\perp} - d\sigma_{\parallel}}{d\sigma_{\perp} + d\sigma_{\parallel}}, \quad T = \frac{d\sigma_{+} - d\sigma_{-}}{d\sigma_{+} + d\sigma_{-}}$$

| Motivation<br>O ● O O O | Theoretical approach | Results<br>0000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|-------------------------|----------------------|-----------------------|---------------|---------------|-------------|
|                         |                      |                       |               |               |             |

### Experimental data



 $\gamma p \to \pi^0 p$ 

- Hornidge et al.
   PRL (2013) \*
- Schumann et al. EPJ A (2010)
- Blanpied et al.
   PRC (2001)
- Schmidt et al. PRL (2001)

Others ...

779 data points

## $\gamma p \to \pi^+ n$

 Ahrens et al. EPJ A(2004)

- Blanpied et al. PRC (2001) \*
- Korkmaz et al. PRL (1999)
- Fissum, et al. PRC (1996)
- Bergstrom et. al. PRC (1996)
- McPherson et. al. PRB (1964)
- Walker et al. PR (1963)

#### 129 data points

 $E_{\gamma} \sim 145 \text{ MeV} - \sim 215 \text{ MeV}$ Measured observables :

$$, \quad \frac{d\sigma}{d\Omega} \quad , \quad \Sigma = \frac{d\sigma_{\perp} - d\sigma_{\parallel}}{d\sigma_{\perp} + d\sigma_{\parallel}}, \quad T = \frac{d\sigma_{+} - d\sigma_{-}}{d\sigma_{+} + d\sigma_{-}}$$

| Motivation | Theoretical approach | Results | Outlook | Summary | Back Slides |
|------------|----------------------|---------|---------|---------|-------------|
| 00000      |                      |         |         |         |             |
|            |                      |         |         |         |             |
|            |                      |         |         |         |             |

### Experimental data



 $\gamma p \to \pi^0 p$ 

- Hornidge et al.
   PRL (2013) \*
- Schumann et al. EPJ A (2010)
- Blanpied et al.
   PRC (2001)
- Schmidt et al. PRL (2001)

Others ...

779 data points

### $\gamma p \to \pi^+ n$

- Ahrens et al. EPJ A(2004)
- Blanpied et al.
   PRC (2001) \*
- Korkmaz et al.
   PRL (1999)
- Fissum, et al. PRC (1996)
- Bergstrom et. al. PRC (1996)
- McPherson et. al. PRB (1964)
- Walker et al. PR (1963)

### $E_\gamma \sim 145~{\rm MeV}$ - $\sim 215~{\rm MeV}$

Measured observables :

$$, \quad \frac{d\sigma}{d\Omega} \quad , \quad \Sigma = \frac{d\sigma_{\perp} - d\sigma_{\parallel}}{d\sigma_{\perp} + d\sigma_{\parallel}}, \quad T = \frac{d\sigma_{+} - d\sigma_{-}}{d\sigma_{+} + d\sigma_{-}}$$
$$\gamma n \to \pi^{-} p$$

- Liu, PhD thesis (1994)
- Wang, PhD thesis (1992)
- Bagheri, et al.
   PRC (1988)
- Salomon et al. NPA (1984)
- Rossi et al. NC A (1973)
- Benz et al. NPB (1973)
- White, et al. PR (1960)

#### 129 data points

#### 94 data points

| Motivation | Theoretical approach | Results | Outlook | Summary | Back Slides |
|------------|----------------------|---------|---------|---------|-------------|
| 00000      |                      |         |         |         |             |
|            |                      |         |         |         |             |
|            |                      |         |         |         |             |

### Experimental data



 $\gamma p \to \pi^0 p$ 

- Hornidge et al.
   PRL (2013) \*
- Schumann et al. EPJ A (2010)
- Blanpied et al.
   PRC (2001)
- Schmidt et al. PRL (2001)

Others ...

779 data points

 $\gamma p \to \pi^+ n$ 

- Ahrens et al. EPJ A(2004)
- Blanpied et al.
   PRC (2001) \*
- Korkmaz et al.
   PRL (1999)
- Fissum, et al. PRC (1996)
- Bergstrom et. al. PRC (1996)
- McPherson et. al. PRB (1964)
- Walker et al. PR (1963)

#### $E_{\gamma} \sim 145 \ \mathrm{MeV} - \sim 215 \ \mathrm{MeV}$

Measured observables :

$$, \quad \frac{d\sigma}{d\Omega} \quad , \quad \Sigma = \frac{d\sigma_{\perp} - d\sigma_{\parallel}}{d\sigma_{\perp} + d\sigma_{\parallel}}, \quad T = \frac{d\sigma_{+} - d\sigma_{-}}{d\sigma_{+} + d\sigma_{-}}$$
$$\frac{\gamma n \to \pi^{-} p \qquad \gamma n \to \pi^{0} n$$

- Liu, PhD thesis (1994)
- Wang, PhD thesis (1992)
- Bagheri, et al.
   PRC (1988)
- Salomon et al. NPA (1984)
- Rossi et al. NC A (1973)
- Benz et al. NPB (1973)
- White, et al. PR (1960)

#### 129 data points

#### 94 data points

| Motivation | Theoretical approach | Results | Outlook | Summary | Back Slides |
|------------|----------------------|---------|---------|---------|-------------|
| 00000      |                      |         |         |         |             |
|            |                      |         |         |         |             |
|            |                      |         |         |         |             |

### Experimental data



 $\gamma p \to \pi^0 p$ 

- Hornidge et al.
   PRL (2013) \*
- Schumann et al. EPJ A (2010)
- Blanpied et al.
   PRC (2001)
- Schmidt et al. PRL (2001)

Others ...

