Implications of spin symmetry for XYZ states

Qian Wang

HISKP, Bonn Uni. \Rightarrow South China Normal University, Guangzhou, China

Hadron 2019

In collaboration with

V.V. Baru, E.Epelbaum, A.A. Filin, C. Hanhart, A.V. Nefediev and J.-L. Wynen

Interpretations

 \Rightarrow Compact $Q\bar{Q}$ with excited gluons

Tetraquark

 \Rightarrow Compact object formed from Qq and $\bar{Q}\bar{q}$

Hadro-Quarkonium

 $\Rightarrow \text{Compact } Q\bar{Q} \text{ embedded in light quark cloud}$ <u>Molecule</u>

 \Rightarrow Extended object made of $Q\bar{q}$ and $\bar{Q}q$

Size $R \sim 1/\sqrt{E_B}$, with E_B the binding energy

Properties of hadronic molecule

- * Probability to find a resonance in continuum 1 Z, with Z wave-function renormalization constant Molecule: $Z \rightarrow 0$; Compact: $Z \rightarrow 1$
- ★ Large effective coupling g_{eff} to continuum $\frac{g_{eff}^2}{4\pi} = \frac{Zg_0^2}{4\pi} = 4M^2 \frac{\gamma}{\mu} (1-Z), \ \gamma = \sqrt{2\mu E_B} \qquad \text{Weinberg (1963)}$ Exp: <u>BR(Z_b(10610) → BB^{*} + c.c.) ~ 85.6%</u> → BB^{*}_{candidate}
 ★ Scattering length $a = -2\frac{1-Z}{2-Z} \left(\frac{1}{\gamma}\right) + O\left(\frac{1}{\beta}\right)$ Effective range $r = -\frac{Z}{1-Z} \left(\frac{1}{\gamma}\right) + O\left(\frac{1}{\beta}\right)$ ★ The pole counting approach
 - poles on k-plane: $k_1 = i\gamma$, $k_2 = -i\gamma \left(\frac{2-Z}{Z}\right)$

Guo et al. (2018)

Properties of hadronic molecule

 \star Line shapes in inelastic channels

$$T_{\rm in.}(E) \propto \frac{\sqrt{\Gamma_0}}{E - E_r + (g_{\rm eff}^2/2)(ik + \gamma) + i\Gamma_0/2}$$
 with $E = k^2/(2\mu)$

 \Rightarrow Directly relate to the experimental measurement

- \Rightarrow Extract relevant physical quantities, e.g. poles, $g_{\rm eff}$
- \Rightarrow Shed light on the internal nature

Guo et al. (2018)

Heavy Quark Spin Symmetry (HQSS)

- \star Exotic XYZ states contain a heavy quark (HQ) pair
- $\star\,$ In the $\Lambda_{QCD}/m_Q\rightarrow 0$ limit, spin of HQ decouples
 - \Rightarrow Heavy and Light d.o.f conserved individually
 - \Rightarrow Test different scenarios Cleven et al. (2015)
- \star Molecule spin w.f. expanded in terms of $|H\otimes L\rangle$
 - \Rightarrow Spin partners related via $C_L \equiv \langle H \otimes L | \hat{H}_{in} | H \otimes L \rangle$
 - \Rightarrow Predictions for the partners using C_L

Bondar et al. (2011), Voloshin (2011), Mehen and Powell (2011), Guo et al. (2015)

 \star Role of OPE for molecular partners can be non-trivial

 $\Rightarrow p_{\text{typ}} \sim \sqrt{2\mu\delta} \sim 500 \text{ MeV} \geq m_{\pi} \rightarrow \text{Non-perturbative}$

with δ the energy gap between the relevant thresholds

 \Rightarrow Tensor force \rightarrow mixture of different partial waves

Production of Z_b and W_{bJ} in $\Upsilon(5S)$ decays

- \star Relevant thresholds
- \star Decay modes
 - \Rightarrow isotriplet

* Exp.: $Z_b^{(\prime)} @ B^{(*)}\bar{B}^{(*)}, h_b\pi, \Upsilon\pi$

*
$$W_{bJ}$$
 with $J^{PC} = J^{++}, J = 0, 1, 2$

 α suppression vs. huge statistics

Formalism for line shapes of $\Upsilon(5S) \to Z_b^{(\prime)} \pi \to \alpha \pi$

 \star Input: experimental distributions for

$$\begin{split} \Upsilon(5S) &\to Z_b^{(\prime)} \pi \to \alpha \pi \qquad \text{Belle: Bondar et al. (2012), Garmash et al. (2016)} \\ \text{with } \alpha &= B\bar{B}^*, B^*\bar{B}^*, h_b(1P)\pi, \ h_b(2P)\pi \end{split}$$

branching fractions for

 $B\bar{B}^*, B^*\bar{B}^*, h_b(1P)\pi, h_b(2P)\pi, \Upsilon(1S)\pi, \Upsilon(2S)\pi, \Upsilon(3S)\pi$

