Freed-Isobar Analysis of Light Mesons at COMPASS

Fabian Krinner for the COMPASS collaboration

Max Planck Institut für Physik

XVIII Conference on Hadron Spectroscopy and Structure

Guilin, China

August 17th 2019

The COMPASS experiment common Muon Proton Apparatus for Structure and Spectroscopy

The COMPASS experiment common Muon Proton Apparatus for Structure and Spectroscopy

Fabian Krinner (MPP)

 COMPASS: Large data set for the diffractive process

 $\pi_{\text{beam}}^- + p \rightarrow \pi^- \pi^+ \pi^- + p$

- COMPASS: Large data set for the diffractive process $\pi^{-}_{\text{beam}} + \mathbf{p} \rightarrow \pi^{-}\pi^{+}\pi^{-} + \mathbf{p}$
- Squared four-momentum transferred t' by Pomeron \mathbb{P}

- COMPASS: Large data set for the diffractive process $\pi^{-}_{\text{beam}} + p \rightarrow \pi^{-}\pi^{+}\pi^{-} + p$
- Squared four-momentum transferred t' by Pomeron \mathbb{P}
- Exclusive measurement

- COMPASS: Large data set for the diffractive process $\pi^{-}_{\text{beam}} + p \rightarrow \pi^{-}\pi^{+}\pi^{-} + p$
- Squared four-momentum transferred t' by Pomeron \mathbb{P}
- Exclusive measurement
- 46×10^6 exclusive events

- COMPASS: Large data set for the diffractive process $\pi^{-}_{\text{beam}} + p \rightarrow \pi^{-}\pi^{+}\pi^{-} + p$
- Squared four-momentum transferred t' by Pomeron \mathbb{P}
- Exclusive measurement
- 46×10^6 exclusive events
- Rich structure in π⁻π⁺π⁻ mass spectrum: Intermediate states X⁻

- COMPASS: Large data set for the diffractive process $\pi_{beam}^- + p \rightarrow \pi^- \pi^+ \pi_{bachelor}^- + p$
- Squared four-momentum transferred t' by Pomeron \mathbb{P}
- Exclusive measurement
- 46×10^6 exclusive events
- Rich structure in π⁻π⁺π⁻ mass spectrum: Intermediate states X⁻
- Also structure in π⁺π⁻ subsystem: Intermediate states ξ (isobar)

COMPASS collaboration, PR **D95** (2017) 032004

• Intermediate states: Dynamic amplitudes $\Delta(m)$: (line shape) Complex-valued functions of the invariant mass of the state

- Intermediate states: Dynamic amplitudes $\Delta(m)$: (line shape) Complex-valued functions of the invariant mass of the state
- Simplest example: Breit-Wigner amplitude with nominal mass m₀ and width Γ₀ of a resonance:

$$\Delta_{\rm BW}\left(m\right) = \frac{m_0\Gamma_0}{m_0^2 - m^2 - im_0\Gamma_0}$$

Modelling resonances

Example: dynamic isobar amplitude for $\rho(770)$

- Intermediate states: Dynamic amplitudes △ (m): (line shape)
 Complex-valued functions of the invariant mass of the state
- Simplest example: Breit-Wigner amplitude with nominal mass m₀ and width Γ₀ of a resonance:

$$\Delta_{\rm BW}\left(m\right) = \frac{m_0\Gamma_0}{m_0^2 - m^2 - im_0\Gamma_0}$$

• Analysis performed independently in bins of $m_{\chi^-} = m_{3\pi}$.

- Intermediate states: Dynamic amplitudes $\Delta(m)$: (line shape) Complex-valued functions of the invariant mass of the state
- Simplest example: Breit-Wigner amplitude with nominal mass m₀ and width Γ₀ of a resonance:

$$\Delta_{\rm BW}\left(m\right) = \frac{m_0\Gamma_0}{m_0^2 - m^2 - im_0\Gamma_0}$$

- Analysis performed independently in bins of $m_{\chi^-} = m_{3\pi}$.
 - Learn $m_{3\pi}$ dependence of partial-wave amplitudes
 - Dynamic amplitude of X⁻ inferred form the data

- Intermediate states: Dynamic amplitudes $\Delta(m)$: (line shape) Complex-valued functions of the invariant mass of the state
- Simplest example: Breit-Wigner amplitude with nominal mass m₀ and width Γ₀ of a resonance:

$$\Delta_{\rm BW}\left(m\right) = \frac{m_0\Gamma_0}{m_0^2 - m^2 - im_0\Gamma_0}$$