779 data points

## $\gamma p \to \pi^+ n$

- Ahrens et al. EPJ A(2004)
- Blanpied et al. PRC (2001) \*
- Korkmaz et al.
   PRL (1999)
- Fissum, et al. PRC (1996)
- Bergstrom et. al. PRC (1996)
- McPherson et. al. PRB (1964)
- Walker et al. PR (1963)

#### $E_\gamma \sim 145~{\rm MeV}$ - $\sim 215~{\rm MeV}$

Measured observables :

$$, \quad \frac{d\sigma}{d\Omega} \quad , \quad \Sigma = \frac{d\sigma_{\perp} - d\sigma_{\parallel}}{d\sigma_{\perp} + d\sigma_{\parallel}}, \quad T = \frac{d\sigma_{+} - d\sigma_{-}}{d\sigma_{+} + d\sigma_{-}}$$
$$\frac{\gamma n \to \pi^{-} p \qquad \gamma n \to \pi^{0} n$$

- Liu, PhD thesis (1994)
- Wang, PhD thesis (1992)
- Bagheri, et al.
   PRC (1988)
- Salomon et al. NPA (1984)
- Rossi et al. NC A (1973)
- Benz et al. NPB (1973)
- White, et al. PR (1960)

#### Nothing yet 0 data points

#### 129 data points

#### 94 data points

| Motivation | Theoretical approach | Results | Outlook | Summary | Back Slides |
|------------|----------------------|---------|---------|---------|-------------|
| 00000      |                      |         |         |         |             |
|            |                      |         |         |         |             |

### Approaching the experimental data



#### NON-PERTURBATIVE REGIME

- Low energy regime
- $\blacksquare E_{\gamma} \approx 145 \text{ MeV} 215 \text{ MeV} \Longrightarrow \alpha_S >> 1 \text{ perturbative QCD breakdown}$

We need an Effective Theory approach  $\implies$  Chiral Perturbation Theory.

At low energies : Relevant degrees of freedom





• We use as expansion parameters the relative  $\frac{p}{\Lambda}$  and pion mass  $\frac{m_{\pi}}{\Lambda}$ 

| Motivation | Theoretical approach | Results | Outlook | Summary | Back Slides |
|------------|----------------------|---------|---------|---------|-------------|
| 00000      |                      |         |         |         |             |
|            |                      |         |         |         |             |
|            |                      |         |         |         |             |

### Previous works : Theoretical models for $\gamma p \rightarrow \pi^0 p$



 $O(p^4)$  relativistic ChPT  $O(p^4)$  HBChPT Empirical fit Hornidge et al. PRL(2013) Also M. Hilt et al. PRC(2013)

Starts failing at 20 MeV above  $\pi$  threshold

| Motivation | Theoretical approach | Results | Outlook | Back Slides |
|------------|----------------------|---------|---------|-------------|
| 00000      |                      |         |         |             |
|            |                      |         |         |             |
|            |                      |         |         |             |

### Previous works : Theoretical models for $\gamma p \rightarrow \pi^0 p$



 $O(p^4)$  relativistic ChPT  $O(p^4)$  HBChPT Empirical fit Horridge et al. PRL(2013) Also M. Hilt et al. PRC(2013)

Starts failing at 20 MeV above  $\pi$  threshold

But including Delta explicitly improved the situation

| Motivation | Theoretical approach | Results | Outlook | Summary | Back Slides |
|------------|----------------------|---------|---------|---------|-------------|
| 00000      |                      |         |         |         |             |
|            |                      |         |         |         |             |
|            |                      |         |         |         |             |

### Previous works : Theoretical models for $\gamma p \rightarrow \pi^0 p$



 $O(p^4)$  relativistic ChPT  $O(p^4)$  HBChPT Empirical fit Hornidge et al. PRL(2013) Also M. Hilt et al. PRC(2013)

Starts failing at 20 MeV above  $\pi$  threshold

But including Delta explicitly improved the situation



- $O(p^3)$  relativistic [tree level] ChPT
- $\blacksquare$   $O(p^3)$  relativistic [tree+loops] ChPT
- relativistic [tree+loops+△] H. Blin et al. PLB(2015)

| Motivation | Theoretical approach | Results<br>0000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|------------|----------------------|-----------------------|---------------|---------------|-------------|
|            |                      |                       |               |               |             |

### Some problems : Theoretical models for $\gamma p \rightarrow \pi^0 p$



 $O(p^4)$  relativistic ChPT  $O(p^4)$  HBChPT Empirical fit

Hornidge et al. PRL(2013) Also M. Hilt et al. PRC(2013) Starts failing at 20 MeV above  $\pi$  threshold



• Our aim is to extend this framework, relativistic ChPT with explicitly  $\Delta(1232)$  inclusion,to the charged channels making a global analysis

| Motivation<br>00000 | Theoretical approach | Results<br>0000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|---------------------|----------------------|-----------------------|---------------|---------------|-------------|
| The nuc             | leon Lagrangian      |                       |               |               |             |

Each chiral order brings new LECs with it. For this process  $\gamma N \rightarrow \pi N'$ 

$$\mathcal{L}_{N}^{(1)} = \bar{\Psi} \left( i D - m + \frac{g_{A}}{2} \mu \gamma_{5} \right) \Psi,$$



| Motivation<br>00000 | Theoretical approach | Results<br>0000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|---------------------|----------------------|-----------------------|---------------|---------------|-------------|
|                     |                      |                       |               |               |             |
| The nuc             | leon Lagrangian      |                       |               |               |             |

Each chiral order brings new LECs with it. For this process  $\gamma N \to \pi N'$ 



| Motivation | Theoretical approach | Results<br>0000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|------------|----------------------|-----------------------|---------------|---------------|-------------|
|            |                      |                       |               |               |             |