* Not include $\Upsilon(nS)\pi\pi$ distributions

 \rightarrow multi-dimensional analysis

 \star Production amplitudes by the Zb's poles

Formalism for line shapes: effective potential for Z_b

- \star Production amplitudes U = P VGU
 - 4 elastic $\alpha = B\bar{B}^*[{}^3S_1], B\bar{B}^*[{}^3D_1], B^*\bar{B}^*[{}^3S_1], B^*\bar{B}^*[{}^3D_1]$
 - 5 inelastic $i=h_b(1P)\pi, h_b(2P)\pi, \Upsilon(1S)\pi, \Upsilon(2S)\pi, \Upsilon(3S)\pi$
- \star Neglect the direct interactions between $q\bar{q}$ and $b\bar{b}$
- * Effective elastic potentials: $V_{\alpha\beta}^{\text{eff}} = V_{\alpha\beta}^{\text{CT}} + V_{\alpha\beta}^{\pi} + V_{\alpha\beta}^{\eta}$ Contact terms: $V_{\alpha\beta}^{\text{CT}} = v_{\alpha\beta} - \frac{i}{2\pi\sqrt{s}} \sum_{j} m_{b\bar{b}} m_{\pi} g_{j\alpha} g_{j\beta} k_{j}^{2l_{j}+1}$ HQSS: divergence absorbed by the CTs $\Rightarrow g_{i1}/g_{i3} = 1$ for i = 1, 2; -1 for i = 3, 4, 5
 - ⇒ Production amplitudes: $g_{\Upsilon(5S)1}/g_{\Upsilon(5S)3} = -1$
 - $\Rightarrow \text{CTs: } \mathcal{O}(1)\text{-}\mathcal{C}_d, \mathcal{C}_l, \quad \mathcal{O}(p^2)\text{-}\mathcal{D}_d, \mathcal{D}_l, \mathcal{D}_{SD}$

HQSS violation: require more parameters

(The data do not require such parameters!)

Wang et al.(2018), Baru et al.(2019)

Fit scheme

- \star Parameters in the fit
 - 2 elastic S-S wave contact terms at LO
 - 3 elastic contact terms at NLO: 1 S-D waves, 2 S-S waves
 - 5 inelastic-elastic constants

In total: 10 vs. 5*4=20 parameters in BW parametrization * Fit schemes

Scheme I: pure S-wave momentum-independent CTs Scheme II: plus full OPE and $\mathcal{O}(p^2)$ S-D CT

Scheme III: plus OEE and $\mathcal{O}(p^2)$ S-S at NLO

Wang et al.(2018), Baru et al.(2019)

The line shapes of Z_b s

Blue, red and black curves for I (1.29), II (0.95), III (0.83)

Belle (2012)(2016)

- * Scheme I agrees with the parameterization Guo et al.(2016)
- ★ Scheme I+OPE+HQSS violation does not work
 - $\Rightarrow \mathcal{O}(p^2) \mathcal{D}_{SD}$ to LO
 - \Rightarrow cancel the S-D OPE
 - \Rightarrow Scheme II
- \star small effect from $\mathcal{D}_{d/l}$ and
 - $OEE \Rightarrow Scheme III$

 \Rightarrow but ren. group invariant

Wang et al.(2018), Baru et al.(2019)

Renormalization group invariance

Scheme II: blue dashed, red solid, red dotted and red dashed curves for $\Lambda = 0.8$ GeV, 1.0 GeV, 1.2 GeV, 1.3 GeV

Scheme III: thick black dotted, black solid, black dotted and black dahsed curves for $\Lambda = 0.8$ GeV, 1.0 GeV, 1.2 GeV, 1.3 GeV

 \Rightarrow Scheme III is ren. group invariant

Baru et al.(2019)

Lineshapes of W_{bJ}

Baru et al.(2019)

- * Taking $\chi_{b1}(1P)\pi$
 - and $\eta_b(1S)\pi$ as an example
- ★ Red: Scheme II

Black: Scheme III

 $\star\,$ Bump above threshold

sizeable distortion at thr.

- * Asymmetric line shapes
- \star Taking W_{b0} as an example
 - II: virtual st. below $B\bar{B}_{\rm thr}$
 - III: resonance above $B\bar{B}_{\rm thr}$

Lineshapes of W_{bJ}

Baru et al.(2019)

* Taking $\chi_{b1}(1P)\pi$

and $\eta_b(1S)\pi$ as an example

 \star Red: Scheme II

Black: Scheme III

 $\star\,$ Bump above threshold

sizeable distortion at thr.

- ***** Asymmetric line shapes
- \star Taking W_{b0} as an example

II: virtual st. below $B\bar{B}_{\rm thr}$

III: resonance above $B\bar{B}_{\rm thr}$

Lineshapes of W_{bJ}

- Baru et al.(2019)
 - * Taking $\chi_{b1}(1P)\pi$
 - and $\eta_b(1S)\pi$ as an example
 - \star Red: Scheme II

Black: Scheme III

 $\star\,$ Bump above threshold

sizeable distortion at thr.

