Flavor-singlet strange pentaquarks with hidden heavy quark pairs [udsQQ]

> TAKEUCHI, Sachiko (Japan Coll Social Work) GIACHINO, Alessandro (INFN) TAKIZAWA, Makoto (Showa Pharm Univ) SANTOPINTO, Elena (INFN) OKA, Makoto (JAEA)

What we would like to discuss

- By adding a heavy quark pair to baryon:
 - we can see the nature of color-octet 3-light quarks — some of them are attractive.
 - (1) color-8 flavor-1 isospin-0 spin1/2 uds
 - (2) color-8 flavor-8 spin3/2 uud, uds
 - These modes can be observed by the Baryon-Meson scattering. More clearly with bb.
 - (2) is probably responsible to Pc peaks (with OPEP.)
 - (1) can be seen by looking into BM interaction

uudcc pentaquarks @ LHCb

Pc(4312), Pc(4440), Pc(4457) Found in the $\Lambda_b \rightarrow J/\psi$ K p decay, by LHCb

FIG. 1 (color online). Feynman diagrams for (a) $\Lambda_b^0 \rightarrow J/\psi \Lambda^*$ and (b) $\Lambda_b^0 \rightarrow P_c^+ K^-$ decay. LHCb,PRL115(2015)07201 LHCb,PRL122(2019)222001

Pc

Sharp peaks found below

- $\Sigma_c \overline{D}{}^{(*)}$ thresholds
 - Molecular state?
 - Attraction comes from where?

- OPEP \leftarrow Yamaguchi (Aug 18 talk)
- color-octet uud? ← This talk

$uudc\bar{c} (J^{P}) = 1/2(J^{-})$

S-wave 5 quark systems

- total: color singlet
 - •cc part: color singlet or octet
 - qqq part: color singlet or octet

クォーク模型からみたエキゾチックハドロン研究の進展とQCDの新展開 @RIKEN, Jun. 6, 2019

S-wave 5 quark system configurations:

flavor	qqq color	qqq spin	QQ spin	Total spin
1	8	1/2	0 or 1	1/2, 3/2
8	1	1/2		1/2, 3/2
8	8	1/2		1/2, 3/2
8	8	3/2		1/2, 3/2, 5/2

e.g. (I,J)=(1/2, 5/2) : Σc* D̄*

flavor	qqq color	qqq spin	QQ spin	Total spin
1	8	1/2	0 or 1	1/2, 3/2
8	1	1/2	0 or 1	1/2, 3/2
8	8	1/2	0 or 1	1/2, 3/2
8	8	3/2	0 or 1	1/2, 3/2, 5/2

e.g. (I,J)=(1/2, 3/2) : NJ/ ψ , …, $\Sigma c^* \overline{D}^*$

flavor	qqq color	qqq spin	QQ spin	Total spin	
1	8	1/2	0 or 1	1/2, 3/2	
8	1	1/2	0 or 1	1/2, 3/2	
8	8	1/2	0 or 1	1/2, 3/2	
8	8	3/2	0 or 1	1/2, 3/2, 5/2	

4 five-quark states v.s. 5 BM states

 \rightarrow 1 forbidden state + 4 allowed states

e.g. flavor-singlet qqq's are in J=1/2, 3/2

flavor	qqq color	qqq spin	QQ spin	Total spin
1	8	1/2	0 or 1	1/2, 3/2
8	1	1/2	0 or 1	1/2, 3/2
8	8	1/2	0 or 1	1/2, 3/2
8	8	3/2	0 or 1	1/2, 3/2, 5/2

Roles of flavor-spin SU(6) for qqq in Pc

Estimate of color-spin int =

- < color-spin interaction among light qqq >
 - < color-spin int. among each hadrons >

flavor	qqq color	qqq spin	qqq CMI	Lowest Threshold e.g.	CMI at ∞	Diff	
]	8	1/2	-14	Ac Ds	-8 (Aq)	-6 At	traction
8	1	1/2	-8	NJ/ ψ	-8 (Ν,Λ)	0	
8	8	1/2	-2	Ac Ds	-8 (Aq)	+4	
8	8	3/2	+2	Σc D*	+8/3 (Σ _Q)	-2/3 At	traction

Dynamical calc. with finite $m_Q, m_u \neq m_s$

Now we know what kind of configurations we have in each channel, and which of the configurations are attractive.

(Non strange part [PLB764(2017)254])

- Dynamical calculation by the quark cluster model.
- finite mass for charm and bottom,
- In flavor SU(3) sym broken by mu≠ms

Quark Cluster model

- VHadrons are clustered quarks.
- Interaction between the quarks consists of confinement, color-coulomb, and color-spin.
- It gives the observed hadron mass spectra.
- Quark interchange between the hadrons occurs at the short range.
- Quark d.o.f. and the Interaction between quarks produce the hadron interaction,
 The wave function for the inter-cluster mode is solved.