### The nucleon Lagrangian

Each chiral order brings new LECs with it. For this process  $\gamma N \to \pi N'$ 

$$\begin{split} \mathcal{L}_{N}^{(1)} &= \bar{\Psi} \left( i D - m + \frac{g_{A}}{2} \# \gamma_{5} \right) \Psi, \\ \mathcal{L}_{N}^{(2)} &= \bar{\Psi} \frac{1}{8m} \left( c_{6} F_{\mu\nu}^{+} + c_{7} \text{Tr} \left[ F_{\mu\nu}^{+} \right] \right) \sigma^{\mu\nu} \Psi + \cdots, \\ \mathcal{L}_{N}^{(3)} &= \bar{\Psi} \frac{i \epsilon^{\mu\nu\alpha\beta}}{2m} \left[ d_{8} \text{Tr} \left[ \tilde{F}_{\mu\nu}^{+} u_{\alpha} \right] + d_{9} \text{Tr} \left[ F_{\mu\nu}^{+} \right] u_{\alpha} + \text{h.c.} \right] D_{\beta} \Psi \\ &+ \bar{\Psi} \frac{\gamma^{\mu} \gamma_{5}}{2} \left[ d_{16} \text{Tr} \left[ \chi_{+} \right] u_{\mu} + d_{18} i [D_{\mu}, \chi_{-}] \right] \Psi + d_{20} \bar{\Psi} \left[ -i \frac{\gamma^{\mu} \gamma_{5}}{8m^{2}} [\tilde{F}_{\mu\nu}^{+}, u_{\lambda}] D^{\lambda\nu} + \text{h.c.} \right] \Psi \\ &+ d_{21} \bar{\Psi} \left[ \frac{1}{2} i \gamma^{\mu} \gamma_{5} [\tilde{F}_{\mu\nu}^{+}, u^{\nu}] \right] \Psi + d_{22} \bar{\Psi} \left[ \frac{1}{2} \gamma^{\mu} \gamma_{5} [D^{\nu}, F_{\mu\nu}^{-}] \right] \Psi + \cdots \end{split}$$

 $O(p^1)$ :  $g_A$ 



| Motivation<br>00000 | Theoretical approach | Results<br>00000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|---------------------|----------------------|------------------------|---------------|---------------|-------------|
|                     |                      |                        |               |               |             |
| The pior            | n Lagrangian         |                        |               |               |             |

Up to  $O(p^3)$  we do not need extra fitting Low-Energy-Constants

$$\mathcal{L}_{\pi\pi}^{(2)} = \frac{F_{\pi}^2}{4} \operatorname{Tr} \left[ D^{\mu} U \left( D_{\mu} U \right)^{\dagger} + \chi U^{\dagger} + U \chi^{\dagger} \right].$$

All can be expanded in terms of no fitting parameters



| Motivation | Theoretical approach | Results<br>0000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|------------|----------------------|-----------------------|---------------|---------------|-------------|
|            |                      |                       |               |               |             |

### Putting the pieces together

Using all the ingredients, we are able to calculate all possible diagrams up to  $O(p^3)$  order



| Motivation | Theoretical approach | Results<br>0000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|------------|----------------------|-----------------------|---------------|---------------|-------------|
|            |                      |                       |               |               |             |

### Putting the pieces together

Using all the ingredients, we are able to calculate all possible diagrams up to  $O(p^3)$  order



This approach is the same as used in previous ChPT works

| Motivation | Theoretical approach | Results<br>0000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|------------|----------------------|-----------------------|---------------|---------------|-------------|
|            |                      |                       |               |               |             |
| The Strate | ду                   |                       |               |               |             |

 $\blacksquare$  We keep our expansion up to  ${\cal O}(p^3)$  : Avoids inclusion of too many LECs at  ${\cal O}(p^4)$ 

| Motivation<br>00000 | Theoretical approach | Results<br>00000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |  |
|---------------------|----------------------|------------------------|---------------|---------------|-------------|--|
|                     |                      |                        |               |               |             |  |
| The Strategy        |                      |                        |               |               |             |  |

 $\blacksquare$  We keep our expansion up to  ${\cal O}(p^3)$  : Avoids inclusion of too many LECs at  ${\cal O}(p^4)$ 

Loop diagrams regularization

| Motivation<br>00000 | Theoretical approach | Results<br>00000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |  |
|---------------------|----------------------|------------------------|---------------|---------------|-------------|--|
|                     |                      |                        |               |               |             |  |
| The Strategy        |                      |                        |               |               |             |  |

• We keep our expansion up to  $O(p^3)$  : Avoids inclusion of too many LECs at  $O(p^4)$ 

Loop diagrams regularization

Loop diagrams : UV divergences and power counting breaking terms

 $rac{1}{\epsilon_{UV}}=rac{1}{4-dim}$  and terms  $\propto p^1,\,p^2,$  in amplitudes at order  $O(p^3)$ 

- Renormalization MS-EOMS :
  - MS : Substracts multiples of  $R = \gamma_E 1/\epsilon_{UV} \log(4\pi) 1$ ,
  - EOMS : Substracts terms of lower order than the nominal one for loop diagrams

ອງ

| Motivation | Theoretical approach | Results    | Outlook | Summary | Back Slides |
|------------|----------------------|------------|---------|---------|-------------|
| 00000      | 000000000            | 0000000000 | 00      | 00      |             |
|            |                      |            |         |         |             |
|            |                      |            |         |         |             |

### The Strategy to improve the approach

#### PION PHOTOPRODUCTION ON NUCLEONS



- Explicit inclusion of the  $\Delta(1232)$  spin 3/2 resonance
- $\Delta(1232)$  becomes more relevant the closer we are to its mass
- No more Low-Energy-Constants to be fitted (keep the model simple)

| Motivation | Theoretical approach | Results    | Outlook |    | Back Slides |
|------------|----------------------|------------|---------|----|-------------|
| 00000      | 000000000            | 0000000000 | 00      | 00 |             |
|            |                      |            |         |    |             |
|            |                      |            |         |    |             |
|            |                      |            |         |    |             |

### Contributions generated by the $\Delta(1232)$

$$\mathcal{L}_{\Delta\pi N}^{(1)} = \frac{ih_A}{2Fm_\Delta} \bar{\Psi} T^a \gamma^{\mu\nu\lambda} (\partial_\mu \Delta_\nu) \partial_\lambda \pi^a + \text{h.c.},$$

$$\mathcal{L}_{\Delta\gamma N}^{(2)} = \frac{3ieg_M}{2m(m+m_\Delta)} \bar{\Psi} T^3 (\partial_\mu \Delta_\nu) \tilde{f}^{\mu\nu} + \text{h.c.},$$

$$\overset{\uparrow}{\longrightarrow} \Delta h_A \text{ related to } \Gamma_\Delta^{strong}$$

#### Only one constrained parameter added, $g_M h_A$

| Motivation<br>00000 | Theoretical approach | Results<br>0000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|---------------------|----------------------|-----------------------|---------------|---------------|-------------|
|                     |                      |                       |               |               |             |
| Power C             | Counting Scheme      |                       |               |               |             |

For energies close to threshold, far from the  $\Delta(1232)$  mass : Lensky & Pascalutsa EPJ (2010)

$$D = 4L + \sum_{k=1}^{\infty} kV^{(k)} - 2N_{\pi} - N_N - \frac{1}{2}N_{\Delta}.$$

• No loop diagrams with  $\Delta(1232)$  up to  $O(p^3)$ .



