Prospects of Spectroscopy at Future Facilities

Simon Eidelman

Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk, Russia and Lebedev Physical Institute RAS, Moscow, Russia

Outline

- 1. General
- 2. Hadrons of light quarks
- 3. Hadrons with heavy quarks
- 4. Conclusions

Instead of Introduction

S.L. Olsen, T. Skwarnicki, D. Zieminska, Rev.Mod.Phys. 90, 015003 (2018):

"This nearly total disconnect between the hadrons that we observe in experiments and the quarks and gluons that appear in the theory is a problem of large proportions in particle physics.³ This is what we refer to as the "QCD dilemma." In addition to the intellectual dissatisfaction with a theory that is not directly applicable to the particles that are used and detected in experiments, there is also a practical problem in that many SM tests and searches for new physics (NP) involve strongly interacting hadrons in the initial and/or final states of the associated measurements."

³As Frank Wilczek put it in a recent interview (Wilczek, 2016): "We have something called a standard model, but its foundations are kind of scandalous. We have not known how to define an important part of it mathematically rigorously,..."

Models of Hadron Production

General

- What is behind the nice pictures above: how distinguish different possibilities experimentally a question to theory?
- Strong interaction was deprived attention lately compared to CP violation, ν physics, astroparticle physics
- In the light meson sector: Many "extra" states (e.g. scalars), which of them are "exotic"? Mesons between 2 and 3 GeV, high-spin states Rather old (LASS) studies of strange mesons
- In the heavy meson sector a variety of new states with exotic properties among heavy quarkonia, but scarce knowledge of open-flavour mesons $(D^{**}, D_{sJ}, B^{**}, B_{sJ})$
- Situation with baryons is far from satisfactory

Hadrons with Light Quarks

August 16-21, 2019

VEPP-2000 will run in the c.m. energy range 0.3-2 GeV for another 7-10 years Cross sections of $e^+e^- \rightarrow$ hadrons as an input for the $(g-2)_{\mu}$ problem Dynamics of multihadronic production of mesons ρ, ω, ϕ and their excitations Cross sections near the $N\overline{N}$ threshold S.Eidelman, BINP/LPI

p.6/45

August 16-21, 2019

BaBar

Strong interaction of nucleons in the Paris potential convolved with c.m. energy spread of 0.95 MeV and radiative corrections explains all σ 's A.I. Milstein and S.G. Salnikov, Nucl. Phys. A977, 60 (2018) R.R. Akhmetshin et al., Phys. Lett. B794, 64 (2019) Is the effect $\propto \mathcal{B}$ in $p\bar{p}$ annihilation? The effect of strong interaction of $N\bar{N}$ near threshold is common for e^+e^- , J/ψ , D and B decays

e^+e^- Colliders – III

BESIII Detector

The c.m.energy range: 2-4.6(4.9) for BESIII, 9-11.02 (?) for BelleII Study of dynamics in multihadronic processes using ISR, vector meson decays in the ψ and Υ families, baryons of light quarks, some baryons with charm

BelleII and BESIII will strogly improve the BaBar measurements

S.Eidelman, BINP/LPI

p.10/45

Lepto- and Hadroproduction

VES

COMPASS

τ lepton as a Source of Resonances

- A pure laboratory to test Standard Model
- All three basic interactions are probed: electromagnetic production in $e^+e^- \rightarrow \tau^+\tau^-$, weak decay, strong form factors in hadronic decays
- Low decay multiplicity \Rightarrow smaller combinatorial BG
- Each hadronic decay is saturated by a single resonance: 2π , 4π , $\eta\pi\pi - \rho + \rho' + \dots$, $3\pi - a_1(1260) + a'_1$ etc.
- At $\Upsilon(4S) \sigma(e^+e^- \to \tau^+\tau^-) \approx 0.9$ nb, so 1 ab⁻¹ gives $\approx 10^9 \tau^+\tau^-$ pairs
- BelleII will collect a data sample
 3 orders of magnitude higher than CLEO

τ Decay to Three Pions and $a_1(1260)$

- Current values of mass and width show a high scatter of values caused by different parameterizations
- Determination of decay dynamics $(\rho \pi, \sigma \pi, KK^*, \ldots)$
- More light on $a_1(1420)$ and possible a'_1 at 1640 MeV