- Analysis performed independently in bins of $m_{\chi^-} = m_{3\pi}$.
 - Learn $m_{3\pi}$ dependence of partial-wave amplitudes
 - Dynamic amplitude of X⁻ inferred form the data
- Dynamic amplitude of $\xi \to \pi^+\pi^-$: Model input in Partial-Wave Analysis

- Intermediate states: Dynamic amplitudes $\Delta(m)$: (line shape) Complex-valued functions of the invariant mass of the state
- Simplest example: Breit-Wigner amplitude with nominal mass m₀ and width Γ₀ of a resonance:

$$\Delta_{\rm BW}\left(m\right) = \frac{m_0\Gamma_0}{m_0^2 - m^2 - im_0\Gamma_0}$$

- Analysis performed independently in bins of $m_{\chi^-} = m_{3\pi}$.
 - Learn $m_{3\pi}$ dependence of partial-wave amplitudes
 - Dynamic amplitude of X⁻ inferred form the data
- Dynamic amplitude of $\xi \to \pi^+\pi^-$: Model input in Partial-Wave Analysis
 - ► Physical dynamic isobar amplitudes may differ from the model

- Intermediate states: Dynamic amplitudes $\Delta(m)$: (line shape) Complex-valued functions of the invariant mass of the state
- Simplest example: Breit-Wigner amplitude with nominal mass m₀ and width Γ₀ of a resonance:

$$\Delta_{\rm BW}\left(m\right) = \frac{m_0\Gamma_0}{m_0^2 - m^2 - im_0\Gamma_0}$$

- Analysis performed independently in bins of $m_{\chi^-} = m_{3\pi}$.
 - Learn $m_{3\pi}$ dependence of partial-wave amplitudes
 - Dynamic amplitude of X⁻ inferred form the data
- Dynamic amplitude of $\xi \to \pi^+\pi^-$: Model input in Partial-Wave Analysis
 - ► Physical dynamic isobar amplitudes may differ from the model
 - Parameterizations neglect e.g. final-state interactions

$$\mathcal{I}\left(ec{ au}
ight) = \left|\sum_{i}^{ extsf{waves}} \mathcal{T}_{i}\mathcal{A}_{i}\left(ec{ au}
ight)
ight|^{2}$$

$$\mathcal{I}\left(ec{ au}
ight) = \left|\sum_{i}^{\mathsf{waves}} \mathcal{T}_{i}\mathcal{A}_{i}\left(ec{ au}
ight)
ight|^{2}$$

- Production amplitudes T_i :
 - Encode strengths and relative phases of the single partial waves i
 - Free parameters in the analysis
 - Independent of $\vec{\tau}$

$$\mathcal{I}\left(ec{ au}
ight)=\left|\sum_{i}^{ extsf{waves}}\mathcal{T}_{i}\mathcal{A}_{i}\left(ec{ au}
ight)
ight|^{2}$$

- Production amplitudes T_i :
 - Encode strengths and relative phases of the single partial waves i
 - Free parameters in the analysis
 - Independent of $\vec{\tau}$
- Decay amplitudes $A_i(\vec{\tau})$:
 - ► Describe \(\tilde{\tau}\) distributions of single partial waves
 - Known functions

$$\mathcal{I}\left(ec{ au}
ight) = \left|\sum_{i}^{\mathsf{waves}} \mathcal{T}_{i}\mathcal{A}_{i}\left(ec{ au}
ight)
ight|^{2}$$

- Production amplitudes T_i :
 - Encode strengths and relative phases of the single partial waves i
 - Free parameters in the analysis
 - Independent of $\vec{\tau}$
- Decay amplitudes $A_i(\vec{\tau})$:
 - ► Describe \(\tilde{\tau}\) distributions of single partial waves
 - Known functions

$$\mathcal{A}_{i}(\vec{\tau}) = \psi_{i}(\vec{\tau}) \Delta_{i}(m_{\pi^{-}\pi^{+}})$$

$$\mathcal{I}\left(ec{ au}
ight) = \left|\sum_{i}^{\mathsf{waves}}\mathcal{T}_{i}\mathcal{A}_{i}\left(ec{ au}
ight)
ight|^{2}$$

- Production amplitudes T_i :
 - Encode strengths and relative phases of the single partial waves i
 - Free parameters in the analysis
 - Independent of $\vec{\tau}$
- Decay amplitudes $A_i(\vec{\tau})$:
 - ► Describe \(\tilde{\tau}\) distributions of single partial waves
 - Known functions

Factorize decay amplitudes:

 $\mathcal{A}_{i}\left(\vec{\tau}\right) = \psi_{i}\left(\vec{\tau}\right) \Delta_{i}\left(m_{\pi^{-}\pi^{+}}\right)$