 $\blacksquare \ \Delta(1232)$  is only included at tree level —>  ${\cal O}(p^{5/2})$  order

| Motivation  | Theoretical approach | Results<br>●0000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|-------------|----------------------|------------------------|---------------|---------------|-------------|
|             |                      |                        |               |               |             |
| The first m | essage               |                        |               |               |             |

Fitting LECs using data for all channels

| Motivation<br>00000 | Theoretical approach | Results<br>●0000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |  |
|---------------------|----------------------|------------------------|---------------|---------------|-------------|--|
|                     |                      |                        |               |               |             |  |
| The first message   |                      |                        |               |               |             |  |

#### Fitting LECs using data for all channels

Now we can see easily what can be obtained with the  $\Delta(1232)$  inclusion, without including extra fitting Low-Energy-Constants



- ChPT up to  $O(p^3)$  with loops
- ChPT up to  $O(p^3)$  with loops &  $\Delta(1232)$  inclusion

| Motivation | Theoretical approach | Results    | Outlook | Summary | Back Slides |
|------------|----------------------|------------|---------|---------|-------------|
|            |                      | 0000000000 |         |         |             |
|            |                      |            |         |         |             |

### What about low-energy constants?

Fitted LECs from other works using the same approach

|                                   | LEC                            | Source                                             |
|-----------------------------------|--------------------------------|----------------------------------------------------|
| $\mathcal{L}_N^{(2)}$             | $\tilde{c}_6$<br>$\tilde{c}_7$ | $\mu_p$ & $\mu_n$ [Bauer 2012],[Fuchs 2004]        |
| (2)                               | $d_{16}^{r}$                   | $g_A$ [Yao 2017]                                   |
| $\mathcal{L}_{N}^{(3)}$           | $d_{18}^{r}$                   | $\pi N$ scattering [Alarcon, 2012]                 |
|                                   | $d_{22}^{r}$                   | $\langle r_A^2  angle_N$ [Yao 2017]                |
| $\mathcal{L}_{\pi N\Delta}^{(1)}$ | $h_A$                          | $\Gamma^{ m Strong}_{\Delta}$ [Bernard, PRD(2013)] |
| $\mathcal{L}_{\pi N\Delta}^{(2)}$ | $g_M$                          | $\Gamma^{ m em}_{\Delta}$ [Blin 2015]              |

- c<sub>6</sub> and c<sub>7</sub> directly connected to nucleon magnetic moments
- $d_{16}$ , related to the  $\pi N$  axial-vector coupling,  $g_A$
- d<sub>18</sub>, studied in πN scattering processes (Golderberg-Treiman relation in πN coupling)
- We can fit few LECs appearing in  $\gamma N \rightarrow \pi N'$



| Motivation<br>00000 | Theoretical approach | Results<br>00●00000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|---------------------|----------------------|------------------------|---------------|---------------|-------------|
| Preliminary         | / results            |                        |               |               |             |

 $\label{eq:table_table} \begin{array}{l} \mathsf{TABLE} - \mathsf{LECs} \ \mathsf{and} \ \chi^2 \ \mathsf{for} \ \mathsf{calculations} \ \mathsf{at} \ \mathsf{different} \ \mathsf{chiral} \ \mathsf{orders}. \ \mathsf{Bold} \ \mathsf{numbers} \ \mathsf{are} \ \mathsf{fixed} \ \mathsf{and} \ \mathsf{depend} \ \mathsf{only} \ \mathsf{only} \ \mathsf{only} \ \mathsf{only} \ \mathsf{only} \ \mathsf{and} \$ 

| LECs                  | $O(p^1)$ | $O(p^2)$ | $O(p^{5/2})$ | $O(p^3)$ , Fit I |
|-----------------------|----------|----------|--------------|------------------|
| g                     | 1.27     | 1.27     | 1.27         | 1.11             |
| $c_6$                 | -        | 3.706    | 3.706        | 5.07             |
| $c_7$                 | -        | -1.913   | -1.913       | -2.68            |
| $d_{18}$              | -        | -        | -            | 0.60             |
| $d_{22}$              | -        | -        | -            | 0.96             |
| $d_8 + d_9$           | -        | -        | -            | $1.16\pm0.01$    |
| $d_8 - d_9$           | -        | -        | -            | $1.02\pm0.13$    |
| $d_{20}$              | -        | -        | -            | $14.9\pm2.5$     |
| $d_{21}$              | -        | -        | -            | $-2.65\pm0.18$   |
| $h_A$                 | -        | -        | 2.87         | 2.87             |
| $g_M$                 | -        | -        | 3.16         | $2.90\pm0.01$    |
| $\chi^2_{TOT}/dof$    | 165.     | 310.     | 60.7         | 3.25             |
| $\chi^2_{\pi 0}/dof$  | 208.     | 392.     | 76.6         | 3.58             |
| $\chi^2_{\pi\pm}/dof$ | 10.7     | 9.15     | 2.88         | 1.76             |
| $\chi^2_{\pi-}/dof$   | 5.73     | 6.29     | 2.51         | 2.49             |

| Motivation<br>00000 | Theoretical approach | Results<br>000●0000000 | Outlook<br>00 | Summary<br>00 | Back Slides |  |
|---------------------|----------------------|------------------------|---------------|---------------|-------------|--|
|                     |                      |                        |               |               |             |  |
| Preliminary results |                      |                        |               |               |             |  |