$\pi_1(1600), \ \eta \pi, \ \eta' \pi$

- Only single 1⁻⁺-wave pole required to describe peaks at 1.4 and 1.6 GeV/c²
 - $m_0 = (1564 \pm 24_{\text{stat.}} \pm 86_{\text{sys.}}) \text{ MeV}/c^2$
 - $\Gamma_0 = (492 \pm 54 \text{ stat.} \pm 102 \text{ sys.}) \text{ MeV}/c^2$
 - Consistent with $\pi_1(1600)$
 - First measurement of pole parameters of π₁(1600)
- Raises doubts about existence of $\pi_1(1400)$

Rodas et al., Phys.Rev.Lett. 122, 042002 (2013)

What can be learned about the $\eta\pi$ and $\eta'\pi$ systems from the combined analysis of the $\eta(\eta')\pi^+\pi^-$ system in e^+e^- (CMD-3, SND, BESIII), photoproduction (GlueX) and τ decays (BelleII)?

S.Eidelman, BINP/LPI

p.14/45

Properties of excited vector mesons (ρ', ω', ϕ') are known badly Strong evidence for the ρ' at 2.2 GeV, Is $\phi(2170)$ normal? ω'

August 16-21, 2019

The $M_{K\pi}$ spectrum is well described by the $K^*(892), K_0^*(700)$ (κ) and $K_0^*(1430)$ (or $K^*(1410)$) $M(K^*(892)^-) = (895.47 \pm 0.20 \pm 0.44 \pm 0.59)$ MeV $\Gamma(K^*(892)^-) = (46.2 \pm 0.6 \pm 1.0 \pm 0.7)$ MeV Are masses of $K^{*\pm}$ and K^{*0} different? D. Epifanov et al., Phys. Lett. B 654, 65 (2007)

August 16-21, 2019

Spectroscopy of K^* 's

About 3.5% of τ decays are with kaons

State	J^P	Mass, MeV	Width, MeV	Decays
$K_{0}^{*}(700)(\kappa)$	0+	824 ± 30	470 ± 50	$K\pi$
$K^{*}(892)$	1-	891.66 ± 0.26	50.8 ± 0.9	$K\pi$
$K_1(1270)$	1^{+}	1272 ± 7	90 ± 20	$K\pi\pi$
$K_1(1400)$	1^{+}	1403 ± 7	174 ± 13	$K\pi\pi$
$K^{*}(1410)$	1-	1414 ± 15	232 ± 21	$K\pi\pi,\ K\pi$
$K_0^*(1430)$	0+	1425 ± 50	270 ± 80	$K\pi$
$K_2^*(1430)$	2^{+}	1425.6 ± 1.5	98.5 ± 2.9	$K\pi,~K\pi\pi$
K(1460)	2^{+}	$1482.40 \pm 3.58 \pm 15.22$	$335.60 \pm 6.20 \pm 8.65$	$K^*\pi,\ K ho$
$K_2(1580)$	2^{-}	≈ 1580	≈ 110	$K^*\pi, \ K_2^*(1430)\pi$
$K_1(1650)$	1^{+}	1650 ± 50	150 ± 50	$K\phi$
$K^{*}(1680)$	1-	1718 ± 18	322 ± 110	$\overline{K\pi}, \ K\rho, \ K^*\pi$

12 more resonances from 1780 to $3100~{\rm MeV}$ are badly studied

S.Eidelman, BINP/LPI

p.17/45

K_L^0 Factory (KLF) at JLAB

Mass and width of the $K_0^*(700)$ (κ)

Measurement with KLF will reduce: Uncertainty in the mass by a factor of two! Uncertainty in the width by a factor of five! Hadrons with Heavy Quarks

Main Players

In addition to BESIII, Belle/BelleII, LHCb, ATLAS and CMS, there are also Super-c- τ factories and PANDA

 $p\overline{p} \rightarrow c\overline{c}$ has high potential (all J^P accessible) Two difficulties – one should know the precise mass of a narrow state, and PANDA can start too late (close to 2030?) after BelleII and LHCb S.Eidelman, BINP/LPI

Analyses of the first data are in progress, the first paper on luminosity measurement will be soon submitted to CPC