- * Asymmetric line shapes
- \star Taking W_{b0} as an example
 - II: virtual st. below $B\bar{B}_{\rm thr}$
 - III: resonance above $B\bar{B}_{\rm thr}$

Results: branching ratios

Wang et al. (2018), Baru et al.(2019)

* Branching fractions (Exp vs. Theor) relative to $\mathcal{B}(B\bar{B}^*\pi)$

$B^*B^*\pi$	$\Upsilon(1S)\pi\pi$	$\Upsilon(2S)\pi\pi$	$\Upsilon(3S)\pi\pi$	$h_b(1P)\pi\pi$	$h_b(2P)\pi\pi$
50 ± 10	0.6 ± 0.3	4 ± 1	2 ± 1	9 ± 2	15 ± 3
$54.1^{+18.8}_{-18.1}$	$0.6^{+0.4}_{-0.3}$	$3.5^{+2.3}_{-1.5}$	$1.8^{+1.6}_{-1.0}$	$9.2^{+3.6}_{-2.4}$	$14.9^{+6.0}_{-4.1}$

 \star Predicted branching ratios for $W_{bJ}{\rm s}$

 $\chi_{b1}(1P)\pi$ for instance

J^{PC}	$B\bar{B}$	$B\bar{B}^* + c.c.$	$B^*\bar{B}^*$	$\chi_{b1}(1P)\pi$
2^{++}	0.06	0.07	0.54	0.03
1^{++}	-	0.76	-	0.02
0++	0.73	-	0.14	0.05

 \Rightarrow Furthermore

$$\Gamma^{1^{++}}_{B\bar{B}^{*}(^{3}S_{1})} : \Gamma^{2^{++}}_{B^{*}\bar{B}^{*}(^{5}S_{2})} : \Gamma^{0^{++}}_{B\bar{B}(^{1}S_{0})} : \Gamma^{0^{++}}_{B^{*}\bar{B}^{*}(^{1}S_{0})} \approx 15 : 12 : 5 : 1$$

$$\Gamma^{2^{++}}_{B\bar{B}(^{1}D_{2})} : \Gamma^{2^{++}}_{B\bar{B}^{*}(^{3}D_{2})} : \Gamma^{0^{++}}_{B^{*}\bar{B}^{*}(^{1}S_{0})} \approx 3 : 3 : 2.$$

 \rightarrow strong coupling to the nearby elastic channels

- \rightarrow the largest rates $\Upsilon(5S) \rightarrow \gamma W_{b1}(W_{b2}) \rightarrow \gamma B^{(*)}\bar{B}^{*}$ Belle-II
- \rightarrow the first ratio is consistent with the results in voloshin (2018)

Results: pole positions

Pole positions of Scheme III:

J^{PC}	State	Threshold	$E_{\rm pole}$ w.r.t. threshold [MeV]	Residue at E_{pole}
1+-	Z_b	$B\bar{B}^*$	$(-2.3 \pm 0.5) - i(1.1 \pm 0.1)$	$(-1.2 \pm 0.2) + i(0.3 \pm 0.2)$
1^{+-}	Z_b'	$B^* \overline{B}^*$	$(1.8 \pm 2.0) - i(13.6 \pm 3.1)$	$(1.5 \pm 0.2) - i(0.6 \pm 0.3)$
0^{++}	$\overline{W_{b0}}$	$B\bar{B}$	$(2.3 \pm 4.2) - i(16.0 \pm 2.6)$	$(1.7 \pm 0.6) - i(1.7 \pm 0.5)$
0^{++}	W_{b0}^{\prime}	$B^* \overline{B}^*$	$(-1.3 \pm 0.4) - i(1.7 \pm 0.5)$	$(-0.9 \pm 0.3) - i(0.3 \pm 0.2)$
1^{++}	W_{b1}	$B\bar{B}^*$	$(10.2 \pm 2.5) - i(15.3 \pm 3.2)$	$(1.3 \pm 0.2) - i(0.4 \pm 0.2)$
2++	W_{b2}	$B^*\bar{B}^*$	$(7.4 \pm 2.8) - i(9.9 \pm 2.2)$	$(0.7 \pm 0.1) - i(0.3 \pm 0.1)$

- $\star Z_b$ and W'_{b0} locate just @ the $B\bar{B}^*$ and $B^*\bar{B}^*$ thresholds
- $\star Z'_b$ and W_{b0} as bumps
- $\star~W_{b1}$ and W_{b2} pronounced peaks above-threshold
- \star Poles with only CTs: virtual states.

Difference from dynamic pion

 \star Large effective couplings \rightarrow molecular nature

- \star A systematic EFT approach w.r.t chiral and HQ symmetries
- * Satisfy unitarity and analiticity with inclusion of inelastic and OPE dynamically
- \star Molecular picture describes the existing data of the two $Z_b {\rm s}$ well
 - \Rightarrow only one near-threshold pole
 - \Rightarrow large effective couplings
 - \Rightarrow asymmetric line shapes
- \star Predict the spin partners W_{bJ} in a parameter-free way
- \star Outlook
 - \Rightarrow Proper inclusion of compact components
 - \Rightarrow Extension to SU(3) flavor group for light quarks

Thank you very much for your attention!