| LECs                 | Fit I           | Fit II - 🖄    | Fit III           | Fit IV          |
|----------------------|-----------------|---------------|-------------------|-----------------|
| $d_8 + d_9$          | $1.16\pm0.01$   | $3.53\pm0.01$ | $0.98\pm0.02$     | $0.90 \pm 0.01$ |
| $d_8 - d_9$          | $1.02 \pm 0.14$ | $1.84\pm0.24$ | $1.72 \pm 0.13$   | $-0.09\pm0.15$  |
| $d_{18}$             | 0.60            | -1.00         | $5.40 \pm 0.13!!$ | 0.60            |
| $d_{20}$             | $14.9 \pm 2.5$  | $-17.6\pm2.4$ | $29.7\pm2.6$      | $6.94 \pm 2.5$  |
| $d_{21}$             | $-2.65\pm0.18$  | $0.01\pm0.17$ | $-1.52\pm0.19$    | $-2.46\pm0.18$  |
| $g_M$                | $2.90\pm0.01$   | -             | $3.13\pm0.02$     | $3.20\pm0.01$   |
| $e_{48}$             | -               | -             | -                 | $1.97\pm0.04$   |
| $\chi^2_{TOT}/dof$   | 3.25            | 30.0          | 1.59              | 1.58            |
| $\chi^2_{\pi 0}/dof$ | 3.58            | 37.2          | 1.33              | 1.48            |
| $\chi^2_{\pi+}/dof$  | 1.76            | 3.66          | 2.40              | 1.67            |
| $\chi^2_{\pi-}/dof$  | 2.49            | 4.95          | 2.69              | 2.40            |

- **c**<sub>6</sub>, c<sub>7</sub> LECS are fixed from nucleon form factors  $(\mu_p, \mu_n)$  (When they are included in the fit we get the same value, with or without  $\Delta$ )
- **d**'s LECs are sensitive to the lower order corrections, i.e., to the  $\Delta$  inclusion.
- **d**<sub>18</sub> Goldelberg-Treiman relation, leads backward angles at lower energies.
- **I**  $h_A \& g_M$  can slightly vary without change the values of the other LECs.

| Motivation          | Theoretical approach | Results<br>000●0000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|---------------------|----------------------|------------------------|---------------|---------------|-------------|
|                     |                      |                        |               |               |             |
| Preliminary results |                      |                        |               |               |             |

| LECs                 | Fit I           | Fit II - 🖄    | Fit III           | Fit IV          |
|----------------------|-----------------|---------------|-------------------|-----------------|
| $d_8 + d_9$          | $1.16\pm0.01$   | $3.53\pm0.01$ | $0.98\pm0.02$     | $0.90 \pm 0.01$ |
| $d_8 - d_9$          | $1.02 \pm 0.14$ | $1.84\pm0.24$ | $1.72\pm0.13$     | $-0.09\pm0.15$  |
| $d_{18}$             | 0.60            | -1.00         | $5.40 \pm 0.13!!$ | 0.60            |
| $d_{20}$             | $14.9\pm2.5$    | $-17.6\pm2.4$ | $29.7\pm2.6$      | $6.94 \pm 2.5$  |
| $d_{21}$             | $-2.65\pm0.18$  | $0.01\pm0.17$ | $-1.52\pm0.19$    | $-2.46\pm0.18$  |
| $g_M$                | $2.90\pm0.01$   | -             | $3.13\pm0.02$     | $3.20\pm0.01$   |
| $e_{48}$             | <u> </u>        | -             | -                 | $1.97\pm0.04$   |
| $\chi^2_{TOT}/dof$   | 3.25            | 30.0          | 1.59              | 1.58            |
| $\chi^2_{\pi 0}/dof$ | 3.58            | 37.2          | 1.33              | 1.48            |
| $\chi^2_{\pi+}/dof$  | 1.76            | 3.66          | 2.40              | 1.67            |
| $\chi^2_{\pi-}/dof$  | 2.49            | 4.95          | 2.69              | 2.40            |

- **c**<sub>6</sub>, c<sub>7</sub> LECS are fixed from nucleon form factors  $(\mu_p, \mu_n)$  (When they are included in the fit we get the same value, with or without  $\Delta$ )
- **d**'s LECs are sensitive to the lower order corrections, i.e., to the  $\Delta$  inclusion.
- **d\_{18}** Goldelberg-Treiman relation, leads backward angles at lower energies.
- **I**  $h_A \& g_M$  can slightly vary without change the values of the other LECs.

| Motivation          | Theoretical approach | Results<br>000●0000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|---------------------|----------------------|------------------------|---------------|---------------|-------------|
|                     |                      |                        |               |               |             |
| Preliminary results |                      |                        |               |               |             |

| LECs                 | Fit I            | Fit II - 🖄    | Fit III           | Fit IV         |
|----------------------|------------------|---------------|-------------------|----------------|
| $d_8 + d_9$          | $1.16 \pm 0.01$  | $3.53\pm0.01$ | $0.98\pm0.02$     | $0.90\pm0.01$  |
| $d_8 - d_9$          | $1.02 \pm 0.14$  | $1.84\pm0.24$ | $1.72 \pm 0.13$   | $-0.09\pm0.15$ |
| $d_{18}$             | 0.60             | -1.00         | $5.40 \pm 0.13!!$ | 0.60           |
| $d_{20}$             | $14.9 \pm 2.5$   | $-17.6\pm2.4$ | $29.7\pm2.6$      | $6.94 \pm 2.5$ |
| $d_{21}$             | $-2.65 \pm 0.18$ | $0.01\pm0.17$ | $-1.52\pm0.19$    | $-2.46\pm0.18$ |
| $g_M$                | $2.90 \pm 0.01$  | -             | $3.13 \pm 0.02$   | $3.20\pm0.01$  |
| $e_{48}$             |                  | -             | -                 | $1.97\pm0.04$  |
| $\chi^2_{TOT}/dof$   | 3.25             | 30.0          | 1.59              | 1.58           |
| $\chi^2_{\pi 0}/dof$ | 3.58             | 37.2          | 1.33              | 1.48           |
| $\chi^2_{\pi+}/dof$  | 1.76             | 3.66          | 2.40              | 1.67           |
| $\chi^2_{\pi-}/dof$  | 2.49             | 4.95          | 2.69              | 2.40           |