LHCb upgrade - III

	LHCb		
Decay mode	$23\mathrm{fb}^{-1}$	$50{\rm fb}^{-1}$	$300{\rm fb}^{-1}$
$B^+ \to X(3872) (\to J/\psi \pi^+ \pi^-) K^+$	14k	30k	180k
$B^+ \rightarrow X(3872) (\rightarrow \psi(2S)\gamma) K^+$	500	1k	7k
$B^0 \rightarrow \psi(2S) K^- \pi^+$	340k	700k	4M
$B_c^+ \to D_s^+ D^0 \overline{D}{}^0$	10	20	100
$\Lambda_b^0 \rightarrow J/\psi p K^-$ [*]	680k	1.4M	8M
$\Xi_b^- \to J/\psi \Lambda K^-$	4k	10k	55k
$\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$	7k	15k	90k
$\Xi_{bc}^+ \to J/\psi \Xi_c^+$	50	100	600

S.Eidelman, BINP/LPI

p.26/45

Dots – good old guys, Dots – new states matching Quark Model Dots – neutral, triangles – charged states, exotic? Rectangulars – potential model predictions Exotic because of the too large number of states with given $I^G J^{PC}$

or unexpected decay pattern $(J/\psi\pi^+\pi^- \text{ instead of open charm})$

Study of Charmonium-(like) States – II

Parameters of the Peaks in e⁺e⁻ Cross Sections

Huge data samples needed to perform a coupled-channel analysis resulting in a consistent set of resonance parameters

From a controversial Y(4140) of CDF to $\chi_{c1}(4140), \ \chi_{c1}(4274), \ \chi_{c0}(4500), \ \chi_{c0}(4700)$ of LHCb Once again about importance of full amplitude analysis! R. Aaij et al., Phys.Rev.Lett. 118, 022003 (2017)

X(3872) Production at ATLAS

Determination of the X(3872) Width at BelleII

With 50 ab^{-1} for $D^0 \overline{D}^0 \pi^0$ the toy-MC gives for Γ_{tot} :UL at 90%CL 180 keV 3σ sign.280 keV 5σ sign.570 keV

Talk of H. Hirata PANDA: $\Gamma/\Delta\Gamma > 5$ at $\Gamma > 50...120$ keV

AI Acc-QCD 2016, A. Seryi, JAI

Control Holloway Control OXFORD

Two projects of Super-charm-tau factories

Novosibirsk: 2-6 GeV, L from 0.63 (1 GeV) to 1 (4 GeV) 10^{35} cm⁻²s⁻¹ Hefei: 2-7 GeV, L from 0.5 (Phase I) to 1 (Phase II) 10^{35} cm⁻²s⁻¹ Both have longitudinal polarization of the initial e^- beam

Counting rate 300 kHz Good energy and momentum resolution High efficiency for soft tracks Very high identification quality

|--|

State	J/ψ	$\psi(2S)$	$\psi(3770)$	$\psi(4040)$
M, GeV	3.097	3.686	3.773	4.040
Γ , MeV	0.093	0.294	27	84
$\int L dt$, fb ⁻¹	800	250	400	10
N	10^{12}	10^{11}	$2 \cdot 10^9$	10^{8}

- Even for the J/ψ and $\psi(2S)$ full decay pattern is unclear
- Is the $\psi(3770)$ a $D\overline{D}$ factory?
- 20 (25) fb⁻¹ needed to produce $10^8 \psi(4160) (\psi(4415))$ mesons
- ~ $10^{10} \chi_{cJ}$ and $\eta_c(1S)$ in radiative decays of the J/ψ and $\psi(2S)$
- About $10^8 h_c$ mesons in $\psi(2S) \to h_c \pi^0$
- $\eta_c(2S)$ mesons can be produced in $\psi(2S) \to \eta_c(2S)\gamma$ or $\gamma\gamma$ collisions
- Although believed to be conventional, these states are not well enough studied

Unconventional charmonia

- All $\psi(Y)$ states with $J^{PC} = 1^{--}$ will be directly produced at $\sqrt{s} = M_Y$: $\psi(4260/4230), \ \psi(4360), \ \psi(4660)$
- Charged Z_c states can be produced by scanning the \sqrt{s} range and studying the $J/\psi\pi\pi$, $h_c\pi\pi$, $D^{(*)}\bar{D}^{(*)}$ final states
- Neutral $c\bar{c}$ states with other quantum numbers can be studied in the recoil to $\pi\pi$, π^0 , η , ω final states
- C = +1 states can be also produced in $\gamma\gamma$ collisions
- Between 6 and 7 GeV double $c\bar{c}$ production?