$uudc\bar{c} I(J^{P})=1/2(J^{-})$

flavor	qqq color	qqq spin	$Q\overline{Q}$ spin	Total spin
8	8	3/2	l	5/2
8	8	3/2	0	3/2
8	8	3/2	J	3/2
8	8	3/2	٦	1/2

l chan	E	
$\left(\frac{5}{2}^{-}\right)$	bound state	4519.9
$\left(\frac{3}{2}^{-}\right)$	cusp	4458.0
$\left(\frac{3}{2}^{-}\right)$	resonance	4379.3
$\left(\frac{1}{2}^{-}\right)$	resonance	4316.5

PLB764(2017)254]

Flavor-singlet strange pentaquarks [udsQQbar] @Hadron2019, 桂林 Aug. 21 2019

 \circ —

Roles of flavor-spin SU(6) for qqq in Pc

Estimate of color-spin int =

18

- < color-spin interaction among light qqq >
 - < color-spin int. among each hadrons >

flavor	qqq color	qqq spin	qqq CMI	Lowest Threshold e.g.	CMI at ∞	Diff	
1	8	1/2	-14	Ac Ds	-8 (Aq)	-6 At	traction
8]	1/2	-8	NJ/ ψ	-8 (Ν,Λ)	0	
8	8	1/2	-2	Ac Ds	-8 (Aq)	+4	
8	8	3/2	+2	Σc D*	+8/3 (Σ _Q)	-2/3 At	traction

	flavor	aaa color	aaa spin	QQ spin	Total spin
J = 3/2	J	8	1/2	l	3/2
	8	8	3/2	0	3/2
	8	8	3/2]	3/2

hidden bottom

uud color-8 spin 3/2

2 resonances

3 resonances uds flavor-1color-8 spin 1/2 uds color-8 spin 3/2

	flavor	aaa color	aaa spin	QQ spin	Total spin
J = 3/2]	8	1/2	J	3/2
	8	8	3/2	0	3/2
	8	8	3/2]	3/2

hidden bottom

uud color-8 spin 3/2

2 resonances

3 resonances uds flavor-1color-8 spin 1/2 uds color-8 spin 3/2

	flavor	aaa color	aaa spin	QQ spin	Total spin
J=3/2	1	8	1/2]	3/2
	8	8	3/2	0	3/2
	8	8	3/2]	3/2

hidden charm

uud color-8 spin 3/2

2 structures

1 resonance

uds flavor-1color-8 spin 1/2

+ uds color-8 spin 3/2 mixed

FI岳V的Shiplet strange pentaquarks [udsQQbar] @Hadr5r26Y9, 桂林 Aug. 21 2019

Fl&v的-shglet strange pentaquarks [udsQQbar] @Hadr&r29Y9, 桂林 Aug. 21 2019

Summary

By adding a heavy quark pair to baryon:

- we can see the nature of color-octet 3-light quarks — some of them are attractive.
 - (1) color-8 flavor-1 isospin-0 spin1/2 uds

(2) color-8 flavor-8 spin3/2 uud, uds

- These modes can be observed by the Baryon-Meson scattering. More clearly with bb.
- (2) is probably responsible to Pc peaks (with OPEP.)

(1) can be seen by looking into BM interaction

Thank you very much for your attention!

back up

uudcc^{bar} I(JP)=1/2(3/2-) [NJ, $\Lambda c \overline{D}^*$, $\Sigma c^* \overline{D}$, $\Sigma c \overline{D}^*$, $\Sigma c^* \overline{D}^*$] size of uud(Os)³ color-c spin-s states in scattering wave function

Model hamiltonian

Kinetic term:

Non-relativistic (to deal with scattering states):

$$K = \sum K_i \qquad K_i = m_i + \frac{1}{2m_i} \left(\boldsymbol{p}_i - \frac{m_i}{M_G} \boldsymbol{P}_G \right)^2$$

Confinement term:

▷linear confinement: $a_c \leftarrow LatticeQCD$ (Kawanai Sasaki)

 $\text{Constant term: } c_1, c_2, c_{qqbar} \leftarrow qqq qq^{bar} \text{ mass}$ $V_{\text{conf}} \stackrel{\text{fitting}}{=} \sum_{i < j} \lambda_i \cdot \lambda_j \left(-a_c r_{ij} + c_1 + \frac{c_2^2}{\mu_{ij}} + c_{q\overline{q}} \right)$

クォーク模型からみたエキゾチックハドロン研究の進展とQCDの新展開 @RIKEN, Jun. 6, 2019

one-gluon exchange term:

- Pquark is static, plane wave, Brite potential for the vector particle exchange.
- >Take the lowest order (p/m) term of each spin operator: 1, σ . σ , LS, tensor. (No LS tensor is used

this time)