- **c**<sub>6</sub>, c<sub>7</sub> LECS are fixed from nucleon form factors  $(\mu_p, \mu_n)$  (When they are included in the fit we get the same value, with or without  $\Delta$ )
- **d**'s LECs are sensitive to the lower order corrections, i.e., to the  $\Delta$  inclusion.
- **d\_{18}** Goldelberg-Treiman relation, leads backward angles at lower energies.
- **I**  $h_A \& g_M$  can slightly vary without change the values of the other LECs.

| Motivation          | Theoretical approach | Results<br>000●0000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|---------------------|----------------------|------------------------|---------------|---------------|-------------|
|                     |                      |                        |               |               |             |
| Preliminary results |                      |                        |               |               |             |

| LECs                 | Fit I           | Fit II - 🖄    | Fit III           | Fit IV          |
|----------------------|-----------------|---------------|-------------------|-----------------|
| $d_8 + d_9$          | $1.16\pm0.01$   | $3.53\pm0.01$ | $0.98\pm0.02$     | $0.90 \pm 0.01$ |
| $d_8 - d_9$          | $1.02 \pm 0.14$ | $1.84\pm0.24$ | $1.72\pm0.13$     | $-0.09\pm0.15$  |
| $d_{18}$             | 0.60            | -1.00         | $5.40 \pm 0.13!!$ | 0.60            |
| $d_{20}$             | $14.9\pm2.5$    | $-17.6\pm2.4$ | $29.7\pm2.6$      | $6.94 \pm 2.5$  |
| $d_{21}$             | $-2.65\pm0.18$  | $0.01\pm0.17$ | $-1.52\pm0.19$    | $-2.46\pm0.18$  |
| $g_M$                | $2.90\pm0.01$   | -             | $3.13\pm0.02$     | $3.20\pm0.01$   |
| $e_{48}$             | <u> </u>        | _             | _                 | $1.97\pm0.04$   |
| $\chi^2_{TOT}/dof$   | 3.25            | 30.0          | 1.59              | 1.58            |
| $\chi^2_{\pi 0}/dof$ | 3.58            | 37.2          | 1.33              | 1.48            |
| $\chi^2_{\pi+}/dof$  | 1.76            | 3.66          | 2.40              | 1.67            |
| $\chi^2_{\pi-}/dof$  | 2.49            | 4.95          | 2.69              | 2.40            |

- **c**<sub>6</sub>, c<sub>7</sub> LECS are fixed from nucleon form factors  $(\mu_p, \mu_n)$  (When they are included in the fit we get the same value, with or without  $\Delta$ )
- **d**'s LECs are sensitive to the lower order corrections, i.e., to the  $\Delta$  inclusion.
- **d\_{18}** Goldelberg-Treiman relation, leads backward angles at lower energies.
- **I**  $h_A \& g_M$  can slightly vary without change the values of the other LECs.

| Motivation          | Theoretical approach | Results<br>000●0000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|---------------------|----------------------|------------------------|---------------|---------------|-------------|
|                     |                      |                        |               |               |             |
| Preliminary results |                      |                        |               |               |             |

| LECs                 | Fit I           | Fit II - 🖄    | Fit III           | Fit IV          |
|----------------------|-----------------|---------------|-------------------|-----------------|
| $d_8 + d_9$          | $1.16\pm0.01$   | $3.53\pm0.01$ | $0.98\pm0.02$     | $0.90\pm0.01$   |
| $d_8 - d_9$          | $1.02 \pm 0.14$ | $1.84\pm0.24$ | $1.72\pm0.13$     | $-0.09\pm0.15$  |
| $d_{18}$             | 0.60            | -1.00         | $5.40 \pm 0.13!!$ | 0.60            |
| $d_{20}$             | $14.9\pm2.5$    | $-17.6\pm2.4$ | $29.7\pm2.6$      | $6.94 \pm 2.5$  |
| $d_{21}$             | $-2.65\pm0.18$  | $0.01\pm0.17$ | $-1.52\pm0.19$    | $-2.46\pm0.18$  |
| $g_M$                | $2.90\pm0.01$   | -             | $3.13\pm0.02$     | $3.20\pm0.01$   |
| $e_{48}$             | <u> </u>        | _             | _                 | $1.97 \pm 0.04$ |
| $\chi^2_{TOT}/dof$   | 3.25            | 30.0          | 1.59              | 1.58            |
| $\chi^2_{\pi 0}/dof$ | 3.58            | 37.2          | 1.33              | 1.48            |
| $\chi^2_{\pi+}/dof$  | 1.76            | 3.66          | 2.40              | 1.67            |
| $\chi^2_{\pi-}/dof$  | 2.49            | 4.95          | 2.69              | 2.40            |

- **c**<sub>6</sub>, c<sub>7</sub> LECS are fixed from nucleon form factors  $(\mu_p, \mu_n)$  (When they are included in the fit we get the same value, with or without  $\Delta$ )
- **d**'s LECs are sensitive to the lower order corrections, i.e., to the  $\Delta$  inclusion.
- **d\_{18}** Goldelberg-Treiman relation, leads backward angles at lower energies.
- **I**  $h_A \& g_M$  can slightly vary without change the values of the other LECs.

| Motivation | Theoretical approach | Results | Outlook<br>00 | Summary<br>00 | Back Slides |
|------------|----------------------|---------|---------------|---------------|-------------|
|            |                      |         |               |               |             |



#### **Cross sections**



- A. Schmidt et al., PRL (2001)
- S. Schumann et al., EPJ A (2010)
- This work  $O(p^3)$  with  $\Delta$

- McPherson et al., PRB (1964)
- Fissum et al., PRC (1996)
- J. Ahrens et al. (GDH, A2), EPJA(2004).
- This work  $O(p^3)$  with  $\Delta$



- White, R. M. Schectman, and B. M. Chasan, Phys. Rev. 120, 614 (1960)
- M. Wang, Ph. D. thesis, University of Kentucky (1992).
- Fit I :  $O(p^3)$  with  $\Delta$

| Motivation | Theoretical approach | Results<br>00000●00000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|------------|----------------------|------------------------|---------------|---------------|-------------|
|            |                      |                        |               |               |             |