Mesons with open flavour

- 12 D^{**} are known
- 9 D_{sJ} are known, what are $D_{s0}^*(2317)$ and $D_{s1}(2460)$?
- 6 B^{**} are known
- Only 3 B_{sJ} observed, there is also X(5568) decaying to $B_s \pi^{\pm}$ claimed by D0, but not seen by ATLAS, CDF, CMS and LHCb

More efforts from both experiment and theory needed

B_c and its Excitations – I

The B_c is well established and its parameters are dominated by LHCb: $M = 6274.9 \pm 0.8$ MeV, $\tau = (0.510 \pm 0.009) \times 10^{-12}$ s

The $B_c(2S)$ decaying to $B_c \pi^+ \pi^-$ is expected to be narrow. ATLAS claims it at $6842 \pm 4 \pm 5$ MeV

B_c and its Excitations – II

CMS and LHCb have consistent, more precise results at 29 MeV higher mass

It would be interesting to search for $B_c(nP)$ as well as $B_c^* \to B_c \gamma$ The "Last Meson" definitely deserves more attention

S.Eidelman, BINP/LPI

p.39/45

Mass difference: $m(\Xi_{cc}^{++})_{LHCb} - m(\Xi_{cc}^{+})_{SELEX} = 103 \pm 2 \text{ MeV}$ >Inconsistent with being isospin partners

- $\tau_{\Xi_{cc}^{++}} = (256_{-22}^{+24} \pm 14)$ fs
- Confirms it is a weakly decaying J = 1/2 ground state
- A challenging search for Ξ_{cc}^+ and Ω_{cc}^{++} in future

For the $\Omega_c(css)$ five narrow states are predicted with mass around 3000 MeV and splittings about 30 MeV, two $1/2^-$, two $3/2^-$ and one $5/2^-$

The $s\overline{s}$ diquark is ripped apart and made narrow Not clear what is what LHCb: R. Aaij et al., PRL 118, 182001 (2017) Belle: J. Yelton et al., Phys. Rev. D97, 051102 (2018)

August 16-21, 2019

R. Aaij et al., Phys.Rev.Lett. 122, 222001 (2019)

S.Eidelman, BINP/LPI

p.42/45

Searches for new baryons and maximum BelleII energy

Promising energy regions

Particles	Threshold, GeV/c^2
$B^{(*)}ar{B}^{**}$	11.00 - 11.07
$B_s^{(*)}ar{B}_s^{**}$	11.13 - 11.26
$arLambda_bar\Lambda_b$	11.24
$B^{**}\bar{B}^{**}$	11.44-11.49
$B_s^{**}\bar{B}_s^{**}$	11.48 - 11.68
$arLambda_b ar A_b^{**}$	11.53 - 11.54
$\Sigma_b^{(*)} \bar{\Sigma}_b^{(*)}$	11.62 - 11.67
$arLambda_b^{stst} ar\Lambda_b^{stst}$	11.82 - 11.84

At the moment it is 11.02 GeV or slightly higher

Circular Electron Positron Collider (CEPC)

Unique number of hadrons produced under clean conditions, a study of various correlations

Operation mode	Z factory	WW threshold	Higgs factory
$\sqrt{s} \; (\text{GeV})$	91.2	160	240
Run time (year)	2	1	7
Instantaneous luminosity $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	16 - 32	10	3
Integrated luminosity (ab^{-1})	8-16	2.6	5.6
Higgs boson yield	_	_	10^{6}
W boson yield	_	10^{7}	10^{8}
Z boson yield	$10^{11} 10^{12}$	10^{8}	10^{8}

Lepton Universality – How large is $\mathcal{B}(W^+ \to \tau^+ \nu_{\tau})$?

Conclusions

Already now and more in close future there are excellent possibilities to study strong interactions

Complementarity of different approaches, both at the facility and analysis level, is crucial