XVIII International Conference on Hadron Spectroscopy and Structure

Status and perspectives for low energy kaon-nucleon interaction studies at DAΦNE collider: from SIDDHARTA to SIDDHARTA-2

Florin Catalin Sirghi INFN-LNF

> Johann Zmeskal SMI-OeAW

on behalf of SIDDHARTA/SIDDHARTA-2 collaborations

16 – 21 August 2019, Guilin, China

DAΦNE accelerator, since 1998: The Double Annular Φ factory for Nice Experiments

operates at the centre-of-mass energy of the φ-meson mass = 1019.413 ± .008 MeV

HADRON 2019

monochromatic low-energy K (~127MeV/c)

Suitable for low-energy kaon physics: kaonic atoms kaon-nucleons/nuclei interaction studies

 \mathbb{R}

HADRON 20

Silicon Drift Detector for Hadronic Atom Research by Timing Applications

SIDDHARTA Collaboration

M. Bazzi^a, G. Beer^b, L. Bombelli^c, A.M. Bragadireanu^{a,d}, M. Cargnelli^e, C. Curceanu (Petrascu)^a, A. d'Uffizi^a, C. Fiorini^c, T. Frizzi^c, F. Ghio^f, C. Guaraldo^a, R.S. Hayano^g, M. Iliescu^{a,d}, T. Ishiwatari^{e,*}, M. Iwasaki^h, P. Kienle^{e,i}, P. Levi Sandri^a, A. Longoni^c, J. Marton^e, S. Okada^h, D. Pietreanu^{a,d}, T. Ponta^d, A. Rizzo^a, A. Romero Vidal^a, E. Sbardella^a, A. Scordo^a, H. Shi^g, D.L. Sirghi^{a,d}, F. Sirghi^{a,d}, H. Tatsuno^a, A. Tudorache^d, V. Tudorache^d, O. Vazquez Doceⁱ, B. Wünschek^e, E. Widmann^e, J. Zmeskal^e

^a INFN, Laboratori Nazionali di Frascati, Frascati (Roma), Italy

- ^b Dep. of Phys. and Astro., Univ. of Victoria, Victoria B.C., Canada
- ^c Politecnico di Milano, Sez. di Elettronica, Milano, Italy
- ^d IFIN-HH, Magurele, Bucharest, Romania
- ^e Stefan-Meyer-Institut für subatomare Physik, Vienna, Austria
- ^f INFN Sez. di Roma I and Inst. Superiore di Sanita, Roma, Italy
- ^g Univ. of Tokyo, Tokyo, Japan
- ^h RIKEN, The Inst. of Phys. and Chem. Research, Saitama, Japan
- ⁱ Excellence Cluster Universe, Tech. Univ. München, Garching, Germany

HADRON 2019

The scientific aim

SIDDHARTA measures X-ray transitions occurring in the cascade processes of kaonic atoms

Fundamental study of <u>strong interaction</u> between anti-K & nucleus at low energy

Kaonic Hydrogen atoms

Data taking scheme at DA ØNE

SDD X-ray energy spectra

Kaonic helium results

Kp spectrum, BG subtracted

SIDDHARTA results: K⁻p (2011)

SIDDHARTA results:

<u>Kaonic Hydrogen</u> - 400pb⁻¹, most precise measurement ever Phys. Lett. B 704 (2011) 113, Nucl. Phys. A881 (2012) 88

<u>Kaonic deuterium</u> - 100 pb⁻¹, as an exploratory measurement Nucl. Phys. A907 (2013) 69

<u>Kaonic helium 4</u> – first measurement ever in gaseous target Phys. Lett. B 681 (2009) 310; NIM A628 (2011) 264; Phys. Lett. B 697 (2011);

<u>Kaonic helium 3</u> – 10 pb⁻¹, first measurement in the world Phys. Lett. B 697 (2011) 199

<u>Widths and yields of KHe3 and KHe4</u> Phys. Lett. B714 (2012) 40; Nucl. Phys. A916 (2013) 30; EPJ A(2014) 50; Nucl. Phys. A954 (2016) 7_{HADRON 2019}

K[−]*p* → *K*[−]*p forward scattering amplitude* > subthreshold amplitudes not yet well determined

- · - · · Bonn 4

K[−]*n* → *K*[−]*n forward scattering amplitude*≻ K-d will set constraints at threshold

Silicon Drift Detector for Hadronic Atom Research by Timing Applications

LNF- INFN, Frascati, Italy SMI- ÖAW, Vienna, Austria Politecnico di Milano, Italy IFIN – HH, Bucharest, Romania TUM, Munich, Germany **RIKEN**, Japan Univ. Tokyo, Japan Victoria Univ., Canada Univ. Zagreb, Croatia Helmholtz Inst. Mainz, Germany Univ. Jagiellonian Krakow, Poland Research Center for Electron Photon Science (ELPH), Tohoku University CERN, Switzerland **HADRON 2019**

STRONG-2020

Croatian Science Foundation, research project 8570

SDDHARTA-2 expected result

Geant4 simulated K⁻d X-ray spectrum for 800 pb⁻¹

SIDDHARTA-2 targeted precision Theory – SIDDHARTA-2

SIDDHARTA-2

Important features of the SIDDHARTA-2 setup

- > New interaction region and beam pipe
- Special designed shielding
- Lightweight cryogenic target
- Silicon Drift Detector
- ≻Veto-2 system
- ➤Luminosity monitor

New interaction region

focusing quadrupole (QF) quadrupole permanent magnet (QD)

QF

QF

QF

QD

IP

QF

flanges removed major source of asynchronous background

DAPNE luminosity monitor

Lightweight cryogenic target and X-ray detector

Target cell wall is made of a 2-Kapton layer structure (75 μm + 75 μm + Araldit)

SDDs placed 5 mm from the target wall

calibration foils inserted near to the SDD are activated by the Xray tubes

SIDDHART-2 new X-ray detector

New SDD technology with CUBE preamplifier

The veto-2 system

an inner ring of scintillator tiles (SciTiles) placed as close as possible behind the SDDs for charge particle tracking

BC-408 scintillator tiles with 4x4 mm² SiPM 24

SIDDHARTA-2 Luminosity monitor

- 2 pairs of scintillator: 80x40x2 mm³ Scionix EJ-200
- R4998 PMTs Hamamatsu

SIDDHARTA-2 Interaction regions bottom view

- Fast detectors & FEE
- Real time acquisition
- Accidental rate << Signal rate

Allows:

- Collision optimization
- Machine feedback

Luminosity ~ 10 ³² cm⁻² s ⁻¹ Rate ~ 50 - 60 Hz 25

Calibration of SDDs with the x-ray tube in DA Φ NE

SDD 48 BUS 5

ADC channels

Energy [eV]

SIDDHARTA-2 future perspectives

- □ Feasibility studies in parallel with SIDDHARTA-2 (HPGe and VOXES)
- □ Plans for the extension of the scientific programme
 - Charged kaon mass, precision measurement < 7 keV
 - Kaonic helium transition to the 1s level
 - Other light kaonic atoms
 - Radiative kaon capture $\Lambda(1405)$ studies
 - Investigating the possibility to measure other hadronic exotic atoms (sigmonic hydrogen?)