 Angular amplitudes ψ_i (τ): Determined by angular momentum and spin quantum numbers of the waves

Ap. Ag > it

 Expand intensity distribution *I*(*τ*) over phase-space variables *τ* as sum over partial waves:

$$\mathcal{I}\left(ec{ au}
ight) = \left|\sum_{i}^{\mathsf{waves}} \mathcal{T}_{i}\mathcal{A}_{i}\left(ec{ au}
ight)
ight|^{2}$$

- Production amplitudes T_i :
 - Encode strengths and relative phases of the single partial waves i
 - Free parameters in the analysis
 - Independent of $\vec{\tau}$
- Decay amplitudes $A_i(\vec{\tau})$:
 - ► Describe tributions of single partial waves
 - Known functions

Factorize decay amplitudes:

 $\mathcal{A}_{i}\left(\vec{\tau}\right) = \psi_{i}\left(\vec{\tau}\right) \Delta_{i}\left(m_{\pi^{-}\pi^{+}}\right)$

- Angular amplitudes ψ_i (τ
 ⁱ): Determined by angular momentum and spin quantum numbers of the waves
- Dynamic isobar amplitudes $\Delta_i(m_{\pi^-\pi^+})$: Model input
 - Example: ρ(770) with fixed mass m₀, width Γ₀ and quantum numbers J^{PC}_ξ = 1^{-−}

Ap. Ag > it

Expand intensity distribution *I*(*τ*) over phase-space variables *τ* as sum over partial waves:

$$\mathcal{I}\left(ec{ au}
ight) = \left|\sum_{i}^{\mathsf{waves}} \mathcal{T}_{i}\mathcal{A}_{i}\left(ec{ au}
ight)
ight|^{2}$$

- Production amplitudes T_i :
 - Encode strengths and relative phases of the single partial waves i
 - Free parameters in the analysis
 - Independent of $\vec{\tau}$
- Decay amplitudes $A_i(\vec{\tau})$:
 - ► Describe \(\tilde{\tau}\) distributions of single partial waves
 - Known functions

Factorize decay amplitudes:

 $\mathcal{A}_{i}\left(\vec{\tau}\right) = \psi_{i}\left(\vec{\tau}\right)\Delta_{i}\left(m_{\pi^{-}\pi^{+}}\right)$

- Angular amplitudes ψ_i (τ
 ⁱ): Determined by angular momentum and spin quantum numbers of the waves
- Dynamic isobar amplitudes $\Delta_i(m_{\pi^-\pi^+})$: Model input
 - Example: ρ(770) with fixed mass m₀, width Γ₀ and quantum numbers J^{PC}_ξ = 1^{-−}
 - Not given by first principles
 - Have to be known beforehand

• $J_{X^{-}}^{PC}$: Spin and eigenvalues under parity and charge conjugation of X^{-}

J^{PC}_{X−}: Spin and eigenvalues under parity and charge conjugation of X⁻
 M^ε: Spin projection on the beam and naturality of the exchange particle Natural: P = (-1)^J

- J_{X}^{PC} : Spin and eigenvalues under parity and charge conjugation of X^- • M^{ε} : Spin projection on the beam and naturality of the exchange particle
- ξ : Appearing isobar, e.g. f_0 , $\rho(770)$, $f_2(1270)$ with J_{ξ}^{PC}

• $J_{X^{-}}^{PC}$: Spin and eigenvalues under parity and charge conjugation of X^{-}

- M^{ε} : Spin projection on the beam and naturality of the exchange particle
- ξ : Appearing isobar, e.g. f_0 , $\rho(770)$, $f_2(1270)$ with J_{ξ}^{PC}
- π : Indicating the bachelor π^- . Always the same

- $J_{X^{-}}^{PC}$: Spin and eigenvalues under parity and charge conjugation of X^{-}
- M^{ε} : Spin projection on the beam and naturality of the exchange particle
- ξ : Appearing isobar, e.g. f_0 , $\rho(770)$, $f_2(1270)$ with J_{ξ}^{PC}
- π : Indicating the bachelor π^- . Always the same
- L: Orbital angular momentum between isobar and bachelor pion

- $J_{X^-}^{PC}$: Spin and eigenvalues under parity and charge conjugation of X^-
- M^{ε} : Spin projection on the beam and naturality of the exchange particle
- ξ : Appearing isobar, e.g. f_0 , $\rho(770)$, $f_2(1270)$ with J_{ξ}^{PC}
- π : Indicating the bachelor π^- . Always the same
- L: Orbital angular momentum between isobar and bachelor pion

Various coherent possibilities for quantum-number combinations
Wave naming scheme