#### **Cross sections**



- A. Schmidt et al., PRL (2001)
- S. Schumann et al., EPJ A (2010)
- Fit I :  $O(p^3)$  with  $\Delta$
- Fit II :  $O(p^3) \not \Delta$

- McPherson et al., PRB (1964)
- Fissum et al., PRC (1996)
- J. Ahrens et al. (GDH, A2), EPJA(2004).
- Fit I :  $O(p^3)$  with  $\Delta$
- Fit II :  $O(p^3) \not \Delta$



- White, R. M. Schectman, and B. M. Chasan, Phys. Rev. 120, 614 (1960)
- M. Wang, Ph. D. thesis, University of Kentucky (1992).
- Fit I :  $O(p^3)$  with  $\Delta$
- $\blacksquare \ \mathsf{Fit} \ \mathsf{II}: O(p^3) \not \Delta$

| Motivation | Theoretical approach | Results    | Outlook | Summary | Back Slides |
|------------|----------------------|------------|---------|---------|-------------|
|            |                      | 0000000000 |         |         |             |
|            |                      |            |         |         |             |



- Hornidge et al., (MAMI) PRL (2013)
- Fit I :  $O(p^3)$  with  $\Delta$

#### Angular cross sections



- E. Korkmaz et al., PRL (1999)
- J. Ahrens et al. (GDH, A2), EPJA (2004)
- Fit I :  $O(p^3)$  with  $\Delta$



- K. Liu, Ph. D. thesis, University of Kentucky (1994)
- V. Rossi et al., NCA (1973)
- A. Bagheri et al., PRC (1988).
- Fit I :  $O(p^3)$  with  $\Delta$

| Motivation | Theoretical approach | Results     | Outlook | Summary | Back Slides |
|------------|----------------------|-------------|---------|---------|-------------|
|            |                      | 00000000000 |         |         |             |
|            |                      |             |         |         |             |



#### **Beam asymmetries**



- Hornidge et al., (MAMI) PRL (2013)
- Fit I :  $O(p^3)$  with  $\Delta$

| Motivation | Theoretical approach | Results     | Outlook | Summary | Back Slides |
|------------|----------------------|-------------|---------|---------|-------------|
|            |                      | 00000000000 |         |         |             |
|            |                      |             |         |         |             |

#### Differential cross sections



G. H. G. Navarro, A. N. H. Blin, M. J. Vicente Vacas, and D.-L. Yao, (2019), arXiv :1908.00890 [hep-ph]

| Motivation | Theoretical approach | Results     | Outlook | Summary | Back Slides |
|------------|----------------------|-------------|---------|---------|-------------|
|            |                      | 00000000000 |         |         |             |
|            |                      |             |         |         |             |

### Differential cross sections



arXiv :1908.00890 [hep-ph]

| Motivation | Theoretical approach | Results    | Outlook | Summary | Back Slides |
|------------|----------------------|------------|---------|---------|-------------|
|            |                      | 0000000000 |         |         |             |
|            |                      |            |         |         |             |

### Beam asymmetries



| Motivation<br>00000 | Theoretical approach | Results<br>00000000000 | Outlook<br>●O | Summary<br>00 | Back Slides |
|---------------------|----------------------|------------------------|---------------|---------------|-------------|
| What is th          | ne next?             |                        |               |               |             |

Other reactions :

 $\pi\text{-electro-production off nucleons }\gamma^*N \to \pi N'$ 

- Trying to simplify the model by the  $\Delta(1232)$  inclusion. No need to reach higher orders at this energy (This would add many unknown LECs)
- Increase the prediction capability and useful accuracy of this approach for other processes



Fit LECs for first  $\rightarrow$  then make predictions for other processes

| Motivation | Theoretical approach | Results | Outlook | Summary | Back Slides |
|------------|----------------------|---------|---------|---------|-------------|
|            |                      |         | 00      |         |             |
|            |                      |         |         |         |             |

### Other processes in the same framework?

Nucleon magnetic moments and  $\Delta$  EM decays

$$N \to N'\gamma, \quad \Delta \to N\gamma$$

Pion Photoproduction (Prediction/LECs Fitting)

 $\gamma N \to \pi N'$ 

 $\chi^2/dof=3.25$  with  $\Delta,\,\chi^2/dof=30.0$  Å

Pion Electro-production (Predictions/LECs fitting)

 $eN \to \pi N'$ 

Weak Pion production-> Neutrino high precision processes (Predictions)

 $\nu N \to N' \pi \nu'$ 

Gustavo H. Guerrero-Navarro

 $\Delta(1232)$  contribution in the  $\gamma N \rightarrow \pi N'$  reaction

August 17th 2019 29 / 34

| Motivation | Theoretical approach | Results | Outlook | Summary | Back Slides |
|------------|----------------------|---------|---------|---------|-------------|
|            |                      |         | 00      |         |             |
|            |                      |         |         |         |             |

### Other processes in the same framework?

Nucleon magnetic moments and  $\Delta$  EM decays

$$N \to N'\gamma, \quad \Delta \to N\gamma$$

Pion Photoproduction (Prediction/LECs Fitting)

 $\gamma N \to \pi N'$ 

 $\chi^2/dof = 3.25$  with  $\Delta, \chi^2/dof = 30.0$  Å

Pion Electro-production (Predictions/LECs fitting)

 $eN \to \pi N'$ 

Weak Pion production-> Neutrino high precision processes (Predictions)

 $\nu N \to N' \pi \nu'$ 

Gustavo H. Guerrero-Navarro

 $\Delta(1232)$  contribution in the  $\gamma N \rightarrow \pi N'$  reaction

August 17th 2019 29 / 34

| Motivation | Theoretical approach | Results<br>00000000000 | Outlook<br>00 | Summary<br>•O | Back Slides |
|------------|----------------------|------------------------|---------------|---------------|-------------|
|            |                      |                        |               |               |             |
| Summary    |                      |                        |               |               |             |

It's particularly important the contribution of  $\Delta$  at low energies for the neutral and charged channel.