Strong coupling constant $\alpha_{-}(\Omega^{2})$. $V_{coul} = \frac{\lambda \cdot \lambda}{4} \frac{\alpha_{s}}{r}$ (Yoshida etal) $\alpha_{s} = \alpha_{s}^{(0)} + \frac{\alpha_{s}^{(1)}}{\mu}$ (Yoshida etal) $\alpha_{s} = 0.25e^{-Q^{2}} + 0.15e^{-Q^{2}/10} + 0.20e^{-Q^{2}/1000}$ (Godfrey Isgur 86) $\alpha_{s} = 0.45e^{-Q^{2}/\frac{3}{2}} + 0.15e^{-Q^{2}/10} + 0.20e^{-Q^{2}/1000}$ (modified GI) $2\pi - 2$ 模型からみたエキゾチックハドロン研究の進展とQCDの新展開 @RIKEN, Jun. 6, 2019

one-gluon exchange term:

- Pquark is static, plane wave, Brite potential for the vector particle exchange.
- >Take the lowest order (p/m) term of each spin operator: 1, σ . σ , LS, tensor. (No LS tensor is used

this time)

Strong coupling constant $\alpha_{-}(\Omega^{2})$. $V_{coul} = \frac{\lambda \cdot \lambda}{4} \frac{\alpha_{s}}{r}$ (Yoshida etal) $\alpha_{s} = \alpha_{s}^{(0)} + \frac{\alpha_{s}^{(1)}}{\mu}$ (Yoshida etal) $\alpha_{s} = 0.25e^{-Q^{2}} + 0.15e^{-Q^{2}/10} + 0.20e^{-Q^{2}/1000}$ (Godfrey Isgur 86) $\alpha_{s} = 0.45e^{-Q^{2}/\frac{3}{2}} + 0.15e^{-Q^{2}/10} + 0.20e^{-Q^{2}/1000}$ (modified GI) $2\pi - 2$ 模型からみたエキゾチックハドロン研究の進展とQCDの新展開 @RIKEN, Jun. 6, 2019

Color magnetic interaction (CMI)

$$V_{\rm CMI} = -\frac{\lambda \cdot \lambda}{4} \alpha_s \frac{2\pi}{3m_i m_j} \sigma \cdot \sigma \delta^3(\boldsymbol{r})$$

This should be the same coupling constant, but we take it as a parameter:

$$\alpha_s^{ss} = \alpha_{s1}^{ss} + \alpha_{s2}^{ss} \frac{m_u}{\mu}$$
 for quark-quark

 α_{s3}^{ss} for quark-antiquark

Model wave function

Orbital wave functions

Dmeson

$$\psi_m(\mathbf{r}, x_0) = \phi(\mathbf{r}_{12}, b_{12}) = N_m \exp[-\frac{1}{2b_{12}^2}r_{12}^2] = N_m \exp[-\frac{1}{2}\frac{\mu_{12}}{x_0^2}r_{12}^2]$$

> baryons

 $\psi_b(\mathbf{r}, x_0) = \phi(\mathbf{r}_{12}, b_{12})\phi(\mathbf{r}_{12-3}, b_{12-3}) = N_b \exp\left[-\frac{1}{2}\frac{\mu_{12}}{x_0^2}r_{12}^2 - \frac{1}{2}\frac{\mu_{12-3}}{x_0^2}r_{12-3}^2\right]$ $\triangleright \text{minimize H (w/o CMI) by } \mathbf{x}_0 \text{ for each } \mathbf{q}_1 \mathbf{q}_2^{\text{bar}} \text{ or}$

$$b = \sqrt{m_q}/\mu \ b \sim \sqrt{0.7} \ b$$

ratio of **b** and b is fixed for simplicity. which is given by reduced mass of quarks \rightarrow charm has smaller size parameter.

7ォーク模型からみたエキゾチックハドロン研究の進展とQCDの新展開 @RIKEN, Jun. 6, 2019

BM v.s. qqqQQ Transfer matrix

e.g. S=-1, Isospin 0, Spin 3/2

uds	$ \Lambda J\!/\!\psi angle$	$ \Lambda_c D_s^* angle$	$ \Xi_c \overline{D}^*\rangle$	$ \Xi_c'\overline{D}^*\rangle$	$ \Xi_c^*\overline{D}\rangle$	$ \Xi_c^*\overline{D}^*\rangle$
C-1 F-8 S-1/2	0.866	-0.289	-0.204	-0.118	0.204	-0.264
C-8 F-1 S-1/2	0	-0.577	0.816	0	0	0
C-8 F-8 S-1/2	0	0.577	0.408	-0.236	0.408	-0.527
C-8 F-8 S-3/2	0	0	0	0.866	0.500	0
C-8 F-8 S-3/2	0	0	0	-0.373	0.645	0.667

a forbidden state

 $\sqrt{\frac{1}{24}} \Big(\sqrt{6} |\Lambda J/\psi\rangle + \sqrt{6} |\Lambda_c D_s^*\rangle + \sqrt{3} |\Xi_c \overline{D}^*\rangle + \sqrt{1} |\Xi_c' \overline{D}^*\rangle - \sqrt{3} |\Xi_c^* \overline{D}\rangle + \sqrt{5} |\Xi_c^* \overline{D}^*\rangle \Big)$ Havor-singlet strange pentaquarks [udsQQbar] @Hadron2019, \mathbb{E} Aug. 21 2019