- $J_{X^{-}}^{PC}$: Spin and eigenvalues under parity and charge conjugation of X^{-}
- M^{ε} : Spin projection on the beam and naturality of the exchange particle
- ξ : Appearing isobar, e.g. f_0 , $\rho(770)$, $f_2(1270)$ with J_{ξ}^{PC}
- π : Indicating the bachelor π^- . Always the same
- L: Orbital angular momentum between isobar and bachelor pion

Various coherent possibilities for quantum-number combinations

• Total intensity in one $(m_{3\pi}, t')$ bin as function of phase-space variables $\vec{\tau}$:

$$\mathcal{I}(ec{ au}) = \left|\sum_{i}^{waves} \mathcal{T}_{i}[\psi_{i}(ec{ au}) \Delta_{i}(m_{\pi^{-}\pi^{+}}) + \text{Bose sym.}]
ight|^{2}$$

Fit parameters: Transition amplitudes T_i

Fixed: Angular amplitudes $\psi_i(\vec{\tau})$, dynamic isobar amplitudes $\Delta_i(m_{\pi^-\pi^+})$

• Total intensity in one $(m_{3\pi}, t')$ bin as function of phase-space variables $\vec{\tau}$:

$$\mathcal{I}(ec{ au}) = \left|\sum_{i}^{waves} \mathcal{T}_{i}[\psi_{i}(ec{ au}) \Delta_{i}(m_{\pi^{-}\pi^{+}}) + \text{Bose sym.}]
ight|^{2}$$

Fit parameters: Transition amplitudes T_i Fixed: Angular amplitudes $\psi_i(\vec{\tau})$, dynamic isobar amplitudes $\Delta_i(m_{\pi^-\pi^+})$

• Fixed isobar amplitudes \rightarrow Sets of $m_{\pi^-\pi^+}$ bins:

$$\Delta_i (m_{\pi^-\pi^+})
ightarrow \sum_{\text{bins}} \mathscr{T}_i^{\text{bin}} \Delta_i^{\text{bin}} (m_{\pi^-\pi^+}) \equiv [\pi\pi]_{J^{PC}}$$
 $\Delta_i^{\text{bin}} (m_{\pi^-\pi^+}) = egin{cases} 1, & ext{if } m_{\pi^-\pi^+} & ext{in the bin.} \\ 0, & ext{otherwise.} \end{cases}$

• Total intensity in one $(m_{3\pi}, t')$ bin as function of phase-space variables $\vec{\tau}$:

$$\mathcal{I}(ec{ au}) = \left|\sum_{i}^{waves} \mathcal{T}_{i}[\psi_{i}(ec{ au}) \Delta_{i}(m_{\pi^{-}\pi^{+}}) + \text{Bose sym.}]
ight|^{2}$$

Fit parameters: Transition amplitudes T_i Fixed: Angular amplitudes $\psi_i(\vec{\tau})$, dynamic isobar amplitudes $\Delta_i(m_{\pi^-\pi^+})$

• Fixed isobar amplitudes \rightarrow Sets of $m_{\pi^-\pi^+}$ bins:

$$\Delta_i (m_{\pi^-\pi^+})
ightarrow \sum_{\text{bins}} \mathscr{T}_i^{\text{bin}} \Delta_i^{\text{bin}} (m_{\pi^-\pi^+}) \equiv [\pi\pi]_{J^{PC}}$$
 $\Delta_i^{\text{bin}} (m_{\pi^-\pi^+}) = egin{cases} 1, & ext{if } m_{\pi^-\pi^+} & ext{in the bin.} \\ 0, & ext{otherwise.} \end{cases}$

• Each $m_{\pi^-\pi^+}$ bin behaves like an independent partial wave with $\mathcal{T}_i^{\text{bin}} = \mathcal{T}_i \mathscr{T}_i^{\text{bin}}$:

$$\mathcal{I}(\vec{\tau}) = \left|\sum_{i}^{\text{waves}} \sum_{\text{bin}}^{\text{bin}} \mathcal{T}_{i}^{\text{bin}} \left[\psi_{i}(\vec{\tau}) \Delta_{i}^{\text{bin}}(m_{\pi^{-}\pi^{+}}) + \text{Bose sym.}\right]\right|^{2}$$

- 50 bins in $m_{3\pi}$ from 0.5 to 2.5 GeV, 4 bins in t' from 0.1 to 1.0 (GeV/c)²
 - 200 independent fits

- 50 bins in $m_{3\pi}$ from 0.5 to 2.5 GeV, 4 bins in t' from 0.1 to 1.0 (GeV/c)²
 - ► 200 independent fits
- Wave set: Based on 88 partial-waves model COMPASS collaboration, PRD 95, (2017) 032004