| Motivation<br>00000 | Theoretical approach | Results<br>0000000000 | Outlook<br>00 | Summary<br>●O | Back Slides |
|---------------------|----------------------|-----------------------|---------------|---------------|-------------|
|                     |                      |                       |               |               |             |
| Summary             | /                    |                       |               |               |             |

- It's particularly important the contribution of ∆ at low energies for the neutral and charged channel.
- Globally the △ inclusion improves much the agreement between data and ChPT models, even without extra fitting constants.

| Motivation<br>00000 | Theoretical approach | Results<br>0000000000 | Outlook<br>00 | Summary<br>●O | Back Slides |
|---------------------|----------------------|-----------------------|---------------|---------------|-------------|
| Summary             |                      |                       |               |               |             |

- It's particularly important the contribution of ∆ at low energies for the neutral and charged channel.
- Globally the △ inclusion improves much the agreement between data and ChPT models, even without extra fitting constants.
- Wider agreement with data near  $\Delta$  mass using  $O(p^3)$  calculation with  $\Delta$  inclusion than previous higher order  $O(p^4)$  calculation without  $\Delta$ .

| Motivation<br>00000 | Theoretical approach | Results<br>00000000000 | Outlook<br>00 | Summary<br>•O | Back Slides |
|---------------------|----------------------|------------------------|---------------|---------------|-------------|
|                     |                      |                        |               |               |             |
| Summa               | rv                   |                        |               |               |             |

- It's particularly important the contribution of  $\Delta$  at low energies for the neutral and charged channel.
- Globally the △ inclusion improves much the agreement between data and ChPT models, even without extra fitting constants.
- Wider agreement with data near  $\Delta$  mass using  $O(p^3)$  calculation with  $\Delta$  inclusion than previous higher order  $O(p^4)$  calculation without  $\Delta$ .
- Even the inclusion of a single tree level order  $O(p^4)$  piece can improve the results being good enough as a full  $O(p^4)$  calculation can do with many parameteres.

| Motivation | Theoretical approach | Results | Outlook | Summary | Back Slides |
|------------|----------------------|---------|---------|---------|-------------|
|            |                      |         |         | 00      |             |
|            |                      |         |         |         |             |

## Thank you

| Motivation<br>00000 | Theoretical approach | Results<br>0000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|---------------------|----------------------|-----------------------|---------------|---------------|-------------|
|                     |                      |                       |               |               |             |

#### Error estimations

$$\begin{split} \delta \mathcal{O}_{LEC} &= \qquad \left( \sum_{i,j} \left[ \mathsf{Corr}(i,j) \right] \frac{\partial \mathcal{O}(\bar{x}_i)}{\partial x_i} \delta x_i \frac{\partial \mathcal{O}(\bar{x}_j)}{\partial x_j} \delta x_j \right)^{1/2}, \\ \delta \mathcal{O}_{th}^{(n)} &= \qquad \max \left( \left| \mathcal{O}^{(n_{LO})} \right| Q^{n-n_{LO}+1}, \left\{ \left| \mathcal{O}^{(k)} - \mathcal{O}^{(j)} \right| Q^{n-j} \right\} \right), \quad n_{LO} \leq j \leq k \leq n \end{split}$$

where  $Q=m_\pi/\Lambda_b,\Lambda_b$  is the breakdown scale of the chiral expansion. We have  $\Lambda_b=4\pi F_\pi\sim 1~{\rm GeV}.$ 

| Motivation<br>00000 | Theoretical approach | Results<br>00000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |
|---------------------|----------------------|------------------------|---------------|---------------|-------------|
|                     |                      |                        |               |               |             |
| Other fitt          | ed LECs              |                        |               |               |             |

 $T_{A,B} = V_{B,B}$  of the LECs determined from other processes

| TABLE - | values of the | LLOS determine | a nom other pro | 1005505. |
|---------|---------------|----------------|-----------------|----------|
|         |               |                |                 |          |

|                                   | LEC           | Value                            | Source                                                    |  |  |
|-----------------------------------|---------------|----------------------------------|-----------------------------------------------------------|--|--|
| a <sup>(2)</sup>                  | $\tilde{c}_6$ | $5.07 \pm 0.15$                  | $\mu_p$ and $\mu_n$ [Bauer :2012pv,Yao :2018pzc,PDG :2016 |  |  |
| $\mathcal{L}_N$                   | $\tilde{c}_7$ | $-2.68\pm0.08$                   | $\mu_p$ and $\mu_n$ [Bauer :2012pv,Yao :2019avf,PDG :2016 |  |  |
|                                   | $d_{18}$      | $-0.20 \pm 0.80 \ { m GeV}^{-2}$ | $\pi N$ scattering [Alarcon :2012kn]                      |  |  |
|                                   | $d_{22}$      | $5.20 \pm 0.02 \; { m GeV}^{-2}$ | $\langle r_A^2  angle_N$ [Yao :2017fym]                   |  |  |
| $\mathcal{L}_{\pi N\Delta}^{(1)}$ | $h_A$         | $2.87\pm0.03$                    | $\Gamma_\Delta^{ m strong}$ [Bernard :2012hb]             |  |  |
| $\mathcal{L}_{\pi N\Delta}^{(2)}$ | $g_M$         | $3.16\pm0.16$                    | $\Gamma^{ m EM}_\Delta$ [Blin :2015era]                   |  |  |

| Motivation<br>00000        | Theoretical approach | Results<br>0000000000 | Outlook<br>00 | Summary<br>00 | Back Slides |  |
|----------------------------|----------------------|-----------------------|---------------|---------------|-------------|--|
|                            |                      |                       |               |               |             |  |
| Chiral Perturbation Theory |                      |                       |               |               |             |  |

 $\chi \; \mathrm{PT}$ 

- At large distances (low energy) we are encouraged to use baryons and light mesons, instead of quarks and gluons, as degrees of freedom
- We use pion mass in the same spirit of the Chiral Symmetry Breaking in QCD with quark masses



- We use as expansion parameters the relative  $\frac{p}{\Lambda}$  and pion mass  $\frac{m_{\pi}}{\Lambda}$
- We can construct Lagrangians that preserves Chiral Symmetry for each order in expansion.
- Appears Low Energy Constants (should be extracted from QCD, but QCD cannot be solved)