- 50 bins in $m_{3\pi}$ from 0.5 to 2.5 GeV, 4 bins in t' from 0.1 to 1.0 (GeV/c)²
 - ► 200 independent fits
- Wave set: Based on 88 partial-waves model COMPASS collaboration, PRD 95, (2017) 032004
- I2 waves freed (72 remaining waves still with fixed isobars):

$$0^{-+}0^{+}[\pi\pi]_{0^{++}}\pi S$$

 $0^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P$

- 50 bins in $m_{3\pi}$ from 0.5 to 2.5 GeV, 4 bins in t' from 0.1 to 1.0 (GeV/c)²
 - ► 200 independent fits
- Wave set: Based on 88 partial-waves model COMPASS collaboration, PRD 95, (2017) 032004
- I2 waves freed (72 remaining waves still with fixed isobars):

$$0^{-+}0^{+}[\pi\pi]_{0^{++}}\pi S$$

$$0^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P$$

$$1^{++}0^{+}[\pi\pi]_{0^{++}}\pi P$$

$$1^{++}0^{+}[\pi\pi]_{1^{--}}\pi S$$

- 50 bins in $m_{3\pi}$ from 0.5 to 2.5 GeV, 4 bins in t' from 0.1 to 1.0 (GeV/c)²
 - ► 200 independent fits
- Wave set: Based on 88 partial-waves model COMPASS collaboration, PRD 95, (2017) 032004
- I2 waves freed (72 remaining waves still with fixed isobars):

$$\begin{array}{lll} 0^{-+}0^{+}[\pi\pi]_{0^{++}}\pi S & 2^{-+}0^{+}[\pi\pi]_{0^{++}}\pi D \\ 0^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P \\ 1^{++}0^{+}[\pi\pi]_{0^{++}}\pi P & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi F \\ 1^{++}0^{+}[\pi\pi]_{1^{--}}\pi S & 2^{-+}0^{+}[\pi\pi]_{2^{++}}\pi S \end{array}$$

- 50 bins in $m_{3\pi}$ from 0.5 to 2.5 GeV, 4 bins in t' from 0.1 to 1.0 $(\text{GeV}/c)^2$
 - ► 200 independent fits
- Wave set: Based on 88 partial-waves model COMPASS collaboration, PRD 95, (2017) 032004
- I2 waves freed (72 remaining waves still with fixed isobars):

$$\begin{array}{lll} 0^{-+}0^{+}[\pi\pi]_{0^{++}}\pi S & 2^{-+}0^{+}[\pi\pi]_{0^{++}}\pi D & 1^{++}1^{+}[\pi\pi]_{1^{--}}\pi S \\ 0^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P & 2^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P \\ 1^{++}0^{+}[\pi\pi]_{0^{++}}\pi P & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi F & 2^{++}1^{+}[\pi\pi]_{1^{--}}\pi D \\ 1^{++}0^{+}[\pi\pi]_{1^{--}}\pi S & 2^{-+}0^{+}[\pi\pi]_{2^{++}}\pi S \end{array}$$

- 50 bins in $m_{3\pi}$ from 0.5 to 2.5 GeV, 4 bins in t' from 0.1 to 1.0 $(\text{GeV}/c)^2$
 - ► 200 independent fits
- Wave set: Based on 88 partial-waves model COMPASS collaboration, PRD 95, (2017) 032004
- I2 waves freed (72 remaining waves still with fixed isobars):

$$\begin{array}{lll} 0^{-+}0^{+}[\pi\pi]_{0^{++}}\pi S & 2^{-+}0^{+}[\pi\pi]_{0^{++}}\pi D & 1^{++}1^{+}[\pi\pi]_{1^{--}}\pi S \\ 0^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P & 2^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P \\ 1^{++}0^{+}[\pi\pi]_{0^{++}}\pi P & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi F & 2^{++}1^{+}[\pi\pi]_{1^{--}}\pi D \\ 1^{++}0^{+}[\pi\pi]_{1^{--}}\pi S & 2^{-+}0^{+}[\pi\pi]_{2^{++}}\pi S & 1^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P \end{array}$$

- 50 bins in $m_{3\pi}$ from 0.5 to 2.5 GeV, 4 bins in t' from 0.1 to 1.0 $(\text{GeV}/c)^2$
 - 200 independent fits
- Wave set: Based on 88 partial-waves model COMPASS collaboration, PRD 95, (2017) 032004
- I2 waves freed (72 remaining waves still with fixed isobars):

$$\begin{array}{lll} 0^{-+}0^{+}[\pi\pi]_{0^{++}}\pi S & 2^{-+}0^{+}[\pi\pi]_{0^{++}}\pi D & 1^{++}1^{+}[\pi\pi]_{1^{--}}\pi S \\ 0^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P & 2^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P \\ 1^{++}0^{+}[\pi\pi]_{0^{++}}\pi P & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi F & 2^{++}1^{+}[\pi\pi]_{1^{--}}\pi D \\ 1^{++}0^{+}[\pi\pi]_{1^{--}}\pi S & 2^{-+}0^{+}[\pi\pi]_{2^{++}}\pi S & 1^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P \end{array}$$

• 40 MeV $m_{\pi^-\pi^+}$ bins for freed waves, finer binnings in regions of known resonances: $f_0(980)$, $\rho(770)$, $f_2(1270)$

- 50 bins in $m_{3\pi}$ from 0.5 to 2.5 GeV, 4 bins in t' from 0.1 to 1.0 $(\text{GeV}/c)^2$
 - 200 independent fits
- Wave set: Based on 88 partial-waves model COMPASS collaboration, PRD 95, (2017) 032004
- 12 waves freed (72 remaining waves still with fixed isobars):

$$\begin{array}{lll} 0^{-+}0^{+}[\pi\pi]_{0^{++}}\pi S & 2^{-+}0^{+}[\pi\pi]_{0^{++}}\pi D & 1^{++}1^{+}[\pi\pi]_{1^{--}}\pi S \\ 0^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi P & 2^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P \\ 1^{++}0^{+}[\pi\pi]_{0^{++}}\pi P & 2^{-+}0^{+}[\pi\pi]_{1^{--}}\pi F & 2^{++}1^{+}[\pi\pi]_{1^{--}}\pi D \\ 1^{++}0^{+}[\pi\pi]_{1^{--}}\pi S & 2^{-+}0^{+}[\pi\pi]_{2^{++}}\pi S & 1^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P \end{array}$$

- 40 MeV $m_{\pi^-\pi^+}$ bins for freed waves, finer binnings in regions of known resonances: $f_0(980)$, $\rho(770)$, $f_2(1270)$
- Depending on $m_{3\pi}$ and wave, up to 62 $m_{\pi^-\pi^+}$ bins per freed wave

- Focus here: Spin-exotic wave with quantum numbers: $J_{\chi^-}^{PC} = 1^{-+}$
 - Spin-exotic: Not a simple quark-model $q\bar{q}$ state

- Focus here: Spin-exotic wave with quantum numbers: $J_{X^-}^{PC} = 1^{-+}$
 - Spin-exotic: Not a simple quark-model $q\bar{q}$ state
- Resonance content disputed for a long time
- Expected: π_1 (1600) $\rightarrow \rho$ (770) π^-

- Focus here: Spin-exotic wave with quantum numbers: $J_{X^{-}}^{PC} = 1^{-+}$
 - Spin-exotic: Not a simple quark-model $q\bar{q}$ state
- Resonance content disputed for a long time
- Expected: π_1 (1600) $\rightarrow \rho$ (770) π^-
- Dynamic isobar amplitude: Dominated by $\rho(770)$

- Focus here: Spin-exotic wave with quantum numbers: $J_{\chi^-}^{PC} = 1^{-+}$
 - Spin-exotic: Not a simple quark-model $q\bar{q}$ state
- Resonance content disputed for a long time
- Expected: π_1 (1600) $\rightarrow \rho$ (770) π^-
- Dynamic isobar amplitude: Dominated by $\rho(770)$
- Possible additional effects on dynamic amplitude:

 - Rescattering with the third (bachelor) π^-
 - Non-resonant contributions

- Focus here: Spin-exotic wave with quantum numbers: $J_{\chi^-}^{PC} = 1^{-+}$
 - Spin-exotic: Not a simple quark-model $q\bar{q}$ state
- Resonance content disputed for a long time
- Expected: π_1 (1600) $\rightarrow \rho$ (770) π^-
- Dynamic isobar amplitude: Dominated by $\rho(770)$
- Possible additional effects on dynamic amplitude:

 - Rescattering with the third (bachelor) π^-
 - Non-resonant contributions

Ambiguity in this fit model!

• Freed-isobar analysis: Much more parameters than fixed-isobar analysis

- Freed-isobar analysis: Much more parameters than fixed-isobar analysis
 - May causes continuous mathematical ambiguities in the model

Zero mode in the spin-exotic wave What is a "zero mode"?

- Ap. Dg > 1 t
- Freed-isobar analysis: Much more parameters than fixed-isobar analysis
 - ► May causes continuous mathematical ambiguities in the model
- Example: Spin-exotic wave: $\mathcal{A}(\vec{\tau}) = \psi(\vec{\tau}) \Delta(m_{\pi^-\pi^+})$ with $\psi(\vec{\tau}) \propto \vec{\rho}_1 \times \vec{\rho}_3 \quad (\propto \sin \theta_{\mathsf{HF}})$

Zero mode in the spin-exotic wave What is a "zero mode"?

- Ar Dy>it
- Freed-isobar analysis: Much more parameters than fixed-isobar analysis
 - May causes continuous mathematical ambiguities in the model
- Example: Spin-exotic wave: $\mathcal{A}(\vec{\tau}) = \psi(\vec{\tau}) \Delta(m_{\pi^-\pi^+})$ with $\psi(\vec{\tau}) \propto \vec{p}_1 \times \vec{p}_3 \quad (\propto \sin \theta_{\text{HF}})$
- Bose symmetrized amplitude for $\pi_1^- \pi_2^+ \pi_3^-$ final state:

$$\mathcal{A}_{1^{-+}}^{\text{symm}}\left(\vec{\tau}\right) = \left(\vec{p}_{1} \times \vec{p}_{3}\right) \Delta^{0}(m_{\pi_{1}^{-}\pi_{2}^{+}}) + \left(\vec{p}_{3} \times \vec{p}_{1}\right) \Delta^{0}(m_{\pi_{2}^{+}\pi_{3}^{-}})$$

Zero mode in the spin-exotic wave What is a "zero mode"?

- Ar Ag > it
- Freed-isobar analysis: Much more parameters than fixed-isobar analysis
 - May causes continuous mathematical ambiguities in the model
- Example: Spin-exotic wave: $\mathcal{A}(\vec{\tau}) = \psi(\vec{\tau}) \Delta(m_{\pi^-\pi^+})$ with $\psi(\vec{\tau}) \propto \vec{p}_1 \times \vec{p}_3 \quad (\propto \sin \theta_{\text{HF}})$
- Bose symmetrized amplitude for $\pi_1^- \pi_2^+ \pi_3^-$ final state:

$$\begin{split} \mathcal{A}_{1-+}^{\text{symm}}\left(\vec{\tau}\right) &= \left(\vec{\rho}_{1} \times \vec{\rho}_{3}\right) \Delta^{0}(m_{\pi_{1}^{-}\pi_{2}^{+}}) + \left(\vec{\rho}_{3} \times \vec{\rho}_{1}\right) \Delta^{0}(m_{\pi_{2}^{+}\pi_{3}^{-}}) \\ &= \left(\vec{\rho}_{1} \times \vec{\rho}_{3}\right) \left[\Delta^{0}(m_{\pi_{1}^{-}\pi_{2}^{+}}) - \Delta^{0}(m_{\pi_{2}^{+}\pi_{3}^{-}})\right] \end{split}$$

vanishes at every point $\vec{\tau}$ in phase space, if Δ^0 (*m*) is constant

- Freed-isobar analysis: Much more parameters than fixed-isobar analysis
 - ► May causes continuous mathematical ambiguities in the model
- Example: Spin-exotic wave: $\mathcal{A}(\vec{\tau}) = \psi(\vec{\tau}) \Delta(m_{\pi^-\pi^+})$ with $\psi(\vec{\tau}) \propto \vec{\rho}_1 \times \vec{\rho}_3 \quad (\propto \sin \theta_{\text{HF}})$
- Bose symmetrized amplitude for $\pi_1^- \pi_2^+ \pi_3^-$ final state:

$$\begin{split} \mathcal{A}_{1-+}^{\text{symm}}\left(\vec{\tau}\right) &= \left(\vec{\rho}_{1} \times \vec{\rho}_{3}\right) \Delta^{0}(m_{\pi_{1}^{-}\pi_{2}^{+}}) + \left(\vec{\rho}_{3} \times \vec{\rho}_{1}\right) \Delta^{0}(m_{\pi_{2}^{+}\pi_{3}^{-}}) \\ &= \left(\vec{\rho}_{1} \times \vec{\rho}_{3}\right) \left[\Delta^{0}(m_{\pi_{1}^{-}\pi_{2}^{+}}) - \Delta^{0}(m_{\pi_{2}^{+}\pi_{3}^{-}})\right] \end{split}$$

vanishes at every point $\vec{\tau}$ in phase space, if Δ^0 (*m*) is constant

• "Zero mode": Shift of dynamic isobar amplitude by arbitrary ${\mathcal C}$

$$\Delta^{\mathrm{meas}}\left(m_{\xi}
ight)=\Delta^{\mathrm{phys}}\left(m_{\xi}
ight)+\mathcal{C}\Delta^{0}\left(m_{\xi}
ight)$$

leaves \mathcal{A}^{symm}_{1-+} and therefore intensity and likelihood invariant \Rightarrow Ambiguous solutions

• Superfluous degree of freedom C: Indistinguishable by fit

- Superfluous degree of freedom C: Indistinguishable by fit
- Physical solution: Conditions on dynamic isobar amplitudes Δ^{meas}

- Superfluous degree of freedom C: Indistinguishable by fit
- Physical solution: Conditions on dynamic isobar amplitudes Δ^{meas}
- In the case of the $1^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P$ wave:
 - ► Use the Breit-Wigner for the $\rho(770)$ resonance with fixed parameters as in the fixed-isobar analysis
 - ► limit fit range to $m_{\pi^-\pi^+} < 1.12 \,\text{GeV}$ to minimize effects from possible excited ρ' states

- Superfluous degree of freedom C: Indistinguishable by fit
- Physical solution: Conditions on dynamic isobar amplitudes Δ^{meas}
- In the case of the $1^{-+}1^{+}[\pi\pi]_{1^{--}}\pi P$ wave:
 - ► Use the Breit-Wigner for the $\rho(770)$ resonance with fixed parameters as in the fixed-isobar analysis
 - ► limit fit range to $m_{\pi^-\pi^+}$ < 1.12 GeV to minimize effects from possible excited ρ' states
- Note: Resolving the ambiguity fixes only a single complex-valued degree of freedom, C. n_{bins} 1 complex-valued degrees of freedom remain free.
 FK, D. Greenwald, D. Ryabchikov, B. Grube, S. Paul, PRD 97 (2018) 114008

Resolving the ambiguity

Resolving the ambiguity

 $0.3260 < t' < 1.000 \left({\rm GeV} / c \right)^2$

Ambiguity resolved in every $m_{3\pi}$ bin separately

$0.3260 < t' < 1.000 \left(\text{GeV}/c \right)^2$

Ambiguity resolved in every $m_{3\pi}$ bin separately

$0.3260 < t' < 1.000 \left(\text{GeV}/c \right)^2$

Ambiguity resolved in every $m_{3\pi}$ bin separately

$0.3260 < t' < 1.000 \left(\text{GeV}/c \right)^2$

Ambiguity resolved in every $m_{3\pi}$ bin separately Correlation of π_1 (1600) with ρ (770) confirmed Freed-isobar result Comparison to fixed-isobar PWA

 Coherently sum up all m_{π⁻π⁺} bins to obtain m_{3π} spectrum

- Coherently sum up all m_{π⁻π⁺} bins to obtain m_{3π} spectrum
- Zero mode exactly cancels

- Coherently sum up all m_{π⁻π⁺} bins to obtain m_{3π} spectrum
- Zero mode exactly cancels
- Similar to fixed-isobar result for π₁ (1600)

- Coherently sum up all m_{π⁻π⁺} bins to obtain m_{3π} spectrum
- Zero mode exactly cancels
- Similar to fixed-isobar result for π₁ (1600)
- Isobar model: Valid assumption

- Coherently sum up all $m_{\pi^-\pi^+}$ bins to obtain $m_{3\pi}$ spectrum
- Zero mode exactly cancels
- Similar to fixed-isobar result for π_1 (1600)
- Isobar model: Valid assumption
- Observed deviations hint to:
 - Excited isobar resonances
 - Final state interactions
 - Non-resonant contributions

Conclusion: Extended freed-isobar analysis with 12 out of 88 freed waves

- In total 200 independent fits in $m_{3\pi}$ and t' bins
- Independent dynamic isobar amplitudes obtained in every fit
- Zero mode ambiguities resolved

Conclusion: Extended freed-isobar analysis with 12 out of 88 freed waves

- In total 200 independent fits in $m_{3\pi}$ and t' bins
- Independent dynamic isobar amplitudes obtained in every fit
- Zero mode ambiguities resolved
- Decay π_1 (1600) $\rightarrow \rho$ (770) π^- reconfirmed
 - Independent of $\rho(770)$ parameterization

Conclusion: Extended freed-isobar analysis with 12 out of 88 freed waves

- In total 200 independent fits in $m_{3\pi}$ and t' bins
- Independent dynamic isobar amplitudes obtained in every fit
- Zero mode ambiguities resolved
- Decay π_1 (1600) $\rightarrow \rho$ (770) π^- reconfirmed
 - Independent of $\rho(770)$ parameterization

Next step: Analyze extracted dynamic isobar amplitudes

- Pin down resonance parameters of ρ'
- Study 2-body resonances in 3-body environment
 - Study 3-body re-scattering effects
 - ► e.g. Khuri-Treiman amplitudes (Bonn